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SOLUTION OF FLOW AND TRANSPORT PROBLEMS USING A COLLOCA-
TION DISCRETIZATION OF A DOMAIN DECOMPOSITION ALGORITHM

Joseph Guarnaccia*, Ismael Herrera** and George Pinder*
*University of Vermont, 109 Votey Bldg., Burlington, VT 05405
**nstituto de Geofisica, UNAM, Apdo Postal 22-582, 14000 Mexico, D. F.

INTRODUCTION

We consider herein the two-dimensional simulation of fluid flow and contaminant
transport in porous media using the collocation finite element method in conjunction
with the domain decomposition conjugate gradient (DD-CG) algorithm proposed by
Herrera et al. (1994). The motivation for using domain decomposition is that it allows
us to take advantage of parallel processing and to treat subdomains differently from a
computational point of view.

As detailed in Herrera et al. (1994), the subdomains arising from the domain de-
composition are linked together using a conjugate gradient iterative algorithm to enforce
continuity of the normal flux across the interfaces separating subdomains. An important
issue to be discussed below is the procedure used to transpose the theory, derived for
the continuous variable case, into an algorithm applicable to the discrete system arising
from the application of the collocation finite element method.

In this paper we will discuss the collocation discretization and the use of the Her-
mite cubic basis to represent the dependent variables. We then detail the procedure used
to calculate the variables on the interfaces required for the conjugate gradient algorithm.
Finally, we present some convergence results for a model flow and transport problem.

MODEL PROBLEM
Consider for this discussion the following flow and transport model. The first
equation to be solved is the incompressible groundwater flow equation, written as:

Lh(x) = -V{k(0) *Vh(x)] = Q), [x] € Q M
where k(x) is the hydraulic conductivity tensor, which for this discussion is assumed to

be diagonal, h(x) is the fluid pressure head, and Q(x) represents a point source or sink
function. If, given proper boundary conditions, equation (1) is solved for h(x), we can
employ Darcy’s law to evaluate the fluid velocity vector, v(x). The fluid velocity in
turn is used to solve the second equation describing contaminant transport:

ac(x t) LY+ v(x)Velx.t) - V-[D(x)-VC(X t)] Q(x) [cq - c(x,1)] 2)

where € is the porosity, c(x,t) is the contaminant concentration, D(x) is the dispersion-
diffusion tensor which has components defined as:

vi(x) vj(x
Dj;(x) = aT [v(x)| 8; + (aL - ar) % + Dpy 8jj 3)
where i and j symbolize spatial direction, a; and at are the longitudinal and transverse
dispersivities respectively, D, is the coefficient of molecular diffusion, v;(x) and v; (x)

are the components of the vc10c1ty vector, and [v(x)| is the velocity magnitude. In
addition, Q(x) in (1) represents point sources and sinks of contaminant and cQ is the

concentration associated with Q.
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COLLOCATION FINITE ELEMENTS

The domain is discretized into a finite number of rectangular elements with nodes
located at element boundary intersections (figure 1). Since the dependent variables,
h(x) and c(x,t), require continuous second order derivatives, the C! continuous
Hermite cubic functions are chosen as the basis. The bicubic Hermite approximation of
a general function, u(x,y,t), is:

00 10
Uq(t) ¢1_] (xy) + aU/axij(t) bij (x,y)
(xy.t )= Bxy,t ) =
T Y é 2 +3URY;(1) 63 (x,y) + 92U/axdy;i(0) o} (x,y)

where U(x,y,t) is the discretized approximation, the grid (figure 1) has I nodes in the x-
direction, J nodes in the y-direction, (i,j) is the nodal index at which is defined four
time dependent (if applicable) undetermined coefficients (the functional value, the two
first order derivatives and the cross derivative), and four space dependent Hermite
bicubic basis functions (¢%9, $10, 0! and ¢!1, see Lapidus and Pinder, 1982, page 83
for functional form). These approximations are then substituted into their respective
balance equations (1) and (2) yielding two equations in 2[4(1J)] nodal unknowns (2
dependent variables, 4 undetermined coefficients per node, and IJ nodes).

