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Abstract 

The main topie 01 study 01 Quantitative Isotopie Hydrology 
is the transport 01 isotopes by water llowing in a porous 
medium, and their interactions. The mathematical models 01 
such processes are based in the advection-dillusion 
equation or systems 01 such equations. Until recent1y, 
ellective mass conservative algorithms capable 01 modeling 
advection-dominated transport were lacking. However, many 
01 the dilliculties encountered previously have been 
overcome by ELLAM methods, recently developed by the 
author and coworkers. Here, the dilferent implementations 
01 ELLAM methods that exist at present, are presented and 
evaluated, with the purpose 01 making them more readible 
available to the scientific community working in 
Quantitative Isotopic Hydrology. 

1. INTRODUCTION 

The numerical solution of the advection-diffusion equation, is 

a problem of great importance in the study of transport of solutes 

by a liquidphase. A particular case of this general problem, is the 

study of the transport of a tracer by water flowing in a porous 

medium. Ihe central problem of Quantitative Isotopic Hydrology, is 

precisely this problem. 

Ihe numerical treatment of the advection-diffusion equation, 

when advection is dominant, has been a challenging problem for a 

long time, specially if sharp fronts are presento A feature that is 

required from algori thms in order to be able to model effectively 

advection dominated transport, is that its performance be 

independent of the Courant number, to a large extent. Another 

feature which is essential, specially in Quantitative Isotopic 
Hydrology, is that the algorithms be mass-conservative, even when 

significant boundary behavior is presento 

A general class of methods that has been quite successful and 

is being applied extensively, is the Eulerian-Lagrangian Localized 

Adjoint Method (ELLAM) [1-20]. One important feature of ELLAM 

methods, is that they are the only characteristic methods thus far 

developed, that are mass conservative. Ihis property enhances 
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further the potential applications of ELLAM methods to mathemalical 

models of Quantitative Isotopic Hydrology. 

This paper is devoted to explain and discuss the ELLAM 

methodology with the intention of making it more readily available 

to the scientific community working in Quantitatlve Isotopic 

Hydrology. In addition, a brief critical comparison of the different 

ELLAM implementations that have been developed, is made. 

The methods available to treat the advective-diffusive 

transport equation, are usually classified into: Eulerian, 

Lagrangian. and Eulerian-Lagrangian. A method ls called Eulerian, 

when the spatial grid ls kept fixed in time. It is· called 

Lagrangian or characteristic method, when the time derivatives are 

discretized following the motion of the fluid particles and it is 

called Eulerian-Lagrangian, when the fluid particles are tracked, 

but the spatial grid is k~pt fixed through time. 

When applied to advection dominated transport, the salíent 

featu~es oí approximations whieh derive from an Eulerian approach, 

may be summarized as follows: (i) The time truncation error 

dominates the solutions, (ii) The solutions are characterízed by 

significant numerical diffusion and some phase errors, (iE) Ihe 

Courant number (Cu == v~~) is generally restricted to be less than 

one, and sometimes, much less than one. Among sueh procedures, one 

may distinguish Optimal Spatial Methods (OSM), in whích an accurate 

solution of the spatial problem is developed. 

Other Eulerian methods seek to cancel the errors introduced by 

the time discretization wi th the errors produced by the spatial 

discretization (see, for exmple [21-24]). Some of such methods 

actually improve to some extent, the inconvenient features of 

Eulerian methods in general, mentioned aboye. However, they still 
suffer from severe Courant number limitations [ ]. 

In Lagrangian methods in general, the problem is solved step by 

step in time.The process of obtaining the solution at the new time 

level from the solution at Lhe previous one, in turn, is carried 

out in two teps: one in which fluid particles are tracked and a 

second one in which a purelyspatial elliptic problem is solved. 

Ihis latter step is frequently called the "diffusive step", because 

the elliptic character of the problem is induced by the presence of 

diffusion (usually Fickian). 

Hethods which are purely Lagrangian carry out the particle 

trac.Klos :(orward in time. ThiS 'íntrodLlces tUS lorsicns t-hc spa+. La ¡ 



grid, which compll.cale lhe implementaLlon of the diffusíve step and 

lead to ínacuracies of the solution. In Eulerian-Lagrangian 

approaches the grid is kept fixed at all times, avoiding in this 

manner the grid distorsions. To this end, the partieles are tracked 

back¡.¡ards in time. Thus, such procedures profit from the structure 

of characteristie curves when carrying out the time-discretization, 

but in addition they profit of having kept fixed the spatial grid, 

when carrying out the diffusive step. Eulerian-Lagrangian methods 

have the significant advantage that Courant number restrictions of 

Eulerian methods are overcome to a large extent, since the adveetion 

term is eliminated from the elliptie problems to be solved at each 

time step. 

Gn the other hand, the Localized Adjoint Method (LAM) is a 

methodology for discretizing partial differential equations which 

was introduced by the author [25-30]. This procedure 1s based on 

Herrera's AIgebraic Theory of Boundary Value Problems [31-35] (also 

[25J). Applications have successively been made to ordinary 

differential equations, for which highly accurate algori thms were 

developed [25-27], multidimensional steady state problems [28] and 

optimal ial methods for advection-diffusion equations [29-30]. 

Recently, Localized Adjoint Method (LAM) has been applied in 

space-time, in an Eulerian-Lagrangian manner to problems of 

advective-diffusive transport, using specialized test functions 

[1-3,7-91. These functions locally satisfy the homogeneous adjoint 

equation within each elemento The general methodology so .obtained is 

the Eulerian-Lagrangian Localized Adjoint Method (ELLAM). 

Like charaeteristic methods in general [36-43], ELLAM methods 

have the advantage that Courant number restrictions of purely 

Eulerian methods are removed to a large extent, but in addition they 

present other important advantages. Until ELLAM was developed, 

characteristic methods had had three kinds of limitations: inability 

to rigorously treat boundary fluxes when charaeteristics intersect 

inflow or outflow boundaries, inability to ensure mass conservation 

and the introduction of numerical dispersion for some methods, due 

to low order interpolation or integration [44]. 

On the other hand, the general framework of ELLAM, as has been 

presented in [2J (see also [6]), is quite wide. In contrast to other 

characteristic methods, ELLAM allows systematic treatments of 

boundary conditions and the resulting algorithms are mas s 
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conservative [11. In addition, it provides a unif:icat 

characteristic methods (CM's). 

The general methodology of ELLAM [2}, can be implemented in 

many different manners. Up to now two kinds of implementations have 

been developed. They derive from the application of two different 

classes of test functions. In [1), bilinear functions which are 

defined as "chapeau" functions at level time t n+l and constant along 

characteristic curves, were applied and in this manner the first 

mass conservative Eulerían-Lagrangian scheme for the general 

transport equatíons, was developed. This method is referred to as 

BELLAM [7]. 

An alternative manner of implementing ELLAM, is to use test 

functions which are piece-wise constant, and are advected with the 

transport velocity of the problem. In [7,8], under the title of 

"ELLAM Cells" (CELLAM), a very effective implementation of ELLA11 

using this kind of test functions, has been developed. CELLAM has 

the advantages of ELLAM methods described aboye, but in addition it 

ensures local mass conservation and yields algorithms which are more 

convenient for existing solute-transport codes which ,are based on 

fini te differences. Thus far, the numerical performance of CELLAM 

has been slightly better than that of BELLAM [7-9]. Also, the 

simplicity of the implementation of the method, is appealing. 

In passing, we mention that an implementation (FVELLAM) using 

simBa!," test functions was intended in [45J, but the authors' 

reported numerical dífficul ties which severely limit the 

applicability of their results. 

2. BILINEAR ELLAM CBELLAM) 

This approach was first presented in a sequence of two papers 

[1,2]. Consider the one-dimensional transient advection-diffusion 

equation in conservative form: 

fu == 
Bu 
-at ~(Dau -

Bx Bx 
Vu) + Ru = fn(x,t), 

., 
in Q (2. 1) 

XEQ 
x 

= (0,1] 

tEQ 
t 

(X,t)EO ::: OXQ 
x t 

subject to initial conditions 

(2.2) 

and suitable boundary conditions, at x=O and 1. The following 

development accommodates any combination of boundary conditions. The 
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manner in whích the regían r.l and the ini tial candí tions are chosen 

in Eqs. (2.1) and (2.2), is suitable for applying a step by step 

solution procedure. 

To make the exposition more readable, only the case of constant 

coefficients will be explained here, although variable coefficients 

have already been treated (see for example [11]). Fol' simplicity, we 

pl'oceed in an ad-hoc manner. More systematic expositions placing the 

procedures discussed in this article in the general frame-work of 

the Localized Adjoint Method (LAM) , are given in [2] and [5]. 

Fol' the case when the coefficients of Eq. (2.1) are constant, 

the source term vanishes (R=O) and the partition is uniform, the 

test functians used are: 

x-x t n + 1 _t 
1-1 + V (t) f"\1-t,-;C-x-- ----ct,:-x-' x, e~,1 

x -x t n + 1 _t 
i +1 + V-..,-- ­ (x,t)en i (2.3)
t,x t,x 2 

O, all other (x,tl 

where ni and ni are as is shown in Fig.1. Such weighting functions 
1 * .1 

2 

satisfy !J! w O and are continuous O.e [w]=O), but have 

discontinuous first derivatives O. e.; [dw/dx]:;t:O). The jumps are 

[8W] 1 (2.4)
8x 1+1 = t,x' 

DISCRETIZATION IN THE INTERIOR OF n 
When the regian ni does nat intersect the lateral boundaries, 

integration over ni, yields 

tn+l 

- liD JuCo- (tl,t)dt­
uX { 1-1 

t n 

n 1 n 1 

t + t + } 


2J U(o- (t),t)dt+ J u(o- (t),t)dt
1 1 + 1 

n n
t t 

* Jn) 1 n 1= [;+1 U ( x, t w (x, t )dx + fnw dxdt, (2.5) 
X n

1-1 

where the unknowns have been collected in the left-hand member of 

the equation while the data is included in the right one. In Eq. 

(2.5) , it ls assumed that x=o- (t) is the characteristlc curve 
1 

passing through x at time t (Fig. 1).
i n+l 
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Figure 1.- Test functlons used in BELLAM. 

Notice that the unknown function u(x, t) has not yet been 

approximated by any specific functional formo Ihe time integra1s may 

be approximated using a Backward-Euler (fully implicit) scheme. Ihen 

the spatial integrals that appear in Eq. (2.5), may be approximated 

in many different ways, using the nodal values of u at the discrete 
. n n+ltlme levels t and t • exclusively, so that the unknowns in the 

equatlon ultimately correspond to nodal values at time t n +
1

. 

Different approximations of these integrals lead to different CM 

algorithms reported in the literature [lJ. For example, piecewise 
n n 1linear spatial interpolation of u at time levels t and t + , 

coupled with a one-point (at t=tn+l) f;,." ly implicit approximation to 

the temporal integral, leads to the modified method of 

characteristics of Douglas and Russell [40]. 
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BOUNDAHY CONDITIQNS 


When a regíon ni íntersects the inflow boundary, several cases 

can occur. As an example, we discuss the case illustrated in Fig. 2. 

Then, integratíng Eq. (2.1) over the regíon n J it is obtained: 
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Figure 2.- Case when the domain of the test functions intesects the 
inflow boundary (BELLAM). 
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tn+l t n + 1 


1+1 n+1 i n+1 D
r u (X, t )w (X, t )dx --.:- J u (O' . ( t ) , t) d t - 2J~ U ( 0'. (t) , t)dt 
JX

1-1 . 
uX { t 

* 1-1 * 1 
t 

1-1 i 


n 1 
 * ti -1t + } 
+ J u(O' Ct),t)dt + J * wiiD~~(O,t) - Vu(O, t)rdt

i + 1 


t '" 
 t 
i + 1 i + 1 

*t~-l 
D J* u(O,t)dt -s:: U(O,tl dl} (2.6) 

{ 
t 

1 i + 1 

The integral s along characteristics appearing in (2.6), can 

again be evaluated by means of a fully implici t approximation. 

However, the f act tha t each of these three integra s has a 

different length, introduces problems for achieving consis in 

the order of accuracy of the approxima tions, for some classcs of 

boundary conditions, at least. Suitable combinations of the 

integrals just mentioned, with the last integral of the left-hand 

side of Eq. (2.6), may overcome the problem. HOHever, Hhe ther this 

is feasible or not, depends on the type of boundary conditions to be 

satisfied. To exhibi this problem, it is necessary .to develop a 

more careful derivation in which the order of the errors inlroduced 

at each step, is explicitly stated. Thus, the reader is referred to 

Section 5, where a more careful derivation of a similar 'equation ls 

presented for CELLAM. 

The last term in the left-hand side of Equ. (2.6) must bé 

handled with special care, to obtain an algorithm with satisfactory 

properties. If we simp1y apply the Bach,rard-Euler scheme to the 

unknown boundary flux along the time dlrection, the di5cretiza tion 

wi11 be unsatisfactory for large Courant numbers (Cu=VtJ.t/~x), since 

many characteristic lines will be crossed. Thus, instead, one can 

evaluate the contribution to the integral of the term containing 

uCO,t), since this is Dirichlet data, and transpose it to the right 

side of the equation. In [1], the remaining part of the integral was 

approximated in a Hay which, as indicated in [8], i5 equivalent to: 

* ti-l 

J * wiD~~(O,t)dt - ~ (2.7) 

t 
1+1 

This approximation however, as pointed out in [7], i8 nol 

necessarily consistent with thc order of approximation that i8 

required in the formulation: o(tJ.xtJ.t
2 

) . I11is 1at ter order of 
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approximaLion can be achieved, using relations similar Lo Eq. (2.7), 

only if the expressions under the integrals, are sUltably combined 

wlth the intcgrals along characteristies present in Eq. (2.6), and 

this ls posslble, as has been already been mentloned, only for some 

klnds of boundary condltlons [7]. 

For outflow boundary eonditions of Dirichlet type, the outflow 

boundary contributions vanish for al! the test functions. This is 

due to the fact that 0.11 the weighting functions vanish in the 
. 	 ~1characteristic ¿:, WhlCh passes through (x, t ), and beyond i t. 

E 	 E 

AIso, the system of equations that is obtained in the manner 

explalncd aboye, is closed, because u n+l ls datum. If addi tional 
E 

informatlon is desired at the outflow boundary, lt can be obtained 

applying procedures which amount essentially to post-proeessing [1]. 

3. 	 SOHE REMARKS ON DISCRETE METHODS 

There are two basle tasks that every numerlcal method for 

partial differenlial equations has to accompllsh [2,6,7]: 

i).- Gathering information about the sought solutlon; and 

11).- Interpolating or, more generally, processlng such 

information. 

These two processes are distinct, although in many numerlcal methods 

they are not differentiated clearly. In procedl.lres whlch are derived 

from the method of weighted residuals, the information about the 

exact solution that i5 gaLhered, is determined mainly by the 

weighting functlons used. Slnce this lnformation does not determine 

unlquely tbe sought solution, some procedure for extendlng i t is 

requlred, in arder to fl11 the gaps of information and exhibit at 

the end, a unique approximate solution. 

Different methods of solutlon follow different strategies for 

accompllshing tbis latter task of extending the information that ls 

available. In general, interpolation and extrapolatlon procedures 

are applied. For example, in finite element methods some basis 

functions are chosen and the approximate so11.1tion is assumed to be a 

superpositlon of such functions. In thls case, the information about 

the exact solution which is gathered by the weighting fl.lnctions, is 

interpolated in a manner which ls determined by the family of basis 

functlons chosen. 

Clearly, i t ls not convenient to carry out the process of 

extendíng the information blindly, ignoring what ls the actual 

information that is available. Hovlever, this ls what ls usually 
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done. On the' contrary, it is advantageous to mak(~ use of LlJc :' ¡,; l. 

gained when the available information has been identified, inee the 

selection of the best procedure for extending it, is strongly 

dependent on the information that is at hand. 

Due to these facts, in recent works [6,7] the aulhar has 

advocated an approach far developing numerical methads, in which the 

processes i) and ii) are clearly separated. Firstly, the informatian 

about the sought solution that is at hand, is identified and 

secondly, using that insight, a procedure for extending such 

information is defined. 

Herrera' s Algebraic Theory of Boundary Value Problems 

[25,31-35], which permi ts local the adjoint, has shown to be 

quite suitable for identifying the information contained in 

approximate solutíons. The use of this theory has clear advantages 

over other options, such as the standard lheory of dislribuUons, 

because of two reasons at least: the use of the ie theory 

permits the localization of tile adjoint, and lhe simultaneous use of 

discontinuous trial and test functions is feasible. Then, depending 

on the information that is idenlified, interpolation procedures 

suitable for handling it efficiently, are selected qnd ied. Ihis 

is what should be properly called Localized Adjoint Method. The 

introduction of basis functions is not required and" even more, 

their use is inconvenient in some cases. In [7] and [8], this 

approach was applied quite successfully to derive CELLAN. 

4 ELLAM CELLS (CELLAM) 

This method was presented or inally in [7] and (8] (see a1so 

[9]). The notations adopted conform with those which are usual for 

cell approaches. A partí tion ls 

introduced, which induces a partition of Q into subregions 

{Q\Q2, ... ,nE
}, if for each i=2, ... ,E-l, ni is defined as the 

subregion of Q, limited by the characteristic curves ¿ and 
i-1/2 

¿i+l/2 (see 3), while d is that part of Q which lies to the 

left of ¿ and QE is the subregion of Q which 1les to right of
3/2 

Q . The subregíons of the partí lion are called "cells" and they
E-l/2 

are said to be "uniform" when 

X + / -X ::::: h, for i=2, ... ,E-l; x -x =h/2,x -x =h/2 (4.1)
i 1 2 1-1/2 3/2 1 E E-l/2 

A system of constant weighting functions i8 ied. These are 

the characteristic functions of the subregions that constitute this 
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Figure 3.- Test functions used in CELLAM. 

weighting functions applied to derive CELLAM [7], 

if (x,t)EQa 
, a=2, ... ,E-l, (4.2) 

if (x,t)íi!Qa 

DISCRETIZATION IN THE INTERIOR OF Q 

In the case when Qa does not intersect the lateral boundaries 

of the region Q=[O, llX[t , t ], integration of Eq. (2.1)' over Qa,
n n+l 

yields: 

tn+1 tn+1 
+ f (08u) dt - f (08u) dtex ¿ ax ¿

tn a+1/2 tn a-1/2 

a+1 

=f
X * 

11< undx (4.3) 
x 

a-1 

Equation (4.3) and a modified version of it designed to 

incorporate boundary terms when the lateral boundaries of Q are 

intersected by Qa, is the starting point of the numerical treatment. 

Observe that 

* 
a+1 0:+1 

n 1f
X 

u + dx -f 
x 

* undx:::: O(hk) (4.4a) 
X x 

a-1 0:-1 

and 

tn+1 tn+l 
(Oau) dt - f (Oau) dt :::: O(hk) (4.4b)f ax ¿ ax ¿

-tn a+112 tn a-1/2 
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where h = max(h -h ) and k t -t. Tbus, in tllc 
1+1/2 1-112 n+1 n 

developments it is required that integral s such as those appearing 

in Equs. (4.4), be evaluated to a precision of O(hk2 
), at least. It 

will be assumed that h~k, so that O(hk2 )=O(h2k)=O(k3 )=O(h3
). 

Equation (4.3) supplies information about the sought solution 

the interval [x x ] t and about 
a-1/2' a+1/2 n+l 

x-derivative on the characteristics ¿ and ¿ In tbe CELLAt1
0:-1/2 -- 0:+112 

approach [7], the goal of the informatlon processlng ls to 

concentrate all of i t, in the value of the solution at the 11 cell 

center" x"" at time t=t To this end, in Eq. (4.3), the integrals
"'" n+1 

from t to t ,are firstly approximated in a fully implicit manner n n+1 
(l.e., by a one-step Backward-Euler approximation at t ). Thusn+l 

ftn+l{ Bu B}(D-) - (D~) dtax ¿; ax ¿;
tn a+1/2 0::-112 

n+1 n+1}
(Dau) _ (Dau) k + O(hk2 ) (4.5){ ax 0:+1/2 8x a-1/2 

For a uniform spaclng and constant coefficlents, a central difference 

approximation yields: 

1 un +1 + un +1 2un +1 
aun+l n 

(au + ) _a_+_l~~0::__-1____0::_. k + O(h3k) (4.6)}k :::
{ (ex ) 0:+1/2- ax 0::-112 

The extension of this formula to the case of a non-uniform 

partition, can be done in a similar manner. However, the arder of 

precision is redueed by one and the overall error in (4.6), becomes 

O(h2
k). 

In characteristic methods, most of the numerical diffusion ls 

due to the interpolations in space, which are required because in 

general, characteristics do not cross the t time level at nades. 
n 

Thus, all the approximations in space have to be carried out with 

special careo A special fealure of the approximations used in the 

derivation of CELLAt1 [7], is that no assumption i5 made about the 

shape of the solution. 

The first integral in (4.3), is approximated by 

J
X0:+1 

u
n

+ 
1
dX (4.7) 

X
0:-1 


and only the second order derivative requires a numerical 


approximation, since the information is being concentr-aLed in the 

"cell centers". To get é tr d." ~onal structure for the matrix, it 
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15 ncCet;Sal~y lo. use thr'cc-polnL approxlmations only. In the case uf 

a "uniform partition ll a central difference approximation yields, 

X n+l n+l 22 n+l 
0:+1 U + U + U

J n+ld
U X = [0:+1 ~~1 O::)h + 0(h5 

) (4.8) 
X 

0:-1 

If the parti tion is non-uniform, the approximation to the second 

order derivative by a three-point scheme is only first order, and 

the error in the evaluation of the integral in (4.8), ls only order 

four. 

Ihere is greater freedom for the choice of the approximations 

to be used in the evaluation of the integrals at time t , since they 
n 

do not affeet the structure of matrix of the final system of 

algebraic equations. In [7] , the integral appearing in the 

right-hand side of Eq. (4.3) was approximated using an approach 

similar to the one used for deriving Equ. (4.7); Le., integrating 

the Iaylor series expansion of un around the mid-point of the 

interval [x* ,x * J. However, since sueh point is not a "cell 
0::-1 0:+1 

center", un ls not known there and an interpolation must be used to 

evaluate i t. Using three-point formulas, un and i ts second order 

derivative can be evaluated to orders three and one, respectively. 

Ihis yields an approximation which is fourth order in h, 

5. BOUNDARY CONDITIONS 

The numerieal approximations presented thus far, apply only 

when the subregion QO:d2 does not intersect the lateral boundaries 

a Qv8gQ, of the region Q. When this is not the case, boundary 
o 

eonditions must be included. Ihis Section is devoted to presenting 

the CELLAM procedures for dealing with them. 

In Eulerian-Lagrangian approaches, the analyst does not have 

control of the discretization al an inflow boundary, since it is 

completely determined by the spatial discretization. However, the 

situation in this respect ls a little better at an outflow boundary. 

Ihus, when dealing with boundary conditions, specially at an inflew 

boundary, numerical diffusion is due to a large extent, to the fact 

that eharacterlstics do not cross the boundaries of the space-time 

region Q, at times levels belonging to the partition of the time 

interval. Ihus, just as in the interior of the spatial regien, the 

approximatinos in space have to be performed wi th special care to 

minimize numerical diffusion, when dealing with boundary conditlons 

the time integrals on the boundaries have to be treated with special 

careo 
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Ihere 18 an additional reason which enhances this cffee aL an 

inflow boundary. Ihe information that is supplied at an inflow 

boundary has a larger effect on the solution than that coming from 

an outflow boundary, specially in the case of advection-dominated 

transport, because the former is transmitted to the interior of the 

spatial region by advection and diffusion, while the latter i8 only 

transmitted by diffusion. 

In [7], it was pointed out that in sorne cases, il is more 

difficult to achieve the desired degree of accuracy in the integrals 

wi th respect to time at the boundary, than in the integral s wi th 

respect to x, at the different time levels. For Dirichlet boundary 

conditions, the different terms occur in a combination which is 

suitable for obtaining the desired degree of accuray. However, when 

the total flux is prescribed or when consider boundary conditions 

of Neuman type, this is not the case [7]. 

A.- Dirichlet Conditions 

For this case, we use E-2 test functions; namely, those 

associated wi th subregions Q2, ... , QE-l. In particular, no test 

function i8 applied on the first subregion (Ql) or,on the last one 

(QE). See Fig.4. 

Inflow Boundary 

Dirichlet boundary conditions are incorporated in the numerical 

equations in two manners: directly, through the boundary terms aI1d 

indirectly, imposing the condition that in the numerical 

approximations, some of the variables take the prescribed boundary 

values. 

dXAssume intersects the inflow boundary, as illustrated in 

Fig.4. Ihen 

x 
0:+112 

== un+ 
1dx (D 

8u
) }dt­8x ¿f
X 0:-1/2

0:-1/2 

.. .. 

t t 

J0:-1/2{(D8U) - (D8u) }dt- J ~-1I2VU(O, t)dt (5. 1 ) 
"" 8x ¿ 8x x=ot 0:+1/2 t 
0::+1/2 0:+112 

Ihe first two integrals of the right-hand member are like those 

appearing in Equs. (4.8) and (4.5), and can be handled similarly. In 

addition, the last one in this equation is easy to deal with, since 

u(O,t) ls the prescribed boundary value. Ihe third integral, 

however, requires a special treatment. 
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Firstly, observe that (D~~)¿: (DOU ) is O(h). Thus, for
8x x=o0:+1/2 

any XE[X ,x ], one has
0:-1/2 0:+1/2 

\.¡here, for brevity, we have written t '" instead of t '" (x). The 

approximation implied by Equ. (5.2), has the property that the 

values of the functions tnvol ved, at time t, '" are approximated by 

their values at time t , on the same characterisUc. In this 
n+1 

manner, crossing of characteristics is avoided. Such property is 

important in order to preserve the advantages of characteristic 

methods. 

Equ. (5.2), can be used to obtain 

t * n+l
8uf 0:-1/2{ (D0u) = (t * -t'" ) (D8u) +- (D ) }dt'" ox ¿: ox x=O 0:-1/2 0:+1/2 Bx 0:+1/2t 0:+1/2

0:+1/2 

x '" 

f
0:+1/2 aun +1 dt 

Dax (x) dx (x)dx (5.3) 
x

0:-1/2 
As an illustration of the numerical implementation for this 

equation, we explain the case of constant coefficients. ,In this case 
xt '" (x) = t (5.4)

n+1 V 
so that 

dt '" 1 = (5.5) 

and Equ. (5.3), becomes 

t '" x -x n+l

f 0:-1/2{(D8U) 0:+1/2 0:-1/2 (D8u )(D8u) }dt:::::
'" 8x ¿: 8x x=o ox 0:+1/2t 0:+1/20:+1/2 

(5.6) 

In Equ. (5.6), the derivative 8un+1/8x at x (0:=2, ... ,E-l), must
0:+1/2

2be approximated to order O(h ), to be consistent with the order of 

approximation. For a non-uniform mesh, this requires a three-point 

scheme. 

For 0:=2, the boundary value u n+l , occurs in equations such as 
1 

(4.6) and (4.8), and it must be required that at each time level, 

U
n+1

be equal to the prescribed boundary value. This is the indirect 
1 

manner of imposing the boundary condi tions that we referred to at 

the beginning of this section. 
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Outflow Boundary 
[-1

Observe that the last test function to be applied ls w 1he 

support of this test function is QE-1, which does not intersect the 

lateral boundary x=l. Thus, none of the boundary terms involving the 

outflow boundary occur in the numerical equations and the prescribed 

boundary values are incorporated in the numerical equations in an 

indirect manner exclusively; 1. e. , introducing them instead of u 
n+l 

E 

in approximations such as (4.6) and (4.8). 

B.-	 Flux Conditions 

For this case, we use E test functions. 1hus, the test 

functions associated with regions 0.1 and QE, which were omitted when 

dealing with Dirichlet boundary conditions, are applied when dealing 

with this kind of boundary condition, and the values of u 
n+l 

at zero 

and at 1 are treated as unknowns. 

Inflow Boundary 

Fig.4, illustrates a case in which QfX intersects the inflow 

boundary. For flux boundary conditions, it is more convenient to 

write Equ. (S. 1) in the form: 

x 
0:+1/2 

n+Id tn+l { o = U X - J (D~) - (D0U) }dtf 	 * ex ¿ ex ¿
X 	 t fX+l/2 fX-1/2

fX-I/2 0:-112 

f
t * t * 

a-l/2(Dau) dt -J :-1/2 F(t)dt 
 (S.7)* ax ¿ 


t fX+l/2 a+1/2 t 

0:+112 

Here, F=CVU-DaOu) • is prescribed.x x=o 

-¡--j-
I 	 I 
1 	 I 
I 	 I IIEI 	 ,II 

I 
I'1 I 

¡ I I I 
I ¡ I I

I 	 I 
I 	 II 	

I I I I .-1 ___, 
- - r 	- - t- - -1*- 1 *1 - _-1_ 

: 	 : ~E-1I2 XE I 
I 
I 

I I I 
1 	 I I 
I 	 1 I 

Xo=O Xi-1I2 Xi Xj+l/2 

Figure 4.- Cases when the domain of the test functlons lntersects 
the lateral boundaries (CELLAM). 
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Since F(L) is a datum. Lhc cone3ponding integral offers no 

special difficulty in being approximatedto any desired order of 

accuracy. The other Is can be treated in a manner similar to 

what was done in the case of Dirichlet conditions. The approximation 

t '" n+l

JCX-l/2(D8u) dt ~ (t* -t* )(D8u) (5.8)* 8x ¿ CX-II2 CX+l/2 8x tX+l/2t CX+l/2
CX+l/2 

is similar to one used in Equ. (5.3). However, the term 

(D8
8U 

) which appears in Equ. (5.3), is missing here, because it was 
x x=o 

incorporated in the flux F. Due to this fact, approximation (5.8) is 

only O(k2 
), which is not consistent with the order of approximation 

that has been used in a11 other terms. 

However. such a shortcoming has not been manifested in the 

numerical applications, which use Equ. (5.8). In particular, a11 the 

numerical experiments reported in this article, use this 

approximation. The development of an algorithm fully consistent with 

the order of accuracy that was set at the beginning of our 

discussion, would require a procedure, considerably more e1aborate, 

which would not be justified at this point. 

In addition, it must be mentioned that when the support of a 

weighting function intersects any of the corners of t{le domain Q, 

the treatment presented requires slight modifications, whose details 

we leave out. At tile inflow boundary, this happens for ,two test 

functions. One 1s w 1 and there is one more, whose support intersects 

the corner (O,t ). as shown in Fig.4.
n 

Outflow Boundary 

The only weight1ng function whose support intersects the 

outflow boundary is w. E Applying it, we get 

tn+l 
- (. undx - J F(t)dt 

X tn 
E-l/2 

(s. 9) 

Using three points approximations, one can evaluate the first two 

integrals of the right-hand side of this equation to O(h4). The 

third one offers no difficulty. since F(t) are data. Finally, an 

approximating procedure analogous to Equ. (5.8), can be applied to 

the last integral. However, the comments that were made immediately 

aíter Equ. (5.8). apply here too. 
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6 NUMERICAL COMPARISONS 

Ihe efficiencies of the BELLAM and CELLAM procedures have bCCH 

compared. In [7], numerical examples that involve significant 

boundary behavior were solved, using these two methods. Ihe results 

obtained there, are described next. The following change in the 

notation is noticed: In this Section, instead of taking the spatial 

region to be the interval [0,1}, as we did in the theoretical 

discussions, we set Q =[a,b]. 
x 

Consider an advancing Gaussian hill that may cross an inflow or 

an outflow boundary. Its general expression is 

u (x, t);::;: 1 (-n:(X-Vt)2) (6. 1) 
a (1+4n:Dtl1/2exp -1+4n:Df~ 

and the ini tial and boundary condi tions are chosen in such a way 

that the exact solution of the problem is (6.1). Ihus, the ini tial 

conditions are 

u (x) ;::;: exp(-n:x2 
) (6.2)

1 

while the boundary conditions are 

u(a,t) ;::;: u (a,t) (6.3a) 
a 

and 

u(b,t) = u (b,t) (6.3b) 
a 

whenever Dirichlet conditions are considered. In addition, they are 

(vu- D~~) (a, t) = (vu
a 

- D~~a) (a, t) (6. !la) 

and 
aUa(vu- D~~J (b,t) ;::;: (vu D ) (b t) (6.4b) 

a 8x ' 

whenever total flux boundary conditions are considered. In the 

numerical examples, only Dirichlet and total flux boundary 

conditions will be treated. 

Several combinations of ini tial and boundary condi tions are 

prescribed for Equ. (2.1), but in such a manner that for any of them 

the exact solution is given by Equ. (6.1), Also, domains considered 

were: 1=[21 
/ ,9], 0=[-3,21

/] and N=[-3,9]. For them, the pulse
3 3 

crosses an inflow boundary, an outflow boundary and neither, 

respectively. 

A. Comparison based on the Euclidean Norm 

As explained in previous sections, in the CELLAM method the 

information about the sought solution is concentrated exclusively in 

the cell-centers and no base functions are used. Ihis implies that 

no assumptions are made about the shape of the solution. Ihis is in 
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contrast with other ELLAH proceduras, in which the shape of Lhe 

solution is assumed [1J. 

One consequence of this way of handling the information, is 

that some of the standard procedures for measuring the errors of 

approximate solutions, are not appropriate. In [1], for example, in 

which bílínear basis functions were used (the space of such 

functions, which are piece-wise linear and continuous in n, will be 
x 

denoted be Y), the L
2 error of the approximate solution that BELLAM 

yields (and such approximate solution necessarily belongs to Y), was 

compared with the L
2 error of the projection of the exact solution 

on Y. This ratio í5 necessaríly greater or equal to one, because of 

the mínimal property of the projection. 

When all the ínformation is concentrated at the cell-centers, 

the best we can do is to obtain the exact values at those points. 

This, hmlever, does not define a function of the space Y, and a 

direct comparison using the L2 norm, is not possible. Of course, one 

could try to use linear interpolation of the approximate values at 

the cell-centers, to associate an element of Y to the approximate 

solution. However, if one proceeds in that manner, even the optimal 

solution (i.e., that wh05e values at the cell-centers are the exact 

values) would gíve an L
2 error that in general, will be greater than 

that of the projection, again because of the minimal property of the 

projection. To illustra te this fact and its importance in the 

different cases tested, Table 1 compares the L2 error of the linear 

interpolation, when the values at the ce11-centers are the exact 

ones, with the error of the projection of the exact solution, on Y. 

lt can be seen that in a11 cases, the L
2 error of the linear 

Tablc l. COO1parison of L'2 crrors betwecn the projection ofthe exact 
solution Ol'l the space of piccewise linear functions and the function of 
this space, whose vatucs are oxact at the nodes Cinterpolation"). 

ERROR 
DOMAIN ÓX PROJEC'l' ION INTERPOLATION 

N 0.267 O.'1l5E-02 O.159E-Ol 
N 0.053 O.265E-03 O.646El-03 
1 0.267 O.715E-02 O.159E-Ol 
r 0.053 O.26SE-03 O.646E-03 
o 0.267 O,~97E-02 O.102E-Ol 
o 0.053 Q,177E-03 0.429E-03 
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intcrpolatlon of the exact values, ls al leasl lwicc lhat of [(w 

projection on !l. Thus, if this measure of the error i5 used, ane 

would not be abIe to discriminate between different methods on the 

basis of performance. 

Befare leaving this paint, we would like to remark that \.,fhen 

the information about the exact solutian consists of tlle exact 

vaIues at the cell centers excIusively, the extension of this 

information to the entire interval can be done in manners Hhich are 

more efficient than using linear interpolation. For example, ane 

could use a high order interpolation procedure, 01' solve a local 

problem (this is a kind of post-processing), to mentían just a few 

of the possibilities for processing such information. 

Therefore, a norm that directly compares the values at the cell 

centers w:as used to compare the errors of the dlfferent methods. 

The norm chosen was the "average Euclidean norm" 

E ) 1/2
lIu-ÜII = ( 1 "'(u -o. )2

E 	L. i 1 
1 

Here, u are the values of the exact solution at the cell centers,
1 

whi~e Ü are those of the approximate one. 
1 

TabIe 2 summarizes the numerical results. As in (1), the final 

time t =0.5, ~x is taken to be 4/15~0.267 (Pe=26~) and ~x=-~ ~O.0533 
f 	 3 75 

(Pe=5~). For ~t=0.25 was used ). For ~x=4/75, the 
3 15 

values 0.25, 0.05 and 0.01 of ~t, were used, which correspond to Cu= 

46? 9:: and 1~ \ i ve ly. The 	 invo1v ing ini t ia1 ors' s 7' 

boundary condi tions were evaluated using Gauss-Kronrod rules to a 

high degree of precision. In Table 2, the Euclidean errors 

associated wi th the approximate solutions that were derived us 

CELLAM are compared wi th those obtained wi lh BELLAM [1]. In all 

cases the errors listed correspond to the final time t =0.5. 
f 

TAOL[¡ Z. COlllp;¡¡,ison of Cfl-orS 1.x:tWCCII ELLAM·Cclls ilml13ilh\c:lI-EGLAM 
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In general" terrns, one may cunciude that in these examples, 

CELLAM performed slightly better than BELLAM. Runs 1 to 4 do not 

involve significant boundary contributions. When this is the case, 

BELLAM and the Modified Method of Characteristics (MMOC) , become 

identical [1]. From the results shown in Table 2, it follows that in 

the examples treated, CELLAM is slightly more precise than MMOC. On 

the other hand, when the boundary contributions are important, MMOC 

is considerab1y 1ess accurate than CELLAM and BELLAM. 

B. 	 Comparison Based on the Maximum Value 

In [1], the maximum of the numerical solution was compared with 

the maximum of the exact solution. Thus, for completeness, the same 

comparison is made here and the results are also lllustrated in 

Tab1e 2. Inspecting this table, it is seen that also when the 

performance is judged according to this cri terium, the resu1 ts 

obtained with CELLAM are at least as good as BELLAM. 

Observe that when the domain ls O=[-3,2~], the maximum of the 
3 

Gaussian distribution (6.1) has already crossed the outflow boundary 

of the spatia1 domain, so that when the boundary conditions are of 

Dirichlet type, the maximum values of the approximate and the exact 

solutions are equal. Hence, this comparison is not informati ve in 

those cases. 

7 DISCUSSION AND CONCLUSIONS 

The central subject of Quanti tative Isotopic Hydro1ogy, 

consists in studying the transport of tracers by water flowing in a 

porous medium and the interactions that take place between the solid 

matrix and the solutes. The corresponding mathematical models, 

derive from the advection-diffusion equation. The numerical solution 

of this equation, is a problem of great importance in many other 

scientific and technical fields, as well and it ls belng the subject 

of intensive research. 

The numerical treatment of the advection-diffusion equation 

when advection is domlnant, has been a chal1enging problem for a 

long time, specially if a sharp front ls presento A feature that is 

required from algori thms in order to be able to model effectively 

advection dominated transporto ls that lts performance be 

independent of the Courant number, to a large extent. Another 

feature whlch ls essentlal, specially in Quantitative Isotopic 

Hydrology, is that the algorithms be mass-conservatlve, even when 

significant boundary behavior is presento 
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lt has been recognized that in order for tha performance uf UII 

algorithm to be independent of the Courant number, it 15 nece5sary 

to incorporate in its formulation the structure of characteristic 

lines. Methods which are based in the characteristic structure of 

the differential equations, are known as "characteristic" al' 

11 Lagrangian" methods. Vntil recently, characteristic methods had had 

three important limitations: inability to ensure mass conservatlon, 

inability to treat boundary fluxes effecLively and the introductlon 

of numerical dispersion, due to 1014 order interpolallon or 

integration. 

With the developmenmt by the author and coworkers, of 

Eulerian-Lagrangian Localized Adjoint Methods (ELLAM), which are 

based in the general LAM methodology introduced by the author, the 

limitations of characteristic methods mentioned aboye, have been 

overcome to a large extent. 

The ELLAM approach can be implemented in several manners. Up to 

now two sueh implementations have been developed: BELLAM and CELLAH. 

Evidence has been presented, which indicates that CELLAM is at least 

as accurate as BELLAM and in sorne cases, more accurate. In addition, 

CELLAM ls easier to implement and more gen8Gal, sinc8 ít is 

applicable to the general advection-diffusion equation wi th 

non-constant coefficients. 

Here BELLAM and CELLAM have been explained and discussed, 

making them more readibly available to the scientific communíty 

which works in Quantitative Isotopic Hydrology. 
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