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ABSTRACT. Two very effective 1~lllcriall-l,agrallgiall approaches to treat
advection-dominated transport, have been developed in tIle general frame-
work of the IJocalized Adjoint Method: Bilinear ELLAM (BELLAM) and
ELJJAM-Cclls (CEJJJ,AM). III I.his paper, tllCY are explained and discussed

briefly.

1. INTRODUCTION

The numerical solution of the advective-diffusive transport equation is a problem
of great importance because many problems in science and engineering involve
stich mathematical models. Whcn the proccss is advection dominated the problem
is cspecially difficult.. 'rhe met.hods available derive from t.wo main approaches:
Eulerian and Lagrangian, or Eulerian-Lagrangian, when such approaches are com-

bined.
When applied to advection dominated transport, the salient features of

approximations which derive from an Eulerian approach, may be summarized as
follows: (i) The time truncation error dominates the solutions, (ii) The solutions
are characterized by significant numerical diffusion and some phase errors, (iii) The
COIlrant nllmhcr (CII == VLllJLlx) i,., generally re,.,trictcd to be less than one, and
sometime,., mllcll Ic,.,s than one. Among ,.,IIC!I proccdllrcs, onc may distingllisll Opti-
mal Spatial Methods (OSM), in which an accurate solution of the spatial problem
is developed. In addition, other Euleri(~n methods can be developed that perform
hetter than OSM approximations, alt.hollgh thcy still suffer from severe Courant
number lil11itatiOlls. In [1], a review or tllis class or metllods and cllaracteristics
methods that were available previous to the development of Eulerian-Lagrangian
Localized Adjoint Methods, was presented.

Lagrangian procedures profit rrom thc structure of characteristic curves,
treating tile advcctive component by a cllaracteristic tracking algoritllm (a La-
grangia.n frame of reference), and the diffusive step is treated separately using a
more standa.rd spatia.1 approximation. These methoos Ilave the signific(~nt advan-
ta.ge that Courant numher restrictions of Eulerian methods are alleviateo because
of tll(~ J"agrangiall Ilat.ur(~ or t.IIC ..~dvcctioll stcl>. Wilen the procedure is pllrcly
Lagrangian, a moving grid lIas to be used, but the grid is fixeo when the approach
is Eulerian-Lagrangian, as in the Modified Method of Cllaracteristics (MMOC).

I"ocalizcd Adjoint M(~tho(1 (I"AM) Ila,., hccn appli('d In ,.,pace-time, in an
1':III('riaJI-I..a.grallgiall In(~llllcr to l)rol>lelll~ or (~(Iv(.(:tiv(~-(!irru~ive tr(~Jlsl>ort, II~illg



specialized test functions [1-7]. These functions locally satisfy the homogeneous
adjoint equation within each element. The method so obtained is the Eulerian-
Lagrangian Localized Adjoint Method (ELLAM), whose theoretical basis was ex-
plained at some length in [2]. This framework is quite wide and in addition to
providing a unification of characteristic methods (CM's), supplies a systematic
procedure for incorporating bo\\ndary conditions in CM approximations. Com-
plete treatments of boundary conditions in Eulerian-Lagrangian methods are fea-
sible, and the resulting algorithms are mass conservative, when this frame work is

used.
The theoretical framework of ELLAM [2] can be implemented in many

different manners. Up to now two different classes of test functions have been
used in ELLAM. In [1], bilinear functions which are defined as the "chapeau"
functions at level time tn+l and constant along characteristic curves, were ap-
plied and in this manner the first complete treatment of boundary conditions
in Eulerian-Lagrangian methods was developed, which leaded to a conservative

scheme for the general transport equations.
In addition, the application of test functions which are defined as box func-

tions at level tn+ 1, and which are also constant along characteristic curves, has
been carried out independently in [3,4], under the name of FVELLAM, where some
numerical difficulties were encountered and in [5-7], under the name of ELLAM
Cells (CELLAM), where such numerical difficulties were overcome. In this paper,
a brief description of these procedures and a discussion of their relative merits, is

presented.

