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ABSTRACT. Two very cffective Bulerian-Lagrangian approaches to treat
advection-dominated transport, have been developed in the gencral frame-
work of the Localized Adjoint Method: Bilincar ELLAM (BELLAM) and
ELLAM-Cclls (CELLAM). In this paper, they are explained and discussed
briefly.

1. INTRODUCTION

The numerical solution of the advective-diffusive transport equation is a problem
of great importance because many problems in science and engineering involve
such mathematical models. When the process is advection dominated the problem
is especially difficult. The methods available derive from two main approaches:
Eulerian and Lagrangian, or Eulerian-Lagrangian, when such approaches are com-
bined.

When applied to advection dominated transport, the salient features of
approximations which derive from an Eulerian approach, may be summarized as
follows: (i) The time truncation crror dominates the solutions, (ii) The solutions
are characterized by significant numerical diffusion and some phase errors, (iii) The
Courant number (Cu = VAL/Axr) is generally restricted to be less than one, and
sometimes much less than one. Among such procedures, onc may distinguish Opti-
mal Spatial Methods (OSM), in which an accurate solution of the spatial problem
is developed. In addition, other Eulerian methods can be developed that perform
better than OSM approximations, although they still suffer from severe Courant
number limitations. In [1], a review of this class of mecthods and characteristics
methods that were available previous to the development of Eulerian-Lagrangian
Localized Adjoint Mcthods, was presented.

Lagrangian proccdures profit from the structure of characteristic curves,
trcating the advective component by a characteristic tracking algorithm (a La-
grangian frame of reference), and the diffusive step is treated scparately using a
more standard spatial approximation. Thesc methods have the significant advan-
tage that Courant number restrictions of Eulerian methods are alleviated because
of the Lagrangian nature of the advection step. When the procedure is purcly
Lagrangian, a moving grid has to be used, but the grid is fixed when the approach
is Eulerian-Lagrangian, as in the Modified Mcthod of Characteristics (MMOC).

Localized Adjoint Mcthod (LAM) has been applied in space-time, in an
Eulerian-Lagrangian manner to problems of advective-diflusive transport, using



specialized test functions {1-7]. These functions locally satisfy the homogeneous
adjoint equation within each element. The method so obtained is the Eulerian-
Lagrangian Localized Adjoint Method (ELLAM), whose theoretical basis was ex-
plained at some length in [2]. This framework is quite wide and in addition to
providing a unification of characteristic methods (CM’s), supplies a systematic
procedure for incorporating boundary conditions in CM approximations. Com-
plete treatments of boundary conditions in Eulerian-Lagrangian methods are fea-
sible, and the resulting algorithms are mass conservative, when this frame work is
used.

The theoretical framework of ELLAM (2] can be implemented in many
different manners. Up to now two different classes of test functions have been
used in ELLAM. In [1], bilinear functions which are defined as the "chapeau”
functions at level time t,41 and constant along characteristic curves, were ap-
plied and in this manner the first complete treatment of boundary conditions
in Eulerian-Lagrangian methods was developed, which leaded to a conservative

scheme for the general transport equations.
In addition, the application of test functions which are defined as box func-

tions at level tn41, and which are also constant along characteristic curves, has
been carried out independently in [3,4], under the name of FVELLAM, where some
numerical difficulties were encountered and in [5-7], under the name of ELLAM
Cells (CELLAM), where such numerical difficulties were overcome. In this paper,
a brief description of these procedures and a discussion of their relative merits, is

presented.

2. BILINEAR ELLAM (BELLAM)

In what follows, we consider the onc-dimensional transient advection-diffusion
cqualion in conscrvation form:
ou 0 ( du

[ZuE-(,)—t- — D%‘V‘U)'{"RU:[Q(.Z',t), m 2

T e QI = [0711’ Ley = [t"vlﬂ'H]a (Iat) €N QI X le
subject to initial conditions
u(z,ly) = u™(z),

and suitable boundary conditions, at z = 0 and [. The following development
accommodates any combination of boundary conditions. The manner in which the
region € and the initial conditions were chosen in Egs. (2.1) and (2.2), is convenient
when applying a step by step solution procedure. This approach was first presented
in a sequence of two papers ([1] and [2]). For simplicity only the case of constant
coefficients will be explained here, although the case of variable coefficients has
alrcady been implemented (sce for example [8]). For simplicity, we proceed in an
ad-hoc manner, but a more systematic exposition placing the procedures discussed
in this article in the general frame-work of the Localized Adjoint Method (LAM),
is given in this same volume [9] (sce also [2]).



