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ELLAM: AN EFFECTIVE TOOL FOR
MODELLING SHARP FRONTS IN
QUANTITATIVE ISOTOPIC HYDROLOGY

I. HERRERA
National University of Mexico,
Mexico City, Mexico

Abstract

The main topic of study of Quantitative Isotopic Hydrology
is the transport of isotopes by water flowing in a porous
medium, and their interactions. The mathematical models of
such processes are based 1iIn the advection-diffusion
equation or systems of such equations. Until recently,
effective mass conservative algorithms capable of modeling
advection-dominated transport were lacking. However, many
of the difficulties encountered previously have been
overcome by ELLAM methods, recently developed by the
author and coworkers. Here, the different implementations
of ELLAM methods that exist at present, are presented and
evaluated, with the purpose of making them more readible
available to the scientific community working iIn
Quantitative Isotopic Hydrology.

1. INTRODUCTION »

The numerical solution of the advection-diffusion equation, is
a problem of great importance in the study of transport of solutes
by a liquid phase. A particular case of this general problém, is the

study of the transport of a tracer by water flowing in a porous

medium. The central problem of Quantitative Isotopic Hydrology, is ‘

precisely this problem.
The numerical treatment of the advection-diffusion equation,

when advection is dominant, has been a challenging problem for a

" long time, specially if sharp fronts are present. A feature that is

required from algorithms in order to be able to model effectively
advection dominated ‘transport, is that 1its performance be
independent of the Courant number, to a large extent. Another

feature which is essential, specially in Quantitative Isotopic
Hydrology, is that the algorithms be mass—~conservative, even when

significant boundary behavior is present.

A general class of methods that has been quite successful and
is being applied extensively, is the Eulerian-Lagrangian Localized
Adjoint Method (ELLAM)[1-20]. One important feature of ELLAM
methods, is that they are the only characteristic methods thus far

developed, that are mass conservative. This pfoperty enhances
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further the potential applications of ELLAM methods to mathematical
models of Quantitative Isotopic Hydrology. '

This paper is devoted to explain and discuss the " ELLAM
methodology with the intention of making it more readily available
to the scientific community working in Quantitative Isotopic
Hydrology. In addition, a brief critical comparison of the different
ELLAM implementations that have been developed, is made.

The methods available to treat the advective-diffusive
transport equation, are usually classified into: Eulerian,
Lagrangian and Eulerian-lLagrangian. A method is called Eulerian,
when the spatial grid 1is kept fixed in time. It is called
Lagrangian or characteristic method, when the time derivatives are
discretized following the motion of the fluid particles and it is
called Eulerian—Lagrangiaﬁ, when the fluid particles are tracked,
but the spatial grid is kept fixed through time.

When applied to advection déminated transport, the salilent
features of approximations which derive from an Eulerian approach,
may be summarized as follows: (i) The time truncation error
dominates the solutions, (ii) The solutions are ;hafacterized by
significant numerical diffusion and some phase errors, (iii) The
Courant number (Cu = Y%%) is generally restricted to be less than
one, and sometimes;much less than one. Among such procedures, one
may distinguish Optimal Spatial Methods (0OSM), in which an accurate
solution of the spatial problem 1is developed.

Other Eulerian methods seek to cancel the errors introduced by
the time discretization with the ‘errors produced by the spatial
discretization (see, for exmple [21-24]). Some of such methods

actually improve to some extent, the inconvenient features of

Eulerian methods in general, mentioned above. However, they still
suffer from severe Courant number limitations [ 1].

In Lagrangian methods in general, the problem is solved step by
step in time. The process of obtaining the solution at the new time
level from the solution at the previous one, in turn, is carried
out in two teps: one in which fluid particles are tracked and a
second one in which a purely spatial elliptic problem is solved.
This latter step is frequently called the "diffusive step”, because
the elliptic character of the problem is induced by the presence of
diffusion (usually Fickian).

Methods which are purely Lagrangian carry out the particle

tracKing forward in time. This introduces distorsicns of the spatial



grid, which complicate the implementalion of the diffusive step and
lead to 1inacuracies of the solution. In Eulerian-Lagrangian
approaches the grid is kept fixed at all times, avoiding in this
manner the grid distorsions. To this end, the particles are tracked
backwards in time. Thus, such procedures profit from the structure
of characteristic curves when carrying out the time-discretization,
but in addition they profit of having kept fixed the spatial grid,
when carrying out the diffusive step. Eulerian-Lagrangian methods
have the significant advantage that Courant number restrictions of
Eulerian methods are overcome to a large extent, since the advection
term is eliminated from the elliptic problems to be solved at each
time step.

On the other hand, the Localized Adjoint Method (LAM) is a
methodology for discretizing partial differential equations which
was introduced by the author [25~30]. This procedure is based on
Herrera’s Algebraic Theory of Boundary Value Problems [31-35] (also
[251). Applications have successively been made to ordinary
differential equations, for which highly accurate algorithms were
developed [25-27], multidimensional steady state problems [28] and
optimal spatial methods for advection-diffusion equations [29-30].

