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DOMAIN DECOMPOSITIQN METHOD FOR COLLOCATION PROCEDURES 

r. Herrera 

Instltute of Geophyslcs, Uallonal Unlverslty of Hexlco, 
Apartado Postal 22-582, 'Hexlco D.F., 14000 Hexlco 

J. Guarnaccia & G.F. Pinder 
Unlverslty of Vermont. 
109 Votey Building 
Burllngton, Vermont 05405, USA 

ABSTRACT 

Comblnlng collocation procedures with domaln decomposltIon 
methods presents complicat ions that l1l.lst be overcome In 
order to profit from the advantages of parallel computlng. 
Recent ly, Herrera supplI ed forl1l.l1a tIons whlch effectlvely 
combine these methods. In this paper such forI11UlatI~ns an 
the1r implementat ions are presented aOO discussed. In a 
companlon paper, also presented in this conferen'ce, the 
application of thls method to nonlinear flow aOO transport 
of a multiphase system 1s discussed. 

1. INTRODUCTION 
Dornaln dccompositlon technlques ha ve received rnuch attention in 

recent years. They constltute a natural route to parallellsm. Using them 
it Is posslble to transform large discrete systems into smaller ones. 
Also, dornains of irregular shape can be decomposed. inlo regular 
subdomains In which tensor-product discretizatlons can .'be applied. In 
addition, dornaln decompositlon techniques are quite suitable for 
carrying out gr id rcf inements In regions where they are requlred, as 
where the coefflcient varlability Is hlgh. 

For elllptic problems, dornain decomposltlon methodologies are well 
developed (see, for example [1-51). In many instances time dependent 
problems of parabollc type can be treated in the same manner, because 
for usual time dlscretizatlons. they glve rlse to an elllptic problem at 
eaeh tlme-step. In thls case, the grid Green function has a rapld 
exponentlal decay and thls property can be exploi ted to minimize the 
amount of work that Is required for applying the doma in decomposition 
method [6-81. AIso, domaln decomposltlon methods are frequently applied 
by means of a precondltloncd conJuga te gradlent' lteratlon. When thls Is 
done, the type of precondltloner to be used Is case dependent (see 
exarnple [1]) . 

. In this paper and a companlon one [9], we address the problem 

for 

of 

:m 
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274 1. HERRERA ET AL. 

combining collocation (see, for example [10]), l.'ilh domoln decomposlllon 
methods. In the present papero the procedure l.'e propose and lts 
foundations, are explalned andin the companion one 19J, the numerlcal 
lmplementatlon 15 lllustrated and dlscussed In connectlon l.'ith flol.' and 
transport problems. Actually. the method here presented has considerable 
generality and lts applicabll1ty is no restricted. by any means, lo 
cases l.'here the dlseretlzatipn procedure used is collocallon. 

As a matter of fact, !De method ls to a large extent lndependent of 
the discretizatlon procedure applled to the baslc equatlons, because it 
is based on general properties of elliptie partial differentlal 
equations which are symmetrie and positlve defínite. Glven a 
deeompositlon of a reglon lnto subdomalns, the problem ls transformed 
into one whlch excluslvely lnvolves the lnternal boundarles (r) 
separating the subdomalns from each other. Then. a posl tive deflnHe 
transformatlon ls assoeiated wlth this latter problem. Up to thls point 
the discussion refers to the contlnuous problem. Then. a discretization anc 

is introdueed in an abstract manner, by means of a finite dimensional 
subspace of functlons deflned on r. lt 15 shol.'n that the restrlctlon of 
the transformatlon previously introduced to sueh subspace, also 
possesses the positlve-deflniteness property and 1t ls suHable for 1'1 /
applylng the ConJuga te Gradlent Hethod. The use of precondi tloners, In ~: () , 

conJunction w1th our method, ls also posslble and 1 l ls be1ng the 

subject of ongolng research[ll]. 1'1' ( 


Here the method ls explalned for elllptlc equatlons bul lt can also 
be applled to a large elass of parabollc equallons l.'hen a step by step ~; \ I 

procedure, for lntegratlon of time ls used, either by means of a lo 

e-scheme fixed in space or an Euler lan-Lagranglan approach (see for "ul 
example [12,13]). In such case, an elllpt!c problem has to be solved al h()'. 