1430 WAVE EQUATION

4t 1 Ot t
t Q=01U0
n+1 I /1 Z1 ,l
/1 71 7
) / AN 7
i-1 / =7 =¥/
4 y4 1
I / | 7 i 7 I
/ 7 I 7
/ y .4 7
/ y .4 7
y4 1 y4 1 V4
l o —7 1 7
/ — —7 —— 1/
/ )t y4 ) 7
/ NE] 7 Y5 7
Y —7 z—/
A A
/1 Z1 /I
/ y4 7
/ 7 7
y4 1 V4 L J
/ | 7 | 4 | l
VA 1 Z 1 Z
tn
- - -
T l x" I x.'+| I ' z
1'0—0 Ti-1 Z; Tit1 TE =1

FiGcure Space-time support of w' for BELLAM method
For the case when the coefficients of Eq. (2.1 ) are constant, the source term
vanishes (R = 0) and the partition is uniform, the test functions used were:

(T —Zi-y tngy1 — 1 ;
Ql
Az +V Az (z,t) € 1,

wiz,t)={ Tiy1 — 2 th+1 = N e Qi
Ax + A:r (I" )6 2

0, all other (z, 1),

where Q4 and ) are as is shown in Fig. 1. Such weighting functions satisfy L*w' =
0 and are continuous (i.e [w] = 0), but have discontinuous first derivatives (i.e.,

[dw/dz] # 0). The jumps are
dul . _ L. [‘9_“’ _=2 (0w _ L
az |,_, T Az’ dz|;, Az’ oz |4y T Az

2.1 Discretization in the interior of )

When the region ' does not intersect the lateral boundarics, integration over o,

yiclds

Zitt D it
/ W g )0 (2 L) d -2 { [ woirw,nd
, Azrx o

thyt tht1
2/1,, u(a,-(t),t)dt+/tn u(a,'H(t),t)cll}

/ l+lu(:r,l,,)w"(:t:,l,.)d:z:-}—/j'mu"dmdt,
z
N

.
i—-1

where the unknowns have been collected in the left-hand member of the equation

while the data is included in the right one. In Eq. (2.5), it is assumed that z = o;(t)
is the characteristic curve passing through z; at time tp4 (Iig. 1).
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FIGURE 2. Case when the support of w* intersects the inflow boundary for BELLAM methd

Notice that the unknown function u(z,t) has not yet been approximated
by any specific functional form. The time integrals may be approximated using
Backward-Euler (fully implicit) scheme. Then the spatial integrals that appear in
Eq. (2.5), may be approximated in many different ways, using the nodal values
of u at the discrete time levels ¢, and tn41, exclusively, so that the unknowns
in the equation ultimately correspond to nodal values at time tn4;. Different ap-
proximations of these integrals lead to different CM algorithms reported in the
literature. For example, piecewise linear spatial interpolation of u at time levels ¢,
and tp41, coupled with a one-point (at t = t,41) fully implicit approximation to
the temporal integral, leads to the modified method of characteristics (sce [1]).

2.2 Boundary conditions

When a region ' intersects the inflow boundary, several cases can occur. As an
example, we discuss the case illustrated in Fig. 2. Then, integrating Eq. (2.1) over

the region §2;, it is obtained:

Tiyl D bt lng1
/ u(z, tas1)w'(z, tnt1) d:r—zz / u(oi-1(t),t) dt — 2/ u(ai(t),t) dt
z L

i-1 i,

+ /‘"+ u(a.'+1(t),t)dt} + /';" w {Dg—:(O,t) - Vu(o,z)} dt =

i ;
D
Az

L
iy t .
/ u(0,1) dt — / u(0,1) dt} + /fgw' dzdt (2.6)
4 L f
The integrals along characteristics appearing in Eq. (2.6) can again be evaluated by
means of a fully implicit approximation. However, it must be mentioned that the
fact that cach of these three integrals has a different length, introduces problems
for achieving consistency in the order of accuracy of the approximations, for some
classes of boundary conditions, at lcast. Suitable combinations of the integrals just
mentioned with the last integral of the left-hand side of Eq. (2.6), may overcome
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the problem. However, whether this is feasible or not, depends on the type of
boundary conditions to be satisfied. To exhibit this problem, it is necessary to
develop a more careful derivation in which the order of the errors introduced at
each step is explicitly stated. Thus, the reader is referred to Section 3, where a
derivation satisfying such conditions is carried out for CELLAM (a more detailed
exposition is given in [7]).

The last term in the left-hand side of Eq. (2.6) must be handled with
special care to obtain an algorithm with satisfactory properties. If we simply apply
the Backward-Euler scheme to the unknown boundary flux along the time direc-
tion, the discretization will be unsatisfactory for large Courant numbers (Cu =
VAt/Az), since many characteristic lines will be crossed. Thus, instead, one can
evaluate the contribution to the integral of the term containing (0, 1), since this
is Dirichlet data, and transposc it to the right side of the cquation. In [1], the
remaining part of the integral was approximated in a way which, as indicated

in [5], is equivalent to:

B . Qu D [%i+ . du
*D—(0,t)dt = — ez, !, d 2.7
'/‘f+1 N 6:::( ) Ve Yo T ) e (

However, this approximation, as pointed out in [7], is not necessarily consistent
with the order of approximation that is required in the formulation: O(AzAt?).
This latter order of approximation can be achieved, using relations similar to
Eq. (2.7), only if the expressions under the integrals, are suitably combined with
the integrals along characteristics present in Eq. (2.6), and this is possible, as has
already been mentioned, only for some kinds of boundary conditions [7].

For outflow boundary conditions of Dirichlet type, the outflow boundary
contributions vanish for all the test functions. This is due to the fact that all
the weighting functions vanish in the characteristic £g, which passes through
(zE,tn+1), and beyond it. Also, the system of equations that is obtained in the
manner explained above, is closed, because u’;;“ is datum. If additional informa-
tion is desired at the outflow boundary, it can be obtained applying procedures

which amount essentially to post-processing [1].

3. ELLAM CELLS

This method was presented originally in [5] and [7] (sce also [6]). To explain this
method and conform with notations that are standard for the method of cells, it

is convenient to modify slightly the notation. A partition
{.’L‘],.‘t;;/g,l's/g, 13’5—1/2’1'5}

is introduced, which induces a partition of Q0 into subregions {Q!,Q2,... QF}, if
foreachi =2,...,E, Q' is defined as the subregion of §2 limited by the character-
istic curves Z;_;/, and E;;1/, (see Fig. 3), while Q! is that part of  which lies to
the left of £3/; and QF is the subregion of 2 which lies to right of Qp_172- The
subregions of the partition are called "cells” and they are said to be "uniform”

when

Zivij2—Ticyz=h, for 1=2, [E-1, z3p-z1=h[2, zp-Tp_1/7=1/2
(3.1)
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FIGURE 3. Space-time support of w' for CELLAM method

A system of constant weighting functions is applied. These are the charac-
teristic functions of the subregions that constitute this partition. Actually, not all
of them are required. The system of weighting function that was applied in [7] is:

1, if (z,) € Q°,
w(z,t) = a=2, ,EF-1,

0, if (z,t) € Q°,

3.1 Discretization in the interior of §

In the case when Q% does not intersect the lateral boundaries of the region ) =
[0,1) X [tn,tat1], integration of Eq. (2.1) over 029, yields:

Tatt lngy .
/ u™t dr + / (D-()u> dt
z In 0:1: Ea+l/2 -

a-1
lu+l I;
/ (D@) dt:/ Y utdz (33)
tn Oz 2:tx—l/2 z

a-1

Equation (3.3) and a modified version of it designed to incorporate terms
contributed by the boundary when 2* intersects the time-axis, is the starting point
of the numerical treatment. Observe that

Tatl J’¢°x+1
/ u"*tldz — / u™ dz = O(hk) (3.4a)
z z

.

a-1 a=—1

and

thyl thil
/ (Dgﬁ) dt — / (Dg—") dt = O(hk)
tn z Ea+,/2 tn z Ea—l/?

where h = max(h;;y/2 — hi_1/2) and k = tny1 — tn. Thus, in the developments
it is required that integrals such as those appearing in Eqgs. (3.4), be evaluated to
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a precision of O(kk?), at least. It will be assumed that h ~ k, so that O(hk?) =
O(h%k) = O(k3) = O(h3).

