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ABSTRACT

Combining collocation procedures with domain decomposition
methods presents complications that must be overcome in
order to profit from the advantages of parallel computing.
Recently, Herrera supplied formulations which effectively
combine these methods. In this paper such formulations an
their Implementations are presented and discussed. In a
companion paper, also presented in this conference, the
application of this method to nonlinear flow and transport
of a multiphase system is discussed.

1. INTRODUCTION

Domaln decomposition techniques have received much attention in
recent years. They constltute a natural route to parallelism. Using them
it is possible to transform large discrete systems into smaller ones.
Also, domains of 1irregular shape can be decomposed . into regular
subdomains in which tensor-product discretizations can be applied. In
addition, domain decomposition techniques are quite suitable for
carrying out grid refinements in reglons where they are required, as
where the coefficlent variability is high.

For elliptic problems, domain decomposition methodologles are well
developed (see, for example [1-5]). In many instances time dependent
problems of parabolic type can be treated in the same manner, because
for usual time discretizations, they give rise to an ellliptic problem at
each time-step. In this case, the grid Green function has a rapid
exponential decay and this property can be exploited to minimize the
amount of work that is required for applying the domain decomposition
method [6-8]. Also, domain decomposition methods are frequently applied
by means of a preconditioned conjugate gradient'iteration. When this is
done, the type of preconditioner to be used is case dependent (see for
example [1]).

" In this paper and a companion one [9], we address the problem of
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274 L HERRERA ET AL.

combining collocation (see, for example [10]), with domain decomposition
methods. In the present paper, the procedure we propose and Its
foundatlions, are explained and in the companion one [9), the numerical
implementation is illustrated and discussed in connection with flow and
transport problems. Actually, the method here presented has considerable
generality and 1its applicabflity is no restricted, by any means, to
cases where the discretlization procedure used is collocation.

As a matter of fact, the method is to a large extent independent of
the discretization procedure applied to the basic equations, because it
i1s based on general properties of elliptic partial differential
equations which are symmetric and positive definite. Given a
decomposition of a region into subdomains, the problem is transformed
into one which exclusively involves the 1internal boundaries (I')
separating the subdomains from each other. Then, a positive definite
transformation is associated with this latter problem. Up to this point
the discussion refers to the continuous problem. Then, a discretization
is introduced in an abstract manner, by means of a finite dimensional
subspace of functions deflined on I' It is shown that the restriction of
the transformation previously Iintroduced to such subspace, also
possesses the positive-definiteness property and it 1is sultable for
applying the Conjugate Gradient Method. The use of preconditioners, in
conjunction with our method, 1is also possible and it 1is bcing the
subject of ongoing research [11].

Here the method is explained for elliptic equations but it can also
be applled to a large class of parabolic equations when a step by step
procedure, for Integration of time is used, elither by means of a
6-scheme fixed in space or an Eulerian-Lagranglan approach (see for
example [12,13]). In such case, an elliptic problem has to be solved at
each time-step, and domain decomposition methods converge rapidly,
because of the radius of influence of fundamental solutions in such
situations are usually small, the radius decreasing with decreasing
time-step (see, for example [6]).

2.- DOMAIN DECOMPOSITION FORMULATIOHN

In this Section and the following one, we outline the general ideas
of the method, leaving aside some technical detalls. Later, in Sectlon
4, the method 1s presented in a more systematic and rigorous manner. In
addition a more thorough analysis is being prepared {11].

Consider the boundary value problem (BYP), defined in Q ( Fig. 1a),
which consists in satisfying

fu = -V+(K*Vu) + Ru = fQ. in Q (2.1)
together with Dirichlet boundary conditions:
u(x) = ug (x), in 80 (2.2)

It will be assumed that for every x of , the matrix K is positive
definite and R=0. In addition, suitable smoothness conditions for the
coefficients in Eq. (2.1) are assumed, so that the general existence
theorems for partial differential equations (see for example [14]) grant
the existence of a unique solution of the BVP.

The region Q will be divided in two subregions, Qx and Qxx' with

internal boundary I' (Fig. la). Let an and aﬂxx' be the boundarlies of Q1
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Figure 1.- Illustration of domain decompositions.
and QII, respectively and defline
8IQ=6Qn8QI & BIIQ=GQnBQII (2.3)
Observe that 6Qx=ru80x and ale=Tu6QIr In what follows a procedure |s

presented for constructing the solution (u) of the BVP, by excluslvely
solving boundary value problems in Qx and QIX, separately. Such

procedure will be the "“domain decomposition” method. It must be
mentioned that although in order to make the explanations that follow
simpler, the region Q is divided Into two subregions only, the results
to be presented remain valid even if the region N is divided into many
subdomalins, as long as ' is interpreted as the union of all the internal
boundaries separating the subdomains from each other (Fig. 1b).