2. BILINEAR ELLAM (BELLAM)

In what follows, we consider the one-dimensional transient advection-diffusion

equation in conscrvcl.tion form:

au
lJl

a n+ Ru = fn(x, i),au
D- -Vu

a.r
InL1t ==

Ox X !1t!l E Ot = [In,l,,+I], (x,l) E nx E nx = [O,l],

s\Jbj<~ct to illiti.tl cOII<litions

u(x,ln) = un(x),

and suitable boundary conditions, at x = 0 and I. The .following development
accommodates any combination of boundary conditions. The manner in which the
region n and the initial conditions were chosen in Eqs. (2.1) and (2.2), is convenient
when applying a step by step soilltion procedure. This approach was first presented
in a sequence of two papers ([1] and [2]). For simplicity only the case of constant
coefficients will be explained here, although the case of variable coefficients has
already been implemented (see for example [8]). For simplicity, we proceed in an
ad-hoc manner, but a more systematic exposition placing the procedures discussed
in this article in the general frame-work of the Localized Adjoint Method (LAM),
is given in this same voillme [9] (see also [2]).
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XE = 1Xc = 0 Xi-l Xi Xi+l

Spacc-l.il"'~ sllpporl. or ,/Ii ror 1lI'~U,A M 111~I.holi1'1GUIl..;

For the case when the coefficients of Eq. (2.1) are constant, the source term
vanishes (R = 0) and the partition is uniform, the test functions used were:

.x -Xi-l V tn+l -t ( ) oj
+ x,t E~£l'

L\x Llx

v~~Xi+l -x

6x
wl(x, t) =

(x,t) En;,+ ~x

all other (x, i),0,

2.1 Discretization in the interior of n

When the region ni does not intersect the lateral boundaries, integration ove~ ni,

yi('lcls

D
~x

j tn+l

t..
[ri+1Jri-t U(Ui-l(t), t) dtU(X,tn+l)WI(.-r,tn+l)d.-z:

2
11n+1

in

tt(O"i+l(t), t) dt

l ~i+l
x. 11-

u(x, in}wi(.-r, in} dx + J fntVi dx dt,

n

where the unknowns have been collected in the left-hand member of the equation
wllih' tll(' (lata. is illclll(I(,(1 ill 1.11(' rigllt 011('. III '-:<}. (2.~), it is asSlllll(~(' tllat.1: = O"i(t)

is the characteristic curve passing tllrollgll Xi at time In+l (I;'ig. 1).
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FIGURE 2. Case when the support of wi intersects the inflow boundary for BELLAM methd

Notice that the unknown function u(x, i) has not yet been approximated
by any specific functional form. The time integrals may be approximated using
Backward-Euler (fully implicit) scheme. Then the spatial integrals that appear in
Eq. (2.5), may be approximated in many different ways, using the nodal values
of u at the discrete time levels in and in+l, exclusively, so that the unknowns
in the equation ultimately correspond to nodal values at time in+l. Different ap-
proximations of these integrals lead to different CM algorithms reported in the
literature. For example, piecewise linear spatial interpolation of u at time levels in
and in+l, coupled with a one-point (at i = in+l) fully implicit approximation to
the temporal integral, leads to the modified method of characteristics (see [1]).

fl.!! Boundary conditions

When a region f};i intersects tIle illflow boundary, several cases can occur. As an
example, we discuss the case illustrated in Fig. 2. Then, integrating Eq. (2.1) over

the region f};i, it is obtained:

I 1/11+1

tl(Ui-l(t), t) dt -2 /~

I

1

t,.+1

':-1

l Xi+l

Xi-l

D
C1x

U(O"j(t), t) dtu(x, tn+l)WI(X, tn+l) dx-

+ rti-1
it!

.+1

[In++ lli+l dt =U(Ui+l(t), t) dt w'

t.tt(O,l)dl- j '

t:+l

t.1i-1
t~.

D
~x

+ J fntVi dx dt

n
(2.6)u(O,t)dt

The integrals along characteristics appearing in Eq. (2.6) can again be evaluated by
means of a fully implicit approximation. However, it must be mentioned that the
fact that each of these three integrals has a different length, introduces problems
for achieving consistency in the order of accuracy of the approximations, for some
classes of boundary conditions, at least. Suitable combinations of the integrals just
mentioned with the last integral of the left-hand side of Eq. (2.6), may overcome
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the problem. However, whether this is feasible or not, depends on the type of
boundary conditions to be satisfied. To exhibit this problem, it is necessary to
develop a more careful derivation in which the order of the errors introduced at
each step is explicitly stated. Thus, the reader is referred to Section 3, where a
derivation satisfying such conditions is carried out for CELLAM (a more detailed
exposition is given in [7]).