each time-step, and doma!n decomposillon melhods converge rapldly, 
because of the radius of influence of fundamental solutlons In such oí 
si tuations are usually small, the radius decreasing wl th decreaslng 
time-step (see, for example [6]). 
2.- DOMAIN DECOMPOSITION FORHULATIOtl ·sul 

In this Seetton and the following one, we outline the general ideas 
of the method, leavlng aside sorne technlcal detalls. Later. In SecUon 
4, the method ls presented ln a more systematic and rigorous manrier. In 
addltion a more thorough analysis ls belng prepared [11]. 

Conslder the boundary value problem (BVP). defined In O ( Fig. la), 
whlch conslsts ln satisfying 

~u =-V-(K·Vu) + Ru = f O' in O (2.1) i "., 

together wlth Dlrlchlet boundary condltlons: 

u(~) = ua(~)' In ao (2.2) 


It will be assumed that for every ~ of O, the matrlx K 1s posltive 

defini te and R:?::O. In addi tion, sui table smoothness condl tions for the Oh~ 


coefficients in Eq. (2.1) are assurned, so that the general existence Ulí 


theorems for partial dlfferentlal equallons (see for example [14]) granl oh, 


the existence of a unique solullon of the BVP. 

The' -region O will be dlvided In tl.'o subreglons. O and O • l.'i th

1 Il 

lnternal boundary r (Fig. la). Lel 80 and en . be the boundar les of Q


1 II 1 
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a) b) 
Figure 1.- Illustration of domain decomposltlons. 

and n • respectively and define 
II 

a n=annan & a n=annón (2.3)
1 1 11 11 

Observe tha t an =rvan and a n=rvón . In ....hat follows a procedure 15 
1 1 11 II 

presented for constructing the solution (u) of the BVP, by excluslvely 
solving boundary value problems In n and n , separately. Such 

I 11 

procedure w,ill be the "domain decompositlon" rnethod. It rnust be 
mentloned tha t al though in order to make the explana tlons tha t follow 
slmpler. the region n 1s dI v lded lnto t ....o subregions only, the resul ts 
to be presented remaln valld even lf the reglon O 15 dlvlded lnto many 
subdomains, as long as r 15 lnterpreted as the union of all the internal 
boundaries separatlng the subdomains from each other (Flg. 1~). 

To thls end define the function vI' ln nI' as the unlque solutlon 

of the boundary value problem 
l.v=f,.." inO (2.4)

1 14 ¡ 

subJect to the boundary condltlons 
vI(~) = ua(~), in a¡o and vI(~) = V(~), In r, (2.5) 

where V(!$) 15 a suitably chosen function, deflned on r. In particular, 
V(~) can be chosen to be identlcally zero on r, and for simpllcity ....e 
assume this in ....hat fo110ws. The function v 15 deflned slrnilarly,

11 

replaclng 1 by II, aboye. Hav ing v and v a t hand, the function v (~)
1 11 

Is deflned In n by 
V (x), xen _ 1­ - 1 

(2.6)- { v (x), xen
II - - II 

Observe that the funclion v(~). so deflned, 15 contlnuous In n. However, 
the normal derivatlve of v may be di scontinuous across r. In addl tion, 
observe that the construction of v(~) only requlres solvlng bO';lndary 
value problems formulated ln O and O • separately.