To this end define the function Vi in Qx' as the unique solutlion

of the boundary value problem

2v1= fQ, in Qx (2.4)
subject to the boundary conditions
vl(x) = ua(g), in axn and vl(x) = V(x), in T, _ (2.5)

where V(x) is a suitably chosen function, defined on I'. In particular,
V(x) can be chosen to be identically zero on I', and for simplicity we
assume this in what follows. The function Vi is defined similarly,

replacing I by II, above. Having v_ and v__ at hand, the function v(x)
, 1 11

is defined in 1 by
' vx(g). xefN

_ 1
vix) = v (x). xeq (2.6)
11 I

Observe that the function v(x), so defined, is continuous in Q. However,
the normal derivative of v may be discontinuous across I'. In addition,
observe that the construction of v(x) only requires solving boundary
value problems formulated in Qx and Qxx’ separately.
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Proposition 1
Let the function u(x), be the solution of the BVP in Q. Then, the
function w(x), defined in Q by w=u-v, is the unique solution of the

boundary value problem with prescribed Jjumps (BVPJ) on I', defined by the
following conditions:

"The differentlial eqqation ¥w=0 is satisfied in Qx and er

separately, w(x)=0 for every xcdfl, w is continuous across I' and

its first order partial derivatives have jump discontinuities

across I', which satisfy the jump condition

I:K-Vw] ‘n = —[K'Vv] ‘n, onTI™" (2.7)

Here, the square-bracket stands for the value of the "jump" across T
(value on the "positive" side minus value on the "negative" one) and n
is taken pointing towards the positive side.
Proof.- Because 2w=fu-£v=0 in Qx and le' and v = u-v=o0,in 80 Also,

[ K-Vw] ‘n = [ K-Vu]-g - [ K-vv]-g = -[ K-vv]-g on T (2.8)

since the function u, has first order continuous derivatives.

3. REDUCTION TO A PROBLEM FORMULATED ON T

" For the sake of clarity, we introduce the following notation. Glven
any function s(x) defined in Q, we write S:I'—>R’, for the restriction
of s(x) to T, wh%ch is defined for every xel' by S{x)ss(x). In
particular, W:I'—>R will be the restriction to I' of the functlion w(x)
introduced in Proposition 1. It will be shown that when W(x) ls known on
I', the construction of w(x) in 0 only requires solving two boundary
value problems: one in Qx and the other one in er

Proposition 2 .
Let wl(g) be defined for every ZEQI' as the unique solution of the

boundary value problem
2w1=0, in QI (3.1)

subject to the boundary conditions in an' given by
wl(z) = 0, in aln and wx(z) = W(x) in T, (3.2)
In addition, defline wxﬁg) for every geﬂxf replacing I by Il in the
definition of wl, glven above. Then
w(§)=w1(§). for every aeﬂx and w(§)=wxl(§). for every geQII (3.3)
Proof.- According to Proposition 1, the restrictions of w(x) to Qx and

er are solutions of the first and second of these boundary value
problems, respectively. Thus, Eqs. (3.3) follow from the uniqueness of
solutlion properties of these problems.
The mapping A

In view of Propositlon 2, the key to obtaln a domaliln decomposition
method 1s to develop a procedure for constructing the function W(x),
which is restriction of w(x) to I'. In what follows, we develop such
procedure using exclusively solutions of boundary value problems
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formulated in Qx and in QII. separately. In view of Propositions 1 and

2, this will complete the outline of the domain decomposition method we
propose in this paper. The following auxiliary mapping, will be useful
in the sequel.

Given a functlon SeL®(r)=H’(I'), construct the functlon S s def ined
in QI, as the unique solution of the boundary value problem
st=O,”q in Q : (3.4)
subject to the boundary‘conditions in BQI, given by
sl(g) =0, in BIQ and sx(x) = S(x) in T, (3.5)

In addition, defline 5%1(5) for every ﬁeﬂxr "replacing I by II in the
definition of S, The function s(x) 1s then defined in Q, by

sx(z). 5eQI

s(x) = s (x), xefn (3.6)
| S S §
The functlon AS:F———>RXP is defined by:
AS(x) = —[K-Vs]-g, xel - (3.7)
Formulation of the problem on I©
Define the function J on T by:
J = [K-Vv]-g, onT (3.8)

Where v(x) 1s given by Eq. (2.6). Then, using the mapping A and in view
of Eq. (2.7), the problem can be stated as follows:
"Find W(x) on ', such that
AW = J, on I (3.9)

In the next Section, it will be shown that after discretization,
the solution of Eq. (3.9), can be constructed applying the ConJjugate
Gradient (C-G) procedure. This 1is because the mapping A 1is positive
definite, as it is shown next. '

Proposition 3 5 > o

In the linear subspace of L°(I') for which ASeL"(I')sH (T'), the
mapping A, 1s symmetric and positive definite.

