
/,$/

Ad,'.,nr... in /-j,/:in in/l ",,'ji"""" 14 (1995) 41 56
Copyright ((") 1995 EI,.cvicr Sl:icn~ Limilcd

Printed in Orcat Britain. All rights rcscr\'cd

096S-9978j9S/S9,500965-9978(95)00057-7
ELSEVIER

Ismael Herrera
lnstituto de Geofisica, Universidad Nadol/al Autonoma de Me.~ico, Apartado Postal 22-582, 14000 Me.~ico. D.F. Me.~ico

The author's algebraic theory of boundary value problems has permitted
systematizing Trefftz method and expanding its scope, The concept of TH-
completeness has played a key role for such developments. This paper is devoted
to revise the present state of these matters. Starting from the basic concepts of the
algebraic theory, Green-Herrera formulas are presented and Localized Adjoint
Method (LAM) derived. Then the classical TrefflZ method is shown to be a
particular case of LAM. This leads to a natural generalization of TrefflZ method
and a special class of domain decomposition methods: TrefflZ-Herrera domain

decomposition.

1 INTRODUCflON Some years ago, the author startcd a systematic
research of Trefftz m~thod oriented to clarify the

theoretical foundations required for using complete
systems of solutions in a reliable manner, and expand
the versatility of the method, making it applicable to any
problem which is governed by partial differential
equations and/or systems of such equations which arc

linear.
For symmetric systems. the results obtaincd were

presented in several reports5.16-30 and later integrated in
book form.4 They include: (a) a criterium of complctc-
ness (introduced in Rcf. 16 and called Trclftz-Hcrrcru,
or TH-completeness); (b) approximating procedures and
conditions for their convergence;5.17-19 (c) formulation
of variational principles;20-25 and (d) development of
complete systems of solutions,16.26-28 In addition, the
algcbraic framc-work in which the theory has bccn
constructed (the Algebraic Theory of Boundary Value

Problems). has been used for developing biorthogon.11
systems of solutions.29,3o Free-boundary problems,
which are non-linear even when the governing differ-

ential equations are linear, were also treated-using
Trefftz method,31,32 Numerical procedures for fitting thc

boundary conditions werc also discussed.:!3
Function theoretic methods supply general results for

developing analytically complete systems of solutions.34
The work by Vekua in 1948,13 by Bergman in 196135
and by Gilbert in 1969,34 and 1974.36 on this subject
\''as followed by many others (sce. for example Rcfs
37-40). The author's algebraic theory of boundary
problems permitted applying the results ofr function
theoretical methods to specific problems; in particular
the concept of TH-completcncss has been quite
relevant. According to Bcgehr & Gilbert, in their
recent survey of function thcorctic mcthods (I~cf, 41.

p. 115):

By a boundary method, it is usually understood as a
procedure for solving partial differential equations and{
or systems of such equations, in which a subregion or
the entire region, is left out of the numerical treatment,
by use of available analytical solutions (or, more
generally, previously computed solutions). Boundary
methods reduce the dimensions involved in the pro-
blems, leading to considerable economy of work and
constitute a very convenient manner for treating
adequately unbounded regions. Gcncrally, the dimen-
sionality of the problem is reduced by one, but even
when part of the region is treated by finite elements, the
size of the discretized domain is reduced.I.2

There are two main approaches for the formulation of
boundary methods; one is based on boundary integral
equations and the other one, on the use of complete
systems of solutions. The author has studied extensively
a version of the method based on the use of complete
systems of solutions, known as Trefftz method.3-5
Although Trefftz's original formulation was linked to
a variational principle, this is not required. What is
peculiar of TrelTtz method, is that solutions of the
homogenous dilTerential equation -more generally,
adjoint differential equation -are used as weighting
functions.

The method has been used in many fields. For
example, applications to Laplace's equation are given
by Mikhlin,6 to the biharmonic equation by Rektor)'s1
and to elasticity by Kupradze.8 Also, many scattered
contributions to the method can be found in the
literature. Special mention is made here of work by
Amerio, Fichera, Kupradze, Picone and Vekua.9-13
Colton has constructed families of solutions \vhich are
complete for parabolic equations.14.15
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since such methods are efficient for parallelizing
numerical algorithms, In addition, they can be used to
design adaptive algorithms which capture steep rronts
that appear in many problems, such as modeling or
transport. Domain decomposition methods are also
used to simplify problems with complicated geometries
or match regions with different physical parameters or
different types of differential equations. A wealth of
literature on the subject has appeared in recent yc.lrs
(sec for example Refs 75-83),