Recently, Localized Adjoint Method (LAM) has been\applied in
space-time, in an Eulerian-Lagrangian manner to problgms of
advective-diffusive transport, wusing specialized test functions
[1-3,7-9]. These functions locally satisfy the homogeneous adjoint

equation within each element. The general methodology so obtained is
the Eulerian-Lagrangian Localized Adjoint Method (ELLAM).

Like characteristic methods in general [36-43], ELLAM methods
have the advantage that Courant number restrictions of purely
Eulerian methods are removed to a large extent, but in addition they
present other important advantages. Until ELLAM was developed,
characteristic methods had had three kinds of limitations: inability
to rigorously treat boundary fluxes when characteristics intersect
inflow or outflow boundaries, inability to ensure mass conservation
and the introduction of numerical dispersion for some methods, due
to low order interpolation or integration [44].

On the other hand, the general framework of ELLAM, as has been
presented in [2] (see also [6]), is quite wide. In contrast to other
characteristic methods, ELLAM allows systematic treatments of

boundary conditions and the resulting algorithms are mass
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conservative [1]. In addition, it provides a unificalicn
characteristic methods (CM’s).
The general methodology of ELLAM [2], can be implemented in

mény different manners. Up to now two kinds of implementations have

-been developed. They derive from the application of two different

classes of test functions. In [1], pilinear functions which are
defined as "chapeau" functions at level time t™! and constant along
characteristic curves, were applied and in this manner the first
mass conservative Eulerian-Lagrangian scheme for the general
transport equations, was developed. This method is referred to as
BELLAM [7].

An alternative manner of implementing ELLAM, is to use test
functions which are piece-wise constant, and are advected with the
transport velocity of the problem. In [7,8], under the title of
"ELLAM Cells" (CELLAM), a very effective implementation of ELLAM
using this kind of test functions, has been developed. CELLAM has
the advantages of ELLAM methods described above, but in addition it
ensures local mass conservation and yields algorithms which are more
convenient for existing solute-transport codes which are based on
finite differences. Thus far, the numerical performance of CELLAM
has been slightly better than that of BELLAM [7-9]. Also, the
simplicity of the implementation of the method, is appealing.

In passing, we mention that an implementation (FVELLAM) using
similar test functions was intended in [45], but the authors'
reported numerical difficulties which severely limit the.

applicability of their results.

2. BILINEAR ELLAM (BELLAM)
This approach was first presented in a sequence of two papers
[1,2). Consider the one-dimensional transient advection-diffusion

equation in conservative form:

= 6u 4 du _ - A

$u = 3T 5§(D5§ Vu) + Ru = fQ(x,t), in Q (2.1)

erx = [0, 1]

ten = [t7 ™
(x,t)e = QX Q
X t
subject to initial conditions

ulx, t") = (), (2.2)

and suitable boundary conditions, at x=0 and I. The following

development accommodates any combination of boundary conditions. The



manner in which the region Q and the initial conditions are chosen
in Eqs. (2.1) and (2.2), is suitable for applying a step by step
solution procedure.

To make the exposition more readable, only the case of constant
coefficients will be explained here, although variable coefficients
have already been treated (see for example [11]). For simplicity, we
proceed in an ad-hoc manner. More systematic expositions placing the
procedures discussed in this article in the general frame-work of
the Localized Adjoint Method (LAM), are given in [2] and [S].

For the case when the coefficients of Eq. (2.1) are constant,

the source term vanishes (R=0) and the partition is uniform, the

test functions used are:

( L £™ ot .
% * N (x,’c)eQ1
Wty = ] vtn+1_t (x, t)eq! (2.3)
’ Ax Ax ’ 2 )
0, all other (x,t)

where Qi and Q; are as is shown in Fig.1l. Such weighting functions

’ *
satisfy % w'= 0 and are continuous (i.e [w]=0), “but  have

discontinuous first derivatives (i.e.; [dw/dx]#0). The jumps are

ow _ 1 w- -2 Jw _ 1

axli-1” i e diaT & (2.4

DISCRETIZATION IN THE INTERIOR OF Q

When the region Qi does not intersect the 1lateral boundaries,

integration over Qi, yields

tn+1
1+1 n+l, i n+1 D
[:L4U(X’t Jw (x,t T)dx = J'u(oini(t),t)dt -
t

n

tn+1 tn+1
ZJ u(oi(t),t)dt+ J u[¢i+1(t),t)dt
tn tn

#*

= Jx;*l ulx, tM)w' (x, tM)dx + f wi‘dxdt, (2.5)
X Q

1-1
where the unknowns have been collected in the left-hand member of
the equation while the data is included in the right one. In Eq.

(2.5), it 1is assumed that x=0i(t) is the characteristic curve

passing through X, at time tn+1 (Fig. 1).
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Figure 1.~ Test functions used in BELLAM.