1 II 
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Proposltlon 1 
Let the functlon u(~), be the solullon of the BYP In O. Then¡ the 

function w(~), deflned In O, by w=u-v, ls the unlquc solut1on of tile 
boundary value problem wlth prescrlbed jumps (BYPJ) on r, deflned by tlle 
fol10wlng condltlons: 

"The different lal equ.'at Ion .fw=O 1s satisfied in O e"l/K! O • 
1 II 

separately, w(~)=O far every ~cao, w is continuous across r and 
Its fIrst order parilal derivatIves have jump discontlnultles 
across r. whlch satlsfy the jump condition 

on[K. vw] -n= - [K' vv]:n , r" (2.7) 

Here, the square-bracket stands for the value of the ti Jump" across f 

(value on the "posl ti ve" slde mlnus value on the "negati ve" one) and n 

ls taken polntlng towards the positive side. 

Proof.- Because ~w=~u-~v=O In O and O , and w = u-v=o,in 00 AIso. 


1 II 

[ K-vw]'n = [ K-vu]'n - [ K'vv]'n = -[ K'VV]'n r (2.8)on 

slnce the functlon u, has flrsl order contlnuous derivatlvcs. 

3. 	 REDUCTION ro A PROBLEM FORMULATED OH r 
. For the sake of clarlty, we Introduce the fol10wlng notation. Given 

1 ' any functlon s(~) defined in O. we wrlte S: f-->R. for thc rcslrlctlon 
of s(~) to r, whi1ch ls dcflned for every ~er by S'(?i)=s(?i). In 
partIcular, W:f-->R wl11 be the restrlctlon lo r of lhc functlon w(~) 
lntroduced In Proposition 1. It w111 be shown that when W(~) 1~ known on 
f, the construction of w(!;,) In O only requires solving two boundary 
value problems: one In O and the other one In O . 

1 	 II 

Proposltion 2 
Let w¡(!;,) be defined for every !;,eO , as the unique solution of lile 

I 

boundary 	value problem 
~w =0 in O ( 3. 1 ) 

1 ' 1 

subJect to the boundary conditions in 00 , given by
1

w (x) = O, In a O and w (x) = W(x) In f. (3.2)
1 - 1 1 - ­

In addition, define W (!;,) for every !;,EO , repladng 1 by Il In ihe 
u 	 Il 

definition of w • given aboye. Then 
1 . 

w(x)=w (x), for every xen and w(x)=w (X), for every xen (3.3) 
- 1 - - 1 - II - - II 

Proof. - According to Proposit10n l. the rcstr 1cUons of w(~) to O and 
1 

0II' are solutlons of the f i rst and second of thcse boundary val tIC 

problems, respectively. Thus, Eqs. (3.3) [ol1ow from lhe unlqueness of 
solution properties of these problcns. 
The mapping A 

In vlew of Proposltlon 2, the key lo oblaln a domaln dccompos1l1on 
method' 15 to develop a proccdure for constructing the functIon \.1(2-.:), 
whlch ls restr1ctlon of \-I(~) to f. In ....hat f0110 .... s. we develop sllch 
procedure uslng excluslvely solutlons of boundary value problcms 

r· 
') 
(. 

P 
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formulated in O and in O , separate1y. In view of Propositlons 1 and 
1 Ir 

2, this willcomplete thc outllne of thc domain decomposition method we 
propose in thls papero The following auxiliary mapping, wi11 be useful 
in the seque l. 

Givcn a functlon SEL2 (r)EHo(rl. construct the functlon SI' defined 

in O, as the uniqueso1ution of the boundary va1ue prob1em
1 

:es =0 In O (3.4)
1 • 1 

subJect to the boundary conditions in 80 , given by
1

sI (~) = O. in 8 0 and sI (~) = S (~) in. r. (3.5)
1

In addi tlon, define S (x) for every ~EO replacing 1 by II in the 
11 - II' 

definition of s . The functlon s(~) is then defined in O. by
1 

XEO{ s 1 (xl.- ­
s(~) = s (x) 