(C))

A J nodes
L = 2(J-1) collocation points
li, j+2 11+1, j+2 | i+2,9+2
v N N
X X x X
K, 143
X X X X
K, 142
Y 5 U |Uyg iz, 311
i Oy [y
X X x x
k, 141
I nodes
X x X x
L K1 k1,1 | k2,1 k+3,1 K = 2(I-1) collocation
O— O oints
1,3 Ti41,5 i42,9 P
s s
X

Figure 1 - Depiction of a collocation finite element mesh showing nodal locations (open circles with
index i,j), approximate location of collocation points (x's with index k,l), and the degrees of freedom
associated with each node (U's).

The nodal unknowns are determined by employing the collocation method: a
method of weighted residuals where the weighting function is the displaced Dirac delta
function (see Lapidas and Pinder [1982] for a detailed discussion). As a result, the
residual errors incurred by using approximated dependent variables in the governing
equations are driven to zero at specified points in the domain, called collocation points.
If the Gauss quadrature points are chosen as the collocation points, the method is called
orthogonal collocation. Using the general function U (x,y,t ) as a surrogate for each
approximated dependent variable, a system of linear algebraic equations is generated by
imposing the interpolation constraints:
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ﬁ (xk,)’l,t ) =u (Xk,)’l,t )a k =1’ 2---’ 2(1'1); 1 =1’ 27"-’ 2(1_1)7 (5)
where (x,.,y;) are the locations of the collocation points (see figure 1). This results in
four collocation points per element, and yields 2[4(I-1)(J-1)] equations (2 balance
equations each written at 4(I-1) (J-1) collocation points). Note that equation generation
requires no formal integrations, and therefore, collocation is computationally analogous
to the finite difference method in that equations are written at points in the domain.

To augment the collocation equations such that the number of equations equals the
number of unknowns requires that a sufficient number of boundary conditions be
specified. Recall that we have four undetermined coefficients at each node. In order
that the number of unknowns equal the number of equations, boundary conditions must
be imposed such that two of the four undetermined coefficients be specified at midside
nodes and three be specified at corner nodes. Therefore, for this discussion the
following rule holds: a Dirichlet condition requires specification of both the function
and the derivative tangent to the boundary, and a Neumann condition requires
specification of both the normal and the cross derivatives. For example, along x-
oriented boundary nodes, Dirichlet data includes Uij and aUlaxij, while Neumann data

includes 0U/dy;; and 92U/0x0y;;.

All other variables requiring spatial representation are defined nodally and inter-
polated into the element using bilinear Lagrange polynomials. This interpolation is
shown for a general function g(x,y) as:

1
g (xy)=8 (xy)=D, i‘. G;; Tyj(x,y) (6)

i=1 j=1
where g (x,y) is the approximated function, Gij is the coefficient defined at node (i,j)

and represents the value of the function at the node, and T§j(x,y) is the space dependent
bilinear Lagrange basis defined at node (i,j) (see Lapidus and Pinder [1982] page 83 for
functional form). The combination of using a continuous permeability field and a
Hermite interpolated head variable has the advantage of yielding a continuous velocity
field to be used in the transport equation.

|23 INn_g
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Figure 2: Definition sketch of the domain decomposition algorithm. The domain is partitioned into N
subdomains such that, Q = Q1 UQ...UQN_1UQN, separated by interfaces T'j, i = 1,2,...,N-1. Note

that the partitioning cuts Q in one dimension only, and that horizontal partitioning is equally feasible.