Notice that the unknown function u(x,%t) has not yet been
approximated by any specific functional form. The time integrals may
be approximated using a Backward-Euler (fully implicit) scheme. Then
the spatial integrals that appear in Eq. (2.5), may be approximated
in many different ways, using the nodal values of u at the discrete
time levels t" and twn, exclusively, so that the unknowns in the
equation wultimately correspond to nodal values at time tn+1
Different approximations of these integrals lead to different CM
algorithms reported in the literature [1]. For example, piecewise
lihear spétial interpolation of u at time levels t” and tn+a
coupled with‘a one~point (at tztnﬂ) £f17 1y implicit approximation to
the temporal integfal, leads to the modified method of

characteristics of Douglas and Russell [40].



BOUNDARY CONDITIONS
When a region Q' intersects the inflow boundary, several cases
can occur. As an example, we discuss the case illustrated in Fig. 2.

Then, integrating Egq. (2.1) over the region Qi, it is obtained:

Figure 2.- Case when the domain of the test functions intesects the
inflow boundary (BELLAM).
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n+1 n+1

t t
r“lu(x,t“”)w*(x,t“”)dx _D J ule. (L), t)dt - zj ule (), t)dt
Xi_.1 Ax * i-1 * i
‘ t t
i-1 i
*
gl ti-1 L. Bu
. J ule (), t)dth + J w1020, ) - vu(o, t)}dt =
. 1t1 " ax
t
1+1 1+1
3 #*
D ti-1 t1 .
— J u(0, t)dt - J u(o, t)dty + J £ w dxdt (2.6)
Ax * % Q Q
t t
i i+1
The integrals along characteristics appearing in Equ. (2.6), can

again be evaluated by means of a fully implicit approximation.

However, the fact that each of these three integrals has a
different length, introduces problems for achieving consistency in
the order of accuracy of the approximations, for some classcs of
boundary conditions, at least. Suitable combinations of the
integrals just mentioned, with the last integral of the left-hand
side of Eq. (2.6), may overcome the problem. However, whether this
is feasible or not, depends on the type of boundary conditions to be
satisfied. To exhibit this problem, it is necessary to develop a
more careful derivation in which the order of the errors introduced
at each step, 1s explicitly stated. Thus, the reader is referred to
Section 5, where a more careful derivation of a similar 'equation is
presented for CELLAM.

The last term in the left-hand side of Equ. (2.6) must beé
handled with special care, to obtain an algorithm with satisfactory
properties. If we simply apply the Backward-Euler scheme to the
unknown boundary flux along the time direction, the discretization
will be unsatisfactory for large Courant numbers (Cu=VAt/Ax), since
many characteristic lines will be crossed. Thus, instead, one can
evaluate the contribution to the integral of the term containing
u({0,t), since this is Dirichlet data, and transpose it to the right
side of the equation. In [1], the remaining part of the integral was

approximated in a way which, as indicated in [8], is equivalent to:

k3
ti-1 1,.9u D g 18u n+1
J w20, t)at = f W e, 4™ (2.7)
* X
t i-1
i+1
This approximation however, as pointed out in [7], 1is not

necessarily consistent with the order of approximation that is

required in the formulation: O(AxAtz)‘ This latter order of


http:tJ.xtJ.t2

approximation can be achieved, using relations similar to Eq. (2.7),
only if the expressions under the integrals, are suitably combined
with the integrals along characteristics present in Eg. (2.6), and
this is possible, as has been already been mentioned, only for some
kinds of boundary conditions [7].

For outflow boundary conditions of Dirichlet type, the outflow
boundary contributions vanish for all the test functions. This is
due to the fact that all the weighting functions vanish in the
characteristic ZE, which passes through (xE,Uwi), and beyond 1it.
Also, the system of equations that 1is obtained in the manner
explained above, 1is closed, because ug+1 is datum. If additional
information is desired at the outflow boundary, it can be obtained

applying procedures which amount essentially to post-processing [1].

3. SOME REMARKS ON DISCRETE METHODS

There are two basic tasks that every numerical method for
partial differential equations has to accomplish [2,6,7]:

i).- Gathering information about the sought éolution; and

ii).~ Interpolating or, more generally, processing such
information.

Theée two processes are distinct, although in many numerical methods
they are not differentiated clearly. In procedures which are derived
from the method of weighted residuals, the information abbut the
exact solution that 1is gathered, 1is determined mainly by the
weighting functions used. Since this information does not determine
uniquely the sought solution, some procedure for extending it is
required, in order to fill the gaps of information and exhibit at
the end, a unique approximate solution.

Different methods of solution follow different strategies for
accomplishing this latter task of extending the information that is
available. In general, interpolation and extrapolation procedures
are applied. For example, in finite element methods some basis

functions are chosen and the approximate solution is assumed to be a

superposition of such functions. In this case, the information about
the exact solution which is gathered by the weighting functions, is
interpolated in a manner which is determined by the family of basis
functions chosen.

Clearly, it 1is not convenient to carry out the process of
extending the information blindly, ignoring what is the actual

information that is available. However, this is what is usually
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done. On thé“contrary, it is advantageous to make use of tho iasigut
galned when the available information has been identified, since the
selection of the best procedure for extending 1it, is strongly
dependent on the information that is at hand.