1 (3.6)
XEO 

11 - • - II 

The function AS: r->R1 . 1s defined by: 

AS (:c.) = - [K" Vs] •n. :c.cr (3.7) 

Formulalion of the problem on r 
Define the funct10n J on r by: 

J E [KOVV] ·n. on r (3.B) 

Where v(~) 1s given by Eq. (2.6). Then. using the mapping A and In vlew 
of Eq. (2.7), the problem can be stated as fo110ws: 

"Flnd W(~) on r. such that 
AW = J. on r" (3.9) 

In the next Section. 1 t wl11 be shown that after discrctization. 
the solution of Eq. (3.9), can be constructed app1ying the ConJuga te 
Gradient (C-G) procedure. Thls Is because the mapplng A ls positlve 
def1n1te, as 1t 1s shown next. 
Proposi lion 3 

In the 1inear subsoace of L2(r) for which ASEL2 (r)EHO(rL the 
mapping A, 15 syrnrnetr1c and positlve definite. 
Proof.- In v1ew of the fact that ls=O in O. except on r where a Jump 
discontlnu1ty of the flrst order derivalives occurs. Applicallon of lhe 
genera1ized dlvcrgence theorem [15], yle1ds: 

~ Ss"·(K·Vs)d~ = - J s(K-"s)"n d~ + 
O an 

S s [K""S ]"n d~ + S (K'Vs) ·Vs d~ (3.10) 
r . n 

Observe lhat 

JsV' (K·Vs)d!i = (3. 11a) 
n 

l· 
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and 	 f:\(: 

Pr'o: 
-J s 	 [K.~S ].n d~.= J (AS)S d~ (J.llb) 

r . r 
by virtue of the conditions lmposed on s (~) and t.he def lnl tlon of t.he 	

Pr'o 
dp ¡

mapping A. Therefore. 	 . 

(AS·S) = Jr(AS)S d~ ~ J {(K.~S)'~s + Rs
2 ~~ ~ O (J.12) 

~:hr: n- .. 2 	 Thc
Where, the inner product operatlon In L (r) 15 denot.ed by (e). F1nally, 
observe that the equality In relatlon (J.12) holds when t.he functlon Con 
s(~) 	 is identically zero, exclus1vely, In wh1ch ca¿>e so 15 S(~). 

del.
Remark 1. - Observe that the linear subspace of 11 (r), we are referring

1 	 1 Lll:1 
to in Proposi tlon 3, is H (r). Indeed, the image of H (r) under thc 

COl 

mapping A, is HO(r) [14]. Th1s is a linear subspace of HO(r). since 

HIH1(r)cHo(rL However, (r) is not closed wilh respect. t.o the metr1c of 

HO(r)=L2 (r) . 

4. 	 DISCRETIZATION AND CONJUGATE GRADIENT FORHULATIOt~ 
The fact that the transformation A introduced in the preV10tl5 

P)
Section ls positive deflnite, perm1 ls applylng t.he conjueate erad1cnt 
method (C-G)to the problem of obla1n1ng t.he functlon \.J(~), on r. 
However, it is necessary to d1scretize the problem before C-G can be 11 Pi 

applied. The procedure to be presented is independenl of tAe actual set 
of approximating funcllons used lo carry out t.he discretlzatlon. \.Jhat 15 
essential is that, after dlscretization, t.he problem 15 no longer 

formulated on the whole space L2 (r), bul inslead, 1t 15 formulated in a 

finite dimensIonal subspace of L2 (r). 

Thus, let 6cH1 (r)cH ° (r)=L2 (r) be such finlte dimensional subspace 

which is necessarily closed in L2 (r), since 1t is finile dimensional. If 
Elements belonging to 6 wi11 wear a hat. In particular, for any SEL

2 
(n, 

we wrlte S for its proJectlon on 6, wilh respect to the L
2 
(r) lnner 

producto In addltion, for every SE6, ASEG i s def ined as the proJection 
A ° 2of ASEH (r)=L (r), on G. Thus, In thls r:1anner a well deflned mapping A :;, 

of 6 into ltself, is obtained (A: 6-->6). 