The last term in the left-hand side of Eq. (2.6) must be handled with
special care to obtain an algorithm with satisfactory properties. If we simply apply
the Backward-Euler scheme to the unknown boundary flux along the time direc-
tion, the discretization will be unsatisfactory for large Courant numbers (Cu =
V ~t/ ~x), since many characteristic lines will be crossed. Thus, instead, one can
evaluate the contribution to the illtrgral of the term containing 11(0, i), since this
is Dirichlct data, and transpose it to tile rigllt side of tile equation. 1/1 [I], the
remaining part of the integral was approximated in a way which, as indicated
in [5], is equivalent to:

rt:-1
J'i+l

U1lto I a;
:X,ln+l)dx (2.7

However, this approximation, as pointed out in [7], is not necessarily consistent
with the order of approximation that is required in the formulation: O(l:J.xl:J.t2).
This latter order of approximation can be achieved, using relations similar to
Eq. (2.7), only if the expressions under the integrals, are suitably combined with
the integrals along characteristics present in Eq. (2.6), and this is possible, as has
already been mentioned, only for some kinds of boundary conditions [7].

For outflow boundary conditions of Dirichlet type, the outflow boundary
contributions vanish for all the test functions. This is due to the fact that all
the weighting functions vanish in the characteristic EE, which passes through
(XE, tn+l), and beyond it. Also, the system of eqllations that is obtained in the
manner explained above, is closed, because tlE+l is datum. If additional informa-
tion is desired at the outflow boundary, it can be obtained applying procedures
which amount essentially to post-proccssing [1].

3. ELLAM CELLS

This mcthod wa.c; pl:C'.c;('nl,(!<! originally ill [.1] an(1 [7] (s(!(~ .\.11;0 [6]). To cxpl.1.in this
method and conform with notations tllat arc standard for tIle method of cells, it
is convenient to modify slightly the notation. A partition

,.7: E-I/2' x E}{.TI, X3!2, XS!2,

is introduced, which in~uces a partition of n into subregions {OJ, n2,..., nE}, if
for each i = 2,. .., E, nl is defined as the subregion of n limited by the character-
istic curves Li-I/2 and Li+I/2 (see Fig. 3), while nl is that part of n which lies to
the left of L3/2 and nE is the subregion of n which lies to right of .o.E-I/2. The
subregions of the partition are called "cells" and they are said to be "uniform"
when

Xi+l/2-Xi-l/2 = h, for i = 2, XJ/2-.TI = h/2,,E-I, XE-.'l:/:"-1/2 = h/2

(3.1 )



FIGURE 3. Space-time support of wi for CELLAM method

A system of constant weighting functions is applied. These are the charac-
teristic functions of the subregions that constitute this partition. Actually, not all
of them are required. The system of weighting function that was applied in [7] is:

if (x,i) E na,1,
a = 2, ,E-l,wa(x, t) =

if (x, t) It na,0,

3.1 Discretization in the interior of n

In the case when niX does not intersect the lateral boundaries of the region n =

[0,1] x [tn,tn+l], integration of Eq. (2.1) over niX, yields:

tln+l
I 1',1+1

(X+
In

D~
ax

dlfXa+'
lxa-i Eo+1/2 .

dt = [x;'+
JZ.0-11~"+' (D~)

ufldx (3.3)
1::..-1/2

Equation (3.3) and a modified version of it designed to incorporate terms
contributed by the boundary when no intersects the time-axis, is the starting point
of the numerical treatment. Observe that

1 x. Un+l dx -a+1

x'a-I

un dx = O(hk) (3.4a)rXO+l

}XO-l

and

rtn+J
itn

j tn+l ( au )dt -D-

tn ax
dt = O(hk)

Eo+l/2 Ea-l/2

where h = max(hj+l/2 -hj-J/2) and k = tn+J -tn. Thus, in the developments
it is required that integrals such as those appearing in Eqs. (3.4), be evaluated to
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a precision of O(hk2), at least. It will be a.'Jsumed that h ~ k, so that O(hk2) =
O(h2k) = O(k3) = O(h3).