Due to these facts, in recent works [6,7] the author has
advocated an approach for developing numerical methods, in which the
processes i) and ii) are clearly separated. Firstly, the information
about the sought solution that is at hand, 1is identified and
secondly, using that 1insight, a procedure for extending such
information is defined.

Herrera’s Algebraic Theory of Boundary Value Problems
[25,31-35], which permits localizing the adjoint, has shown to be
quite suitable for 1identifying the information contained in
approximate solutions. The use of this theory has clear advantages
over other options, such as the standard theory of distributions,
because of two reasons at least: the use of the algebraic theory
permits the localization of the adjoint, and lhe simultaneocus use of
discontinuous trial and test functions is feasible. Then, depending
on the information that 1is identified, interpolation procedures
suitable for handling it efficiently, are selected and>applied. This
is what should be properly called Localized Adjoint Method. Thé
introduction of basis functions is not required and, even more,
their use 1is inconvenient in some cases. In [7] and [8], this

approach was applied quite successfully to derive CELLAM.

4 ELLAM CELLS (CELLAM)
This method was presented originally in [7] and [8] (see also

[9]). The notations adopted conform with those which are usual for

cell approaches. A partition {x ,x  ,x ,...,% , X% T, is
1”732 Ts/2 E-1/2""E
introduced, which induces a partition of Q into subregions
1.2 E . X i
{Q,0%...,Q°}, if for each i=2,...,E-1, @ 1is defined as the
subregion of , limited by the characteristic curves Z~1/2and
. -
Zin/a (see Fig.3), while Q' is that part of @ which lies to the
left of 25/2 and @° is the subregion of Q which lies to right of
954/2 . The subregions of the partition are called "cells" and they

are said to be "uniform” when

X - = i= -1 - Ry — -
L+1/2 xi__l/2 h, for i=2,...,E-1; e h/2,xE Xe s o h/2 (4.1)

A system of constant weighting functions is applied. These are

the characteristic functions of the subregions that constitute this
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Figure 3.~ Test functions used in CELLAM.

partition. Actually, not all of them are required. The system of
weighting functions applied to derive CELLAM [7], is:

o 1, if (x,t)erC
w (x,t) = { o o=2,...,E-1, (4.2)
: 0, if (x,t)eq

DISCRETIZATION IN THE INTERIOR OF Q
In the case when QOC does not intersect the lateral boundaries

of the region Q=[O,1]X[tn,2”1], integration of Eq. (2.1) over Qa,

yields:
X
o+t “ tn+t au tn+t au
udx + (D==) dt - (DZ=) dt
ax ' Z Ox'Z
X tn oK+1/2 tn o-1/2
o1
*
X
o+l
= f , U dx (4.3)
X
®-1

Equation (4.3) and a modified version of it designed to
incorporate boundary terms when the lateral boundaries of Q are
intersected by Qa, is the starting point of the numerical treatment.

Observe that

*
X X

o+l 1 o+1
j uHax - J « u'dx= O(hk) (4. 4a)
X X
-1 -1
and

tn+1 au tn+1 su
J o2, at - J %, dt = 0(nk) (4.4b)
‘tn w+1/2 tn o-1/2
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where h = max(h }] and k = t -t . Thus, in the

i+1/2*hi~1/2 n+l n

developments it is required that integrals such as those appearing
in Equs. (4.4), be evaluated to a precision of O(hkz), at least. It
will be assumed that h~k, so that O(hk*)=0(h’k)=0(k>)=0(h’).

Equation (4.3) supplies information about the sought solution

in the interval [x , X ] at time t and about its

0-1/2" Toe1/2 e n+1 -

x-derivative on the characteristics T and Z . In the CELLAM
a~1/2 - To+1/2

approach [7], the goal of the information processing 1is to

concentrate all of it, in the value of the solution at the "cell

center” X at time t=t44. To this end, in Eq. (4.3), the integrals
n

from tn to tn+1, are firstly approximated in a fully implicit manner

(i.e., by a one-step Backward-Euler approximation at t +1). Thus
n

tn+1
du du
J {(Dé—;()z - oY), }dt—
tn o+1/2 =172

n+1l

o ) - (Dé‘im) k + 0(hk?) (4.5) -
Ix o+1/2 ox o-1/2 ’

For a uniform spacing and constant coefficients, a central difference

approximation yields:

6un+1 6un+1 ua+1+ ua—1_ 2ua 3
{(5; )cx+1/2~ 3% )a—1/2}k = -k + 0(hk) (4.6)

The extension of this formula to the case of a non-uniform
partition, can be done in a similar manner. However, the order of
precision is reduced by one and the overall error in (4.6), becomes
0(h%k).

In characteristic methods, most of the numerical diffusion is
due to the interpolations in space, which are required because in
general, characteristics do not cross the tn time level at nodes.
Thus, ail the approximations in space have to be carried out with
special care. A special feature of the approximations used in the
derivation of CELLAM [7], is that no assumption 1is made about the
shape of the solution.