Remark 2,.- Observe thatwe could assoc1ate a square mat.rlx w1th lile 11 " 


mapping A, since 1t 1s a linear transfor~ation of a flnite dimensional 1'1 

space into itself. However, such matrix wi11 not be used in what tl: 

follows, because in appllcatlons it 15 t.oo cost.ly t.o const.ruct. 

The Conjugale Gradienl formulalion 


ProJecting Eq (3.9) on G, lhe fo110 ..... 1ng "d1scret.e" version of the 
problem is oblained: 

;\¡
"Fínd WEG on r, such that 

1'[ 
A\.J = J, on rOl (4. 1 ) 

Here the function J is defl.ned on r. by Eq (J.8). This problem 15 ~; 1 

suitable to be sol ved by means of the C-G t:'Icthod. Th i s i s duc to tlle jI 

http:denot.ed
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facl lhal A ls flnlle dimensional and posltlve deflnlle. 
Proposilion 4 A 

The mapp1ng A: 6-->6. ls (symmelr1c and) posillve definile. 

~he 
Proof.- This is a well known resull of Linear Algebra. Il can be easlly 
derlved from the Cact that 

(AS.~) = (AS,W) (4.2) 
whenever S and Wbelong lo 6. 

.y, The e-G algorilhm 

.on Because oC lhe special character of the applicalion of the 
Conjugate Gradlent melhod, lhe correspondlng algorlthm ls glven in 
detall. Reca11 the notalions that have been adopted and ln particular,.ng 
that when a low case 1etter is used for a function deflned ln O. the;he 
corresponding capital letter ls reserved lo denole the reslrlction of 

lce such funclion lo r. The e-G algorllhm fol10ws: 
Given a tolerance c>O, define WOEO ln Q.of 

RO=J 

"'0 "o

P =R 

k=O


)US 
@) Domt 

"Construct pk in O, satisfylng .fpk=O ln Q and Q separately,r. 1 2 
be homogeneous boundary condltlons in 80 and 


>et 1< "le 

P =P In r"is 


(Reca11 in what [0110W5 lhat APk(~) = 

) a al<: Rk_RK¡pk_Apk 

k+l k k k 
W =w +a p 


Rk+l:Rk_ak Apk
:lce 
"1<+1 Ie+l • 11. If UR IIOl:'!i c. set u=v+w ln O, and stop. 

:-' ) , ~k= Rk+l_Apk¡pk_Apk 
pk+l=Rk+l_~kpk 

ion 
k=k+l go to (@) 

; A 
5. EXTENSIONS 

Firstly, it must be observed that in the preceding discusslon 
the nothing has been assumed about lhe dimenslon of the space In whlch the 
nal problem is def ined. Thus, the domaln decomposi tlon method developed in 
hal thls paper ls appllcable lndependently of lhe number of dlmenslons. 

Secondly, In addltlon lo elliptlc problems. lt ls appl1cable to time 
dependent problems, because many of them al each time step adopt the 

the form of Eq (2.1). after the time dlscretizatlon has been applied. 
There are several optlons for treatlng dlfferentlal operators which 

are not self-adJolnt. such as those occurrlng In transport-dlffuslon 
problems. The most rlgorous one, ls to apply an extenslon of the theory 
and thls ls be lng deve loped a t present. Another one, more d1rect and 

is ¡, simple was successfully applled ln the companlon paper [9]. Another very 
·1the interestlng possible exlenslon thal should be sludled, 1s combining thej 

.1 
¡ 

.) 
.i~;J.~ 

'(" 
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'.
method here presented wlth Eulerlan-Lagranglan procedures, such as lhose 
developed In [12,13]. A C< 

Sohi 
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