Equation (3.3) supplies informalion about the sought solulion in the inler-
val [Z4_1/2,Za41/2] al time toy1 and aboul ils z-derivative on the characteristics
Za-1/2 and T,y In [7], the processing of such information had as its goal,
to concentrate all of it in the value of the solution at the "cell center” z,, at
time t = t,4). To this end, in Eq. (3.3), the integrals from ¢, to t,4;, were
firstly approximated in a fully implicit manner (i.e., by a one-step Backward-Euler
approximation at t,4;). Thus

tn41
[0B) (%) Ya-
tn da Latiy2 D)y, 172

n+! n+1
p2v p2 k + O(hk?)
dx adr 1y
a1 f2 a=1/2

For a uniform spacing and constant coefficients, a central difference approximation
scheme is applied, which yields:

6un+1) <0un+1> } Ugs1 + Uam] — 2Ug 3
k= k+ O(h%k) (3.6)
{< Oz a+1/2 Oz a—1/2 h (

The extension of this formula to the case of a non-uniform partition, can be done
in a similar manner. However, the order of the error associated with such an
approximation is reduced by onc and the overall error in (3.6) becomes O(h%k).

In characteristic methods, most of the numerical diffusion is due to the
interpolations in space, which are required because in general, characteristics do
not cross the time levels of the time discretization at nodes. Thus, all the approx-
imations in space have to be carried out with special care. A special feature of the
approximations that were used in [7], is that no assumption was made about the
shape of the solution.

The first integral in (3.3) is approximated by

a4l 2,,n+1
/ W dz = uM g 4 - (c’) u ) 13 + O(hS)
r o

e 24\ 0Oa?
and only the second order derivalive requires a numerical approximation, since
the information is being concentrated in the "cell centers”. To get a tri-diagonal
structure for the matrix, it is convenient to use three-point approximations only.
In the case of a "uniform partition”, a central difference approximation yields

Za+1
/ u dp = (ua+| + ua-1 + 22ua> h + O(h%)

24

a-1

If the partition is non-uniform, the approximation to the second order derivative
by a three-point scheme is only first order, and the error in the evaluation of the
integral in (3.8), is only order four.

There is greater freedom for the choice of the approximations to be used
in the evaluation of the integrals at time ¢,, since they do not affect the structure



of matrix of the final system of algebraic equations. In 7], the integral appearing
in the right-hand side of Eq. (3.3) was approximated using an approach similar to
(3.7); i.e., integrating the Taylor series expansion of u™ around the mid-point of
the interval [z},_,, 5., ,]. However, since such point is not a "cell center”, " is not
known there and an interpolation must be used to evaluate it. Using three-point
formulas, ©™ and its second order derivative can be evaluated to orders three and
one, respectively. This yields an approximation which is fourth order in h.

3.2 Boundary condilions

The numerical approximations presented thus far, apply only when the subregion
Q@ C 0 does not intersect the lateral boundaries 92 U 0,?, of the region (1.
When this is not the case, boundary conditions must be included. In connection
with the numerical trecatment of boundary conditions, numerical diffusion is due
to a large extent, to the fact that characteristics do not cross the boundaries of the
spatial region )., at times levels belonging to the partition of the time interval.
Thus, just as in the interior of the spatial region, the approximations in space have
to be performed with special care to minimize numerical diffusion, when dealing
with the boundary conditions, it is the time integrals that have to be treated with
special care. This is specially true for an inflow boundary, by two reasons at least.
Firstly, the information that is supplied at an inflow boundary has a larger effect on
the solution than that which is supplied at an outflow boundary, since the former
is transmitted to the interior of the spatial region by advection and diffusion,
while the latter is only transmitted by diffusion. Secondly, in Eulerian-Lagrangian
approaches, the analyst does not have control of the discretization at an inflow
boundary, since it is completely determined by the spatial discretization.

In [7], it was pointed out that to some extent it is more difficult to achieve
the desired degree of accuracy in the integrals with respect to time at the boundary,
than in the integrals with respect to «, at the different time levels. For Dirichlet
boundary conditions, the different terns occur in a combination which is suitable
for obtaining the desired degree of accuracy. However, when the total flux is pre-
scribed or when considering boundary conditions of Neuman type, this was not
the case. This was discussed in [7], in connection with total flux conditions and
the argument presented there is explained here.

Assume that total flux conditions arc being considered and that Q inter-
sects the inflow boundary, as illustrated in Fig. 4. Then, the weighted equation

is [7]:

Tat1/2 tnt1
/ utldz — / (Da—u) (Da—u) dt—
z to-1/2 0z Tat1/2 0z Za-1/2

L]
a-1/2 a-1/2
¢

©°_ ;_
/ e (Da—“) dt = / " peydt (3.9)
{* aI Ea-{.l/? t*

a+1/2 a+1/2

where F = (Vu — Dg%)z=0 is prescribed.

Since F(t) is a datum, the corresponding intcgral offers no special difficulty
in being approximated to any desired order of accuracy. The first two integrals,
which also occur in the left-hand side Eq. (3.3), can be treated in the manner
that was explained when the "discretization in the interior of 7, was discussed.
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However, the last integral of the same side of the equation, is not amenable to
be approximated to the order of accuracy that is required. If a translation in any
direction is a applicd to the expression under the integral sign, for its evaluation,
this must be done without crossing characteristic curves, in order to preserve the
advantages of characteristic methods (7). A translation along the .characteristic

curve L, 4172, yields

a1y ( Ou) Sun+!
D— dt = (t8_y/p — to )(D ) +O(k* (3.10)

*

at1/2

which is not of the required precision.
Developing algorithms which overcome the shortcoming of the approxi-

mation (3.10), would be considerably more elaborate. For example, one could
construct weighting functions satisfying suitable boundary conditions, using the
guidclines of the general theory of the Localized Adjoint Method [2]. However,
thus far this has not been required. The inconsistency of the order approximation
which is introduced when Eq. (3.10) is used, has not been manifested in the results
of the numerical experiments that have been carried out up to now.

4. DISCUSSION AND CONCLUSIONS

The problem of treating numerically advection-diffusion problems when advection
is dominant has been a challenging problem for a long time. A natural goal of the
rescarch efforts that have taken place in this area is to develop algorithms whose
efficiency is independent of the Courant number, independently of the boundary
conditions that are imposed. A very important step forward was given with the
development of characteristic methods, specially the modified method of charac-
teristics [10~12). However, the inability of those methods to treat the boundary
conditions systematically had been a very limitative factor in their applications.
Localized Adjoint Mcthod [2], when combined with the method of charac-
teristics, has lead to the development of Eulerian-Lagrangian Localized Method
ITTTAMY which has nermitted a svstematic treatment of boundary conditions



and the development of mass conservative algorithms [1-7). The numerical evic
presented in [1] and [7] indicate that the algorithms develop in this framewor
essentially independent of the magnitude of the Courant number (the integer
of it) and seem to depend mainly on its fractionary part. However, addit;
numerical experiments are required to establish these facts on a more firm b:

The treatment is not equally satisfactory for all kinds of boundary
ditions. For some of them, some inconsistencies have been detected theoretic
as has been explained in Sections 2 and 3 of the present paper, which ma
confirmed numerically if more extensive numerical experiments are carried ot

In (7], evidence was presented which indicates that the method CELI
(ELLAM-Cells), is more efficient than BELLAM (ELLAM-Bilinear). In par
lar, when applied to advection dominated transport, CELLAM is as accurat
BELLAM, but easier to implement and more general, since the test functions -
(piecewise constant), can also be applied when the equations have non-cons
coefficients. CELLAM is also easier to combine with codes which have been alr¢
developed using a finite control-volume approach.
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