The first integral in (4.3), is approximated by

= +
[+ 24 24 8x2 o

1 +1 198%™ 3 5
J Wdx = 0 h o+ [ ) h” + 0(h”) (4.7)
o
and only the second order derivative requires a numerical

approximation, since the information is being concentrated in the

"cell centers". To get ¢ tr di sonal structure for the matrix, it



is necessary to, use three~poinl approximations only. In the case of

a "uniform partition”, a central difference approximation yields

X n+1 n+1 n+1
el +1 ua 1+ ua 1+ 22“& s
J VWdx = * ~ h + 0(h”) (4.8)
% 24
-1

If the partition is non-uniform, the approximation to the second
order derivative by a three-point scheme is only first order, and
the error in the evaluation of the integral in (4.8), is only order
four.

There is greater freedom for the choice of the approximations
to be used in the evaluation of the integrals at time tn, since they
do not affect the structure of matrix of the final system of
algebraic equations. In [7], the integral appearing in the
right-hand side of FEq. (4.3) was approximated using an approach
similar to the one used for deriving Equ. (4.7); i.e., integrating
the Taylor series expansion of u" around the mid-point of the
interval [X;—1’XZ+1]' However, since such point is not a "cell
center”, u” is not known there and an interpolation must be used to
evaluate it. Using three-point formulas, u” and its second order
derivative can be evaluated to orders three and one, respectively.

This yields an approximation which is fourth order in h.

5. BOUNDARY CONDITIONS

The numerical approximations presented thus far, apﬁly only
when the subregion 0% does not intersect the lateral boundaries
GOQUBKQ, of the region Q. When this is not the case, boundary
conditions must be included. This Section is devoted to presenting
the CELLAM procedures for dealing with them. V

In Eulerian-Lagrangian approaches, the analyst does not have
control of the discretization at an inflow boundary, since it is
completely determined by the spatial discretization. However, the
situation in this respect is a little better at an outflow boundary.
Thus, when dealing with boundary conditions, specially at an inflow
boundary, numerical diffusion is due to a large extent, to the fact
that characteristics do not cross the boundaries of the space-time
region Q, at times levels belonging to the partition of the time
interval. Thus, Jjust as in the interior of the spatial region, the
approximatinos in space have to be performed with special care to
minimize numerical diffusion, when dealing with boundary conditions
the time integrals on the boundaries have to be treated with special

care,.

79



80

There i; an additional reason which enhances this effect at an
inflow boundary. The information that is supplied at an inflow
boundary has a larger effect on the solution than that coming from
an outflow boundary, specially in the case of advection-dominated
transport, because the former is transmitted to the interior of the
spatial region by advection and diffusion, while the latter is only
transmitted by diffusion.

In [7], it was pointed out that in some cases, it is more
difficult to achieve the desired degree of accuracy in the integrals
with respect to time at the boundary, than in the integrals with
respect to x, at the different time levels. For Dirichlet boundary
conditions, the different terms occur in a combination which is
suitable for obtaining the desired degree of accuray. However, when
the total flux is prescribed or when considering boundary conditions

of Neuman type, this is not the case [7].

A.- Dirichlet Conditions

For this case, we use E-2 test functions; namely, those
aséociated with subregions Qz,...,Qﬂd. In particular, no test
function is applied on the first subregion (Ql) or\oﬁ the last one
(2F). See Fig. 4.

Inflow Boundary

Dirichlet boundary conditions are incorporated in the numerical
equations in two manners: directly, through the boundary terms and
indirectly, imposing the condition that in the numerical
approximations, some of the variables take the prescribed boundary
values.

Assume QOC intersects the inflow boundary, as illustrated in

Fig.4. Then

r o+1/2 et tn+l au au
afudy = J u dx - J . {[D5§]Z - (DEQ)E }dt -
“Q X t oa+1/2 o-1/2
o-1/2 o-1/2
#* *
"ta—l/z du du ta—l/a
I {(D5§)Z (DEQ)Wm}dt - J . vu(0, t)dt (5.1)
o+1/2
oa+1/2 oa+1/2

The first two integrals of the right-hand member are like those
appearing in Equs. (4.8) and (4.5), and can be handled similarly. In
addition, the last one in this equation is easy to deal with, since
u{0,t) is the prescribed boundary value. The third integral,

however, requires a special treatment.



Firstly, observe that (DQE) - (DQE) is 0O(h). Thus, for
a X x=0

X'z
G+1/2
any xe[x » X 1, one has
o-1/2° o+1/2
» n+l n+i
(0% g, (£, t-05 (0,02 )-02L sohi) (5.2)
o+1/2

where, for brevity, we have written t* instead of t*(x). The
approximation implied by Equ. (5.2), has the property that the
values of the functions involved, at time t*, are approximated by
their wvalues at time tn+f on the same characteristic. In this
manner, crossing of characteristics is avoided. Such property is
important in order to preserve the advantages of characteristic
methods.
Equ. (5.2), can be used to obtain