The author's generalized version of TrclTlz mctll0d in
which discontinuous trial and test functions are
admitted, leads in a direct manner to domain decom-
position procedures, Such methodology was ;Ic.lvanccd

in a previous publication,64 allhough only rcccntly
research on the procedure, as an appro.lch to dom:lin

decomposition methods, was initiated.K4-K7
The present paper aims to explain briefly the different

topics that have been mentioned. Due to the abundance
of material it \\'as difficult to make an exhaustive survey;
thus. it is not intended. Instead. we dwell on the different
matters unc\'enly. milking the explanations more cxlcn-
si\'c in subjects \vhich arc more rcccnt and less published

material is a\'ailable.
Section 2, is devoted to present the abstract frame-

\vork of thc theory. Although much of it has been
published else\vhere, the way it is presented is new,
Section 3, presents Green-Herrera rormulas which are
used, in Section 4, to develop Localized Adjoint
Method. In Section 5, the classicnl Trefftz mcthod is
re\.isited and Section 6. is devoted to apply the author's
version of Trcfftz method to devclop domain uccom-
position procedures. It is \vorth mentioning that a non-
standard mcthod of collocation -TH-collocalion -

\\.hich possesses some attractive fealures in comparison
\"ith standard collocation, is also presented in this last

section.

2 ALGEBRAIC THEORY OF BOUNDARY VALUE
PROBLEMS

The function theoretic approach which was pio-
neered by Bergman3S and Vekua 13 and then further

developed by Colton,37-39 Gilbert,34.36 Kracht-
Kreyszig,40 Lanckau42 and others, may now be effect-
ively applied because of results of the formulation by
Herrera5 as an effective means to solving boundary
value problems.

In addition, they present many applications of the
TH-completeness concept. A MACSYMA program is
given which illustrates how the TH-complete families
generated by integral operators may be used to solve
boundary value problems. They also combine Trans-
mutation Theory of Carrol143.44 with the idea of TH-
complete families to solve boundary value problems and
show how thc farficld for a stratified ocean of finite
depth may be computed.

Many engineering applications have been made (see,
for example Refs 45-48). A method specifically designed
to deal with elastic diffraction problems was presented in
Ref. 19 and later applied to answer questions of seismic
engineering and seismology.49.53

Work donc after the rcsults for symmctric operators
appcared, permitted extending the algebraic theory to
non-symmetric operators, leading to a generalized
version of Trefftz method,54-57 presently known as
Localized Adjoint method,58-61 in which discontinuous
trial and test functions can be used simultaneously.
Although, in actual numerical applications only in
special cases the use of discontinuous trial and test
functions is advisable, the frame-work for systematic
analysis supplied by the author's algebraic theory is
quite useful to elucidate many questions about the
performance of weighting and base functions. Indeed,
since the base functions can be appropriately thought as
interpolators (or extrapolators) of the actual informa-
tion contained in approximate solutions, and this latter
information is determined by the weighting functions
that arc applicd, such analysis is rcquired for matching
effectively both of them.62

Applications of this approach have been made
successively to ordinary differential equations, for
which highly accurate algorithms were developed,56.63
multidimensional steady-state problems,64 and optimal
spatial methods for advection diffusion equations.65-67

A very successful application of LAM, to problems of
transport was presented in a couple of papers.S9.60 The
resulting methology is known as Eulerian-Lagrangian
Localized Adjoint Method (ELLAM) and was devel-
oped by the ELLAM group (M. A. Celia. R. E. E\\ing,
T. F. Russcl and the author), which was formed for this
purpose. Many applications of ELLAM have been
made68- 74 and a recent account of the subject was

presented in Ref. 61.
On the other hand, in recent years domain decom-

position methods have received much attention, as a
tool for solving partial differential equations. This is
mainly due to the development of parallel machines,

In this Section some of the most basic concepts and-
results -although proofs are generally not supplied -

of the authors algebraic theory of boundary val~e
problems. are presented. Some of these concepts and
results were introduced in Refs 54 and 57. They also
imply a kind of operator extensions whose connection
,,"ith the theory of distributions was discussed in I~ef. 88.

The discussions refer to linear operators of the type
P: D1 --+ D2. whose domain is a the linear space D), and
"'hose ,'alues are linear functionals on D2 (i,e, elements
of D;: the algebraic dual of the linear space D2), as well
as to operators whose domain is D2 and with values in
Dj. such as the transpose p. : D2 --+ Dj of p,

The notation (PII, v) is used to denote the valuc of thc
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functional Pu at v E D2- Clearly, {Pu,v} is bilinear and
this defines a one-to-one corrcspondcncc bct\vccn
operators P: D. -Di and bilincar forms {PII, v}, on

D. ffi D2.

{C1,C2}. be decompositions of Band C, respectively.
Then, the equation

(P-B.)-B2=(Q-CI).-Ci (6)

is a Green's fonnula for the pair {(P -HI), (Q -C()}.

Definition 2.7. -The (abstract) boundary value problclll.
ut B be a boundary operator for P. Given 1 E V; and
g ED;. the boundary