Equation (3.3) supplies in/onnation about the sought solution in t/~e inter-
val [Xa-l/2' Xa+I/2] at time tn+l and about its x-derivative on the c/~aracteristics
Ea-l/2 and Ea+l/2' In [7], the processing of such information had as its goal,
to concentrate all of it jn the value of the solution at the "cell center" Xa, at
tjme t = tn+l. To this end, in Eq. (3.3), the integrals from tn to tn+l, were
firstly approximated in a fully implicit manner (i.e., by a one-step Backward-Euler
approximation at tn+ 1). Thus

1'n+1

".
D~

D.T
auD-
Dx

dt =
~..+ 1/2 ,. ,'. u,o-1 -

8un+lD-
D.1:

(D~ )i);/:
k + O(hk2)

~

It-II'.!'t-I-ln

For a uniform spacing and constant coefficients, a central difference approximation
scheme is applied, which yields:

8un+l

--a-;-
fJun+l

-7j;-
k = Ua+l + U~-l -2ua k + O(h3 k) (3.6)

Ih0+1/2 0-1/2

The extension of this formula to the case of a non-uniform partition, can be done
in a similar manner. However, the order of the error associated with such an
approximation is reduced by one and the overall error in (3.6) becomes O(h2k).

In characteristic methods, most of the numerical diffusion is due to the
interpolations in space, which are required because in general, cha.racteristics do
not cross the time levels of the time discretization at nodes. Thus, all the approx-
imations in space have to be carried out with special care. A special feature of the
approximations that were used in [7], is that no assumption was made about the
shape of the solution.

TIIC first. intcgral in (3.3) i1; il/>I>roxilnilt.cd J>y

f}2Un+1

f):C2
h; + O(hs)

1%0+1

r,.-1 tr

and only the second order derivative requires a numerical approximation, since
the information is being concentrated in the" cell centers". To get a tri-diagonal
strtlcture for the mi\.trix, it i~ collvcllicllt to II~<: tllrc<:-point approximations only.
In the case of a "uniform pi\.rtition", a central difference approximation yields

Ua+1 + Ua-l + 22uaun+ldx = h + 0(h5)
24

l xa+l

xa-l

If the partition is non-uniform, the approximation to the second order derivative
by a three-point scheme is only first order, and the error in the evaluation of the
integral in (3.8), is only order four.

There is greater freedom for the choice of the approximations to be used
in the evaluation of the integrals at time tn, since they 10 not affect the structure



of matrix of the final system of algebraic equations. In [7], the integral appearing
in the right-hand side ofEq. (3.3) was approximated using an approach similar to
(3.7); i.e., integrating the Taylor series expansion of un around the mid-point of
the interval [X~-l' X~+l]' However, since such point is not a "cell center", l,n is not

known there and an interpolation must be used to evaluate it. Using three-point
formulas, l,n and its SCCOllcl orcl(~r cl(~rivi\tivc call 1)(' cvi\luatc(1 to ()rcl('r~ 1.llr<.'(~ (\11(1
one, respectively. This yields an approximation wllich is fourtll ordcr in II..

3.2 Bottndanj condition.~

1'he numerical approximations presented thus far, apply only when the subregion
no c n does not intersect the lateral boundaries Don u Din, of the region n.
When this is not the case, boundary conditions must be included. In connection
with the numerical treatment of boundary conditions, numerical diffusion is due
to a large extent, to the fact that characteristics do not cross the boundaries of the
spatial region n%, at times levels belonging to the partition of the time interval.
Thus, just as in the interior of the spatial region, the approximations in space have
to be performed with special care to minimize numerical diffusion, when dealing
with the boundary conditions, it is the time integrals that have to be treated with
special care. This is specially true for an inflow boundary, by two reasons at least.
Firstly, the information that is supplied at an inflow boundary has a larger effect on
the solution than that which is supplied at an outflow boundary, since the former
is transmitted to the interior of the spatial region by advection and diffusion,
while the latter is only transmitted by diffusion. Secondly, in Eulerian-Lagrangian
approaches, the analyst does not have control of the discretization at an inflow

boundary, since it is completely determined by the spatial discretization.
In [7], it was pointed out that to some extent it is more difficult to achieve

the desired degree of accuracy in the illtegrals witll respect to time at the boundary,
than in the integrals with respect to x, at the different time levels. For Dirichlet
hollnclary conditioll:;, tll(~ cliffcrcllt I.crlll:; O(:Cllr ill it ("OIIII)illi1.l.ioll wlli(:11 i:; suil.itl)lc
for obl.aining I.he desired degree of accuracy. Howevcr, wIlen tIle tol.itl flux is pre-
scribed or when considering boundary conditions of Neuman type, this was not
the case. This was discussed in [7], in connection with total flux conditions and
I.lle argllmcnt. prcsclll.(~d 1.11(~re i:; cxplitill(~(1 Ilcrt'.