*

t n+1
o-1/2 du du _ * L du
,[ * {(D&‘E)z - (Dﬁ)xzo}dt - (toc~1/2 t a+1/2)(D§>E )oc+1/2
o+1/2
oa+1/2 :
xOc+1/2 n+1 *
du dt 2
Jx DN ()3 G)dx + O(hk?) (5.3)
o-1/2

As an illustration of the numerical implementation for this

equation, we explain the case of constant coefficients. In this case

£ (x) =t X (
X - n+1 T 5'4)
so that
E 3
b _ 1
Rl (5.5)
and Equ. (5.3), becomes
t#
X -X n+1
a-1/2{ . 8u du _ ast/2 Ta-1/2,.0u _
| {(Dé-)z)z (Dg—i)xzo}dt = M2 Sy
t a+1/2
a+1/2
D™t g™ ) 4 o(nk?) (5.6)
V' a1z a-1/2 ’
In Equ. (5.6), the derivative au™'/ax at X1y, (@2, ..., E-1), must

be approximated to order O(hz), to be consistent with the order of
approximation. For a non-uniform mesh, this requires a three-point
scheme.

For «=2, the boundary value u?ﬂ, occurs in equations such as
(4.6) and (4.8), and it must be required that at each time level,
u?”be equal to the prescribed boundary value. This is the indirect
manner of imposing the boundary conditions that we referred to at

the beginning of this section.
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Qutflow Eoundary

Observe that the last test function to be applled is W, The
support of this test function is Qﬂd, which does not intersect the
lateral boundary x=I. Thus, none of the boundary terms involving the
outflow boundary occur in the numerical equations and the prescribed
boundary values are incorporated in the numerical equations in an
indirect manner exclusively; i.e., introducing them instead of ugﬂ
in approximations such as (4.6) and (4.8).

B.- Flux Conditions

For this case, we use E test functions. Thus, the test
functions associated with regions Q' and Q°, which were omitted when
dealing with Dirichlet boundary conditions, are applied when dealing

+1
at zero

with this kind of boundary condition, and the values of u”
and at ! are treated as unknowns.

Inflow Boundary

Fig.4, illustrates a case in which o intersects the inflow
boundary. For flux boundary conditions, it is more convenient to

write Equ. (5.1) in the form:

XO(.+1/2 " tn+1 5u au .
= n - ou - o -
[ gouco = [ whax - [ {(Dax)z (05 }dt
Q X t o+1/2 o-1/2
a-1/2 a-1/2
#* *
t t
o-1/2,_8u o-1/2
j VR0, dt - f “12 Feat (5.7)
o+1/2 agifz +1/2
H , F=(Vu-D— i i
ere (Vu Dax)xzo’ is prescribed.
t
N

-

)

]
e el

Xo0=0 X2 X XKjnze Xeg-172 Xe

Figure 4.- Cases when the domain of the test functions intersects
the lateral boundaries (CELLAM).



Since F(t). is a datum, Lhe corresponding integral offers no
special difficulty in being approximated to any desired order of
accuracy. The other integrals can be treated in a manner similar to

what was done in the case of Dirichlet conditions. The approximation

toc~1/2 du * * au™ !
J s T e O AR 1 ¢: o W (5.8)
a+1/2
ox+1/2
is similar to one wused in Equ. (5.3). However, the term

(Dg;jmmwhich appears in Equ. (5.3), is missing here, because it was
incorporated in the flux F. Due to this fact, approximation (5.8) is
only 0(k®), which is not consistent with the order of approximation
that has been used in all other terms.

However, such a shortcoming has not been manifested in the
numerical applications, which use Equ. (5.8). In particular, all the
numerical experiments reported in this article, use this
approximation. The development of an algorithm fully consistent with
the order of accuracy that was set at the beginning of our
discussion, would require a procedure, considerably more elaborate,
which would not be justified at this point.

In addition, it must be mentioned that when the support of a
weighting function intersects any of the corners of tbebdomain Q,
the treatment presented requires slight modifications, whose details
we leave out. At the inflow boundary, this happens for two test
functions. One is w1 and there is one more, whose support intersects
the corner [O,tn), as shown in Fig. 4.

Outflow Boundary

The only weighting function whose support intersects the

outflow boundary is wE. Applying it, we get

1 " 1 tn+l
I Pude = J udx - J udx -~ J F(t)dt
E *
Q X tn
E-1/2 E-1/2
tn+1 au
+ (D=—) dt (5.9)
Ix'Z
tn E~1/2

Using three points approximations, one can evaluate the first two
integrals of the right-hand side of this equation to O(h4). The
third one offers no difficulty, since F(t) are data. Finally, an
approximating procedure analogous to Equ. (5.8), can be applied to
the last integral. However, the comments that were made immediately

after Equ. (5.8), apply here too.
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6 NUMERICAL COMPARISONS

The efficiencies of the BELLAM and CELLAM procedures have been
compared. In [7], numerical examples that involve significant
boundary behavior were solved, using these two methods. The results
obtained there, are described next. The following change in the
notation is noticed: In this Section, instead of taking the spatial
region to be the interval [0,1], as we did in the theoretical
discussions, we set Qx=[a,b].