Proof.- In view of the fact that ¥£s=0 in 2, except on I' where a jump
discontlinulty of the first order derivatives occurs. Application of the
generalized divergence theorem [15], yields: '

- J SV (K-Us)dx = - J’ s(K-Us)-n dx +
Q 1519

J s [K~Vs ]‘Q dx + J (K+Vs)-Us dx (3.10)
r : 1

Observe that
J sV.(K-Vs)dx = J Rs® dx;: J s(K*Vs)+n dx = 0 (3.11a)
19 1 en
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and

—J s [K-Vs ]-g dx = J (AS)S dx (3.11b)
r T

by virtue of the conditlons Imposed on s(x) and the definition of the
mapping A. Therefore

(AS*S) = J (AS)S dx f“J {(K~Vs)'Vs + Rs® }dg =0 (3.12)
r Q

Where, the inner product operation in L3(r') is denoted by (*). Finally,
observe that the equality in relation (3.12) holds when the function
s(x) is ldentically zero, exclusively, in which case so is S(x).

Remark 1.- Observe that the linear subspace of 3° (ry, we are referring
to in Proposition 3, is H'(I'). Indeed, the image of H'(r') under the

mapping A, 1is Ho(r) [14]. This is a linear subspace of Ho(r), since
H () (). However, H'(I') is not closed with respect to the metric of
HO(r)=L%(I).

4, DISCRETIZATION AND CONJUGATE GRADIENT FCRMULATION

The fact that the transformation A lintroduced in the previous
Section 1s positive definite, permits applying the conjugate gradient
method (C-G) 'to the problem of obtaining the function W(x), on T.
However, 1t 1s necessary to discretize the problem before C-G can be
applied. The procedure to be presented is independent of the actual set
of approximating functlons used to carry out the discretization. What is
essentlal 1is that, after dlscretization, the problem 1s no longer

formulated on the whole space Lz(r). but instead, it is formulated in a
finite dimensional subspace of L3(r).
Thus, let 6cH (M) cH’(r)=L?(I') be such finite dimensional subspace

which 1s necessarily closed in Lz(r) since it is finite dimensignaL
Elements belonging to © will wear a hat. In particular, for any SeL™(I),

we write S for 1its projection on 6, with respect to the L?(r) inner
product. In addition, for every Seb, ASEG is defined as the projection
of ASEHO(F)=L2(F), on 6. Thus, in thlis manner a well defined mapping A

of 6 into itself, 1ls obtalned (A:6—>6).
Remark 2,- Observe that we could assoclate a square matrix with the
mapping A, since it is a linear transformation of a finite dimenslional
space into 1itself. However, such matrix will not be wused In what
follows, because In applications it Is too costly to construct.
The Conjugate Gradient formulation

Projecting Eq (3.9) on 6, the following "discrete” version of the
problem is obtained:

"Find WEG on F such that

Aw = J, onTI™ (4.1)
Here the functlon J is defined on T, by Eq (3.8). This problem Is
suitable to be solved by means of the C-G method. This is due to the
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fact that A Is finite dimensional and positive definite,
Proposition 4 N
The mapping A: 6—>6, is (symmetric and) positive definite.
Proof.- This is a well known result of Linear Algebra. It can be easlly
derived from the fact that

~an oA

- - (AS,H) = (AS,W) (4.2)

whenever S and W belong to 6.
The C~-G algorithm

Because of the special character of the application of the
Conjugate Gradient method, the corresponding algorithm 1is given in
detall. Recall the notations that have been adopted and in particular,
that when a low case letter is used for a function defined in Q, the
corresponding capital letter is reserved to denote the restriction of
such function to I' The C-G algorithg follows:

Given a tolerance €20, define w =0 in .

R’=J

§o=§o

k=0
@) Do . . . .

“Construct p iIn fl, satisfying ¥£p =0 In 01 and Qz separately,

homogeneous boundary conditions in 80 and
p*=p* in r*

(Recall in what follows that APX(K) = -[K'Vpk];g,on r)
o= R*R*/P** AP
Kel_ k. k k
Wo=Wota p
R“*'=R*-a*AP*

If “Rk”HmS e, set usv+w*lin N, and stop.
g = R**1eap*/ /P eaP"

Pk+1=Rk01_BkPk

k=k+1 go to (@)

5. EXTENSIONS

Firstly, it must be observed that in the preceding discussion
nothing has been assumed about the dimension of the space in which the
problem is defined. Thus, the domain decomposition method developed in
thlis paper 1is appllicable independently of the number of dimensions.
Secondly, in addition to elliptic problems, it 1s applicable to time
dependent problems, because many of them at each time step adopt the
form of Eq (2.1), after the time discretization has been applled.

There are several optlons for treating differential operators which
are not self-adjolint, such as those occurring in transport-diffusion
problems. The most rigorous one, is to apply an extenslon of the theory
and this 1is being developed at present. Another one, more direct and
simple was successfully applied in the companion paper [9]). Another very
interesting possible extension that should be studied, is combining the

~
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method here presented with Eulerlan-Lagranglian procedures, such és those
developed in [12,13].
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