APPLICATION OF THE DD-CG ALGORITHM

In this section we present a procedural summary of the implementation of the DD-
CG algorithm proposed by Herrera et al. (1994) using the collocation discretization
presented above. Consider the domain decomposition shown in figure (2). For this

discussion we require that the partitioning cuts Q in one direction only so that the inter-

faces I'; have no nodes in common. This is not a necessary requirement, however, it
allows each interface problem to be computed independently.
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- Let us present the solution of the flow equation (1) for illustrative purposes and
present later the specific features of the transport equation (2) which require special
attention. As described in Herrera et al. (1994), we seek the solution to (1) as the linear
combination of an inhomogeneous and a homogeneous problem. Using an initial guess
for the solution of equation (1) as Dirichlet data for interface nodes, the solution to the
inhomogeneous problem (equation 2.4 in Herrera et al., 1994) is obtained in each
independent subdomain using the collocation method and a direct solver for each
system of equations. This calculation results in a solution which has a continuous
functional value but which in general has a jump in the mass flux across the interfaces.

The next step is to solve the homogeneous problem (equation 3.1 in Herrera et al.,
1994) requiring that its solution has a jump in mass flux across the interfaces which is
equal and opposite to that obtained for the inhomogeneous problem. This is referred to
as the jump condition in Herrera et al. (1994, equation 2.6). From this we define the

jump in mass flux across an interface I';:
f(x) = - k(x) [oh/on]] )

where the double bracket denotes the jump operator: [+l = (+)p+ - (¢)r- , and the
derivative is with respect to the positive normal (n) direction. This “boundary value
problem with prescribed jumps on I will be solved using the CG procedure proposed
in Herrera et al. (1994).

During the CG procedure, equation (7) is evaluated using the jump in the
Neumann data after the solution of each set of subdomain boundary value problems.

f(x) then becomes the Dirichlet data on each I for the solution of each subdomain

homogeneous problem and is also used for the evaluation of the weights o and [
(defined in Herrera et al. [1994]). Because the dependent variables are represented by
the space spanned by Hermite cubics, the Dirichlet data and thus f(x) must also be
represented by the same space. This Dirichlet data can be thought of as the one-dimen-
sional Hermite representation of f(x) along the interface I';. For example, if the
interface is along the y-axis, the discrete approximation of f(y) is:

J
~ ~ 0 ~ 1
fiy) =fy) = X, Fj o5 () + (oF a)’)j o ) ®)
j=1
where f(y) is the approximate discrete representation. To apply rigorously the theory
presented in Herrera et al. (1994), requires projecting the function f on the space
spanned by Hermite cubics. However, as in many other numerical applications, the
projection operation can be replaced by a simpler procedure. In particular, since we are
using Hermites, the use of nodal values is a natural choice. Also, the coefficient k on
I" can be approximated in different manners. Other options can be considered, and in
the numerical experiments presented here, three different procedures for calculating the
Hermite coefficients in (8) have been applied.
Method 1: The Hermite coefficients are calculated using nodal values of k(x) and the
coefficients of the Hermite representation for h(x). That is, if for example, the x-direc-
tion is normal to I" and the y-direction is tangential, then the coefficients in (8) are:
F] =- (kXX [[ah/aX]] )_l (9a)

(oF/y); = - { (DK, Ay [onAXT); + (ko [2hAxdy T ); } (9b)
where in equation (9b) we have used the chain rule. Note that since g(x) is represented
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by linear Lagrange along I, the term (Jk,,/dy ) at the node can be discontinuous. If in
the heterogeneous case (dk,,/dy ) at node j is discontinuous then the value is approxi-
mated by the average of the values defined on either side of the node. We also note that
even though h(x) is represented by Hermites, the product k, , [0h/dx]], is not. There-

fore, this method of calculating the coefficients for f(x) is not optimal from a theoretical
point of view.

Method 2: Here we apply a more rigorous approach where we project the function f(x)
on the space spanned by Hermite polynomials as discussed in Herrera et al.(1994). The
coefficients in equation (8) are calculated by solving the following system of equations:

o) = <f’ o)

A1 1
) (o) - (6.0)
where f is defined by equation (8), the operation described by ( », ¢ ) is for example,

i=12,..,7 (10)

(g, h)y= J; g(x) h(x) dx, and the integrations required in (10) are evaluated using two

point Gauss quadrature. In addition, evaluation of f on the right hand side of (10) is
achieved by evaluating equation (7) at the Gauss points. Note that nodal values of f
and its derivative need not be evaluated. The system of equations defined by (10) is of
order 2*(J-1), and the matrix is symmetric with a half bandwidth of four.