Assumc tllat total flux conditions arc being considered il-nd tllat ncr inter-
sects the inflow boundary, as illustrated in Fig. 4. Then, the weighted equation

is [7]:

1

%0+1/2 l tn+l { ( au )Un+l dx -D-

% ..ax
0-1/2 '0-1/2

(D~) dt-

Ea+ 1/2 Ea-l/2

1.t:-1/2 ( D ~ )
ta+1/2

F(t) dt (3.9)
Eo+ 1/2

1,' dt = 0-1/2

,.
0+1/2

where F == (Vu -D~ )x=o is prescribed.
Since F(t) is a datum, the corresponding integral offers no special difficulty

in being approximated to any desired order of accuracy. The first two integrals,
which also occur in the left-hand side Eq. (3.3), can be treated in the manner
that was explained when the "discretization in tIle interior of .0.", was discussed.
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However, the last integral of the same side of the equation, is not amenable to
be approximated to the order of accuracy that is required. If a translation in any
direction is a applied to the expression under the integral sign, for its evaluation,
this must be done without crossing characteristic curves, in order to preserve the
advantages of characteristic methods [7]. A translation along the .characteristic

curve Ea+I/2' yields

D~~=
ax1.1:-1/2 ( D~)

10+1/2

+ O( k2 (3.10)-t~+1/2)dt = (t~-1/2
a+I/2Ea+ 1/2

which is not of the required precision.
Developing algorithms which overcome the shortcoming of the approxi-

mation (3.10), would be considerably more elaborate. For example, one could
construct weighting functions satisfying suitable boundary conditions, using the
gllidclines of the general theory of the Localized Adjoint Method [2]. However,
thus far this has not been required. The inconsistency of the order approximation
which is introduced when Eq. (3.10) is used, has not been manifested in the results
of the numerical experiments that have been carried out up to now.

4. DISCUSSION AND CONCLUSIONS

Till' l)rl)I)/I'111 I)f t.rl'at.illg IIllllll'rically (1.llvI'ct.ioll-clirfllNioll prOI)!CITIN WII(~11 advection
is Ilolllillitllt Ila~ I)CCII c\. CI.clllcIlgillg problcITI for c\. IOlig timc. A Ilatural goal of the
research efforts that have taken place in this area is to develop algorithms whose
efficiency is independent of the Courant number, independently of the boundary
conditions that are imposed, A very important step forward was given with the
development or clli\.racteristic methods, specially the modified method of charac-
teristics [10-12]. However, the inability of those methods to treat the boundary
conditions systematically had been a very limitative factor in their applications.

Localized Adjoint Method [2], when combined with the method of charac-
teristics, has lead to the development of Eulerian-Lagrangian Localized Method
(T:'T T ,\ 'f' ,.,1';rh h:l" f)('rmitt('n iI svst.C'cmiltir treatment of boundary conditions
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and the development of mass conservati\'e a]gorithms [1-7J, The numerical evic
presented in [lJ and [7J indicate that the a]gorithms develop in this frame\l,'or
essentially independent of the magnitude of the Courant number (the integer
of it) and seem to depend mainly on its fractionary part. Ho\vever, additi
numerical experiments are r~quired to.establish these facts on a more firm b,

The treatment is not equally satisfactory for all kinds of boundary
ditions. For some of them, some inconsistencies have been detected theoreti(
as has been explained in Sections 2 and 3 of the present paper, \vhich ma
confirmed numerically if more extensive numerical experjments are carried 01

In [7], 'evidence was presented \\'hich indicates that the method CELl
(ELLAM-Cells), is more efficient than BELLAM (ELLAM-Bilinear).. In par
lar, when applied to advection dominated transport, CELLAM is as accura1
BELLAM, but easier to implement and more general, since the test functions'
(piecewise constant), can also be applied when the equations have non-cons
coefficients. CELLAM is also easier to combine with codes \vhich have been alr(
developed using a finite control.\'olume approach,
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