Consider an advancing Gaussian hill that may cross an inflow or
an outflow boundary. Its general expression is

1 [~n(x—Vt)2]

u {x,t) = exp
a (1+4nDt)1/2 1+4nDt

and the initial and boundary conditions are chosen in such a way

(6.1)

that the exact solution of the problem is (6.1). Thus, the initial
conditions are
uI(x) = exp(—nxz) (6.2)

while the boundary conditions are

uf{a,t) = ua(a,t) , (6.3a)
and
ulb,t) = ua(b,t) (6.3b)
whenever Dirichlet conditions are considered. In addition, they are
[Vu— DQE](a,t) = [Vu - Daua](a,t) (6. 4a)
[5)% a ox
and
du dua
Vu- D—((b,t) = |[Vu- D (b, t) (6. 4b)
ax a Ox

whenever total flux boundary conditions are considered. In the’
numerical examples, only Dirichlet and total flux boundary
conditions will be treated.

Several combinations of initial and béundary conditions are
prescribed for Equ. (2.1), but in such a manner that for any of them
the exact solution is given by Equ. (6.1). Also, domains considered
were: I=[21/3,9], o=[~3,2‘/3] and N=[-3,9]. For them, the pulse
crosses an inflow boundary, an outflow boundary and neither,

respectively.

A. Comparison based on the Euclidean Norm

As explained in previous sections, in the CELLAM method the
information about the sought solution is concentrated exclusively in
the cell-centers and no base functions are used. This implies that

no assumptions are made about the shape of the solution. This is in



1

contrast with other ELLAM procedures, in which the shape of Lhe
solution is assumed [1].

One consequence of this way of handling the information, is
that some of the standard procedures for measuring the errors of
approximate solutions, are not appropriate. In [1], for example, in
which Dbilinear basis functions were used (the space of such
functions, which are piece~wise linear and continuous in Qx, will be
denoted be ¥), the L? error of the approximate solution that BELLAM
yields (and such approximate solution necessarily belongs to ¥), was
compared with the L? error of the projection of the exact solution
on ¥. This ratio is necessarily greater or equal to one, because of
the minimal property of the projection.

When all the information 1is concentrated at the cell-centers,
the best we can do is to obtain the exact values at those points.
This, however, does not define a function of the space ¥, and a
direct comparison using the L2 norm, is not possible. Of course, one
could try to use linear interpolation of the approximate values at
the cell-centers, to associate an element of ¥ to the approximate
solution. However, if one proceeds in that manner, even the optimal
solution (i.e., that whose values at the cell-centers are the exact
values) would give an L? error that in general, will be éreater than
that of the projection, again because of the minimal property of the
projection. To iilustrate this fact and its importance\ in the
different cases tested, Table 1 compares the L2 error of the linear
interpolation, when the values at the cell-centers are the exact
ones, with the error of the projection of the exact solution, on ¥.

It can be seen that in all cases, the L2 error of the linear

Table 1. Comparison of L? crrors between the projection of the exact
solution on the space of piccewise linear functions and the function of
this space, whose values are exact at the nodes ("interpolation"),

ERROR
DOMAIN AX PROJECTION INTERPOLATION
N 0.267 0.715E~02 0.15%E-01
N 0.053 0.265E~03 0.646E-03
I 0.267 0.715E-02 0.153E-01
1 0.053 0.265E-03 0.646E-03
0 0.267 0.487E~02 0.102E~01
0 0.053 0.177E~03 0.428E-03
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interpolatioﬁ of the exact values, is at least twice that of ihe
projection on ¥. Thus, if this measure of the error is used, one
would not be able to discriminate between different methods on the
basis of performance.

Before leaving this point, we would like to remark that when
the information about the exact solution consists of the exact
values at the cell centers exclusively, the extension of this
information to the entire interval can be done in manners which are
more efficient than using linear interpolation. For example, one
could use a high order interpolation procedure, or solve a local
problem (this is a kind of post-processing), to mention just a few
of the possibilities for processing such information.

Therefore, a norm that directly compares the values at the cell
centers was used to compare the errors of the different methods.
The norm chosen was the "average Euclidean norm"

u-Qn = [ L Ii(u -4 )EJW
E . b
Here, ui are the values of the exact solution at the cell centers,
while Gl are those of the approximate one.

Table 2 summarizes the numerical results. As ip [1], the final
time t =0.5, Ax is taken to be 4/1520.267 (Pe=262) and Ax=-- =0.0533
(Pe=5§). For Ax=;§, At=0.25 was used (Cu=9§). For Ax=4/75, the
values 0.25, 0.05 and 0.01 of At, were used, which correspond to Cu=
46%, 93 and 1%,\respectively. The integrals involving initial or
boundary conditions were evaluated using Gauss—-Kronrod rules to a
high degree of precision. 1In Table 2, the FEuclidean errors
assoclated with the approximate solutions that were derived using
CELLAM are compared with those obtained with BELLAM [1]}. In all

cases the errors listed correspond to the final time tf=0.5.

TABLLE 2. Cowparison of ervors between ELLAM-Cells and Bilincal-ELLAM

Bound Cond Euclidenn Ecror Maximun Value

Run | DOM N OUT AX AT Ccllx Ditineal Ceiix__ | Dilin fxny

! N D F 0.267 0.25 0.501E-02 1.65211-02 0804 [ 0K13 0,784

] N D F 0053 0.23 0.142B42 0.446E-02 0.803 0.503 4.7k4

3 N D F 0.031 0,05 0.103E-02 4, 105E-02 0,748 0.788 0.784

4 N % ¥ 0.033 0.01 03533403 0.265E-03 0,743 U.785 ©.784

S ! D F 0,267 0.25 0315602 0.69515-02 0.1 0.806 (.74

] ! D v 1.053 .23 0.276E02 0.289E-02 1.793 1.793 0.7n4

7 | D F 0.053 U.08 0.7275-03 0.8226-03 0.786 0.786 0.784

[ ) D v 0,033 a0l 0.23255403 0.249C-0) 0,744 0,785 U784 |
4 ! ¥ F 0.267 0.25 V. 302E-02 O.6R4E-02 0.791 0.807 0.784

Hl ! r F 0,053 0.25 0.2755-02 0.287E-02 0.793 0.793 9.784

" | ¥ I 0.053 0,05 0.718C-03 04211503 0.786 0.786 | 0784
12 | P F 0.053 Q.08 (.24 7E-03 0.293E-03 0.784 0,785 0 744

) Q 3] D 0,267 0,25 .2980-02 0.4528-02 0816 0.416 0.416

14 O D D 0,053 0.25 (.258C-02 0.261E02 0,816 0816 0816

15 4 D D 0053 | 008 0.557E-03 0.6142-03 0.316 0516 | _wkig
16 QO D D 0.053 _ bt ).2G4L-03 L 02021303 0.816 0416 0816
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In genecral terms, one wmay conclude that in these examples,
CELLAM performed slightly better than BELLAM. Runs 1 to 4 do not
involve significant boundary contributions. When this is the case,
BELLAM and the Modified Method of Characteristics (MMOC), become
identical [1]. From the results shown in Table 2, it follows that in
the examples treated, CELLAM is slightly more precise than MMOC. On
the other hand, when the boundary contributions are important, MMOC

is considerably less accurate than CELLAM and BELLAM.

B. Comparison Based on the Maximum Value

In [17, the maximum of the numerical solution was compared with
the maximum of the exact solution. Thus, for completeness, the same
comparison is made here and the results are alsc illustrated in
Table 2. Inspecting this table, it 1is seen that also when the
performance 1is judged according to this criterium, the results
obtained with CELLAM are at least as good as BELLAM.

Observe that when the domain is O=[—3,2§], the maximum of the
Gaussian distribution (6.1) has already crossed the outflow boundary
of the spatial domain, so that when the boundary conditions are of
Dirichlet type, the maximum values of the approximate and the exact
solutions are equal. Hence, this comparison is not infofmative in

those cases.

7 DISCUSSION AND CONCLUSIONS

The central subject of Quantitative Isétopic Hydrology,
consists in studying the transport of tracers by water flowing in a
porous medium and the interactions that take place between the solid
matrix and the solutes. The corresponding mathematical models,
derive from the advection-diffusion equation. The numerical solution
of this equation, is a problem of great imbortance in many other
scientific and technical fields, as well and it is being the subject
of intensive research.

The numerical treatment of the advection-diffusion equation
when advection is dominant, has been a challenging problem for a
long time, specially if a sharp front is present. A feéture that is
required from algorithms in order to be able to model effectively
advection dominated transport, is that its performance Dbe
independent of the Courant number, to a large extent. Another
feature which 1is essential, specially in Quantitative Isotopic
Hydrology, is that the algorithms be mass-conservative, even when

significant boundary behavior is present.

87



It has been recognized that in order for the performance ol an
algorithm to be independent of the Courant number,‘it is necessary
to incorporate in its formulation the structure of characteristic
lines. Methods which are based in the characteristic structure of
the differential equations, are known as ‘“characteristic" or
"Lagrangian” methods. Until recently, characteristic methods had had
three important limitations: inability to ensure mass conservation,

inability to treat boundary fluxes effectively and the introduction

. of numerical dispersion, due to low order interpolation or

88

integration.

With the developmenmt by the author and coworkers, of
Eulerian-Lagrangian Localized Adjoint Methods (ELLAM), which are
based in the general LAM methodology introduced by the author, the
limitations of characteristic methods mentioned above, have been
overcome to a large extent.

The ELLAM approach can be implemented in several manners. Up to
now two such implementations have been developed: BELLAM and CELLAM.
Evidence has been presented, which indicates that CELLAM is at least
as accurate as BELLAM and in some cases, more accurate‘ In addition,
CELLAM 1is easier to 1implement and more general, since it 1is
applicable to the general advection-diffusion equation with
non-constant coefficients.

Here BELLAM and CELLAM have been explained and discussed,
making them more readibly available to the scientific community

which works in Quantitative Isotopic Hydrology.
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