Method 3: Here we approximate the permeability on I" by a constant. Actually in
applying the CG procedure the value of the constant is irrelevant and f(x) becomes:

f(x) = - [oh/on]l 11
which has the advantage that f(x) is in the space spanned by Hermite cubics. That is,
the coefficients for f(x) are calculated directly from the coefficients of the Hermite

representation for h(x), where for example if the x-direction is normal to I" and the y-
direction is tangential, then the coefficients in equation (8) are:

F; = [oh/ax]; and (/3y}, = [82h/oxdy ] 12)
Finally, with respect to the evaluation of the scalar weights o and P (in Herrera et
al., 1994), given the Hermite representation for f(x), the o weight is for example:

N-1
ok = 3, R R/ (% AP, (13)
i=il
where the integrations are computed using two point Gauss quadrature, and P is
defined in an analogous way. Note that the integrations in equations (10) and (13)
require four point Gauss quadrature to be exact, however, computational experiments
show that a two point scheme provides the best convergence results. The reason for
this result is currently being investigated.

RESULTS FOR THE FLOW PROBLEM

Using a series model flow problems, we will compare the convergence attributes
of the DD-CG algorithm using the three methods of evaluating equation (8).

Let us now consider an example from the oil industry, the repeated five-spot well
field pattern. Borrowing a problem from Russell et al. (1986), a square domain,
304.8m on edge, is discretized into 48 by 48 6.35m elements. As shown in figure 3, a
source well is located in the lower left corner of the mesh, and a sink well is located in

the upper right corner; they each pump 18.6m3d-Im"!. No flow boundary conditions
prevail. The permeability field is in general isotropic and heterogeneous. It is
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generated in the following manner. Each dimension is divided into seven equal
sections of seven nodes each. A patch is defined by the inner product of each dimen-
sion section. As shown in figure (3a), to each of the resulting 49 patches is assigned a

constant isotropic k value defined by: k = 10° ky,where s is a random number, O<s<1,

and for these examples k) = 8.6x10"7 m/d. Thus, the maximum variation in k between
patches is an order of magnitude.

For the results shown, the grid is partitioned into four 48 by 12 element sub-
domains. Results were obtained for both vertical (constant in x) and horizontal
(constant in y) partitioning. The location of the partitions is shown in figure 3. For the
homogeneous case and for four different realizations of the k field, we note the number
of iterations, m, for which the convergence condition, | R | »< 0.001 IrO| 2, 18

satisfied. Table 1 summarizes the results.

(b)

e N |

Figure 3: a) plot of the domain showing permeability patch distribution for one realization (light
patches reflect higher permeabilities), and tic marks on the boundary representing domain partition
locations by connecting marks on opposite faces. b) solution of the head field for the permeability
distribution in (a), vertical partition locations are shown by dashed lines and horizontal by dotted lines.

Table 1- Iterations required to solve of the flow problem using four subdomains.

method (1) method (2) method (3)
k field horizontal vertical horizontal vertical horizontal vertical
partitions  partitions partitions partitions partitions  partitions

homogeneous 20 20 20 20 20 20
realization 1 82 82 65 69 52 39
realization 2 85 79 69 66 58 54
realization 3 92 97 65 474 58 53
realization 4 88 84 69 71 60 54

Upon review of Table 1 the following conclusions can be drawn. Use of the pro-
jection operation [method(2)] substantially improves convergence relative to method (1)
and appears to be a cost effective procedure. In most cases that we have treated method
(3) provided the fastest convergence. However, in some cases method (3) failed to
converge, while the convergence of method (2) is always granted. Thus, a reasonable
strategy is to use method (3) and the to use method (2) only when necessary.
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SOLUTION OF CONTAMINANT TRANSPORT BY DD-CG
If we discretize equation (2) in time with an implicit backward difference, it can be
rewritten in the form:

[e/At + Q(x)] c®*1(x) + v(x) Vci+l(x) -V » [lz)(x) Vc“+1(x)] = g(x) 11)

where At = ("+1- M), n is the time level, c"*1(x) = c(x,t"*1) and g(x) =
(e/At) cn(x) + cq Q(x) is the forcing function. Due to the presence of the first order
term this equation is non-symmetric, and the method proposed by Herrera et al. (1994)
is not directly applicable. The modifications required are being developed at present.
Thus, in this paper we apply a procedure that was quite successful in our numerical
experiments. It consists of applying the CG algorithm as discussed in Herrera et al.
(1994), realizing that the algorithm will not provide optimal convergence properties,

nor will convergence be guaranteed. Also, the definition of the jump condition on T is
modified to be:

f(x) = [dc/on]] (12)
which is in the space spanned by Hermite cubics. Note that the advective part of the
flux does not appear in (12) because by definition, [c]] = 0.

Results

We test the application of the DD-CG procedure on the transport equation (11)
using the results from the flow problem to define the velocity field. Additional problem
definition includes: € = 0.1, a; = 10 ay (af, is a variable for analysis below), D, = 0,
and ¢ at the source = 1.0. We note that with respect to finite element discretizations
there is a constraint on time step size, determined from the grid Courant number (Co),
generally Co < 1 (Huyakorn and Pinder, 1983). Since mass is transported a relatively
short distance per time step, we choose for these examples an extreme domain
decomposition which cuts the domain into one element strips. This results in 48
subdomains of dimension 48 by 1 elements. An example of the solutions for the
homogeneous case and a heterogeneous case are presented in figure 4.

(a) sink (b) sink

source source

Figure 4: Contour plots for the solution of contaminant transport at 250 days (At = 1 day, aj =0.635m)
for (a) the homogeneous k-field and (b) the heterogeneous k-field shown in figure 3a.

Figure 5 presents two computational experiments. In figure S5a, using the
homogeneous flow problem as an example, we show the average number of iterations
to convergence (using the same convergence criterion as for the flow problem) per At as
a function of grid Peclet number, Pe=(grid spacing)/a; . Observe fhat as dispersion
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decreases, the number of iterations also decreases. This is because the coupling
between subdomains becomes weaker as dispersion is reduced.

In figure 5b, we compare results that were obtained applying this method to the
transport problems shown in figure 4. It can be seen that the number of iterations
required for the heterogeneous problem is slightly larger than for the homogeneous
problem, but the method is still highly efficient. Also note in that figure, that the
number of iterations increases in a more or less linear fashion with At.

30 8
5 (@) 5 [® )
b= B 4
2 9 &
2 22
< 51
0 0
10™ 10° 10" 1 2 3 4
Peclet dt (days)

Figure § - (a) the relationship between Pe and iteration count for the homogeneous problem (At=1d).
(b) the relationship between time step size and iteration count for the solution to the problems in figure
4 (Pe = 10): the homogeneous problem (*’s) and the heterogeneous problem (0’s).

SUMMARY

In this paper we applied the DD-CG algorithm proposed by Herrera et al. (1994)
using a collocation discretization of the equations describing groundwater flow and
contaminant transport. For the solution of the flow problem we applied the theory
directly and found that approximating the permeability on the interface by a constant
reduces the number of iterations required for convergence, in most cases. However, in
order to grant convergence it is necessary to use a more precise representation of the
interface flux.

The non-symmetric character of the contaminant transport problem precludes a
direct application of the DD-CG algorithm, in its present state. However, a
modification of it was applied and quite satisfactory numerical results were obtained.
This suggests that the proposed algorithm is both robust and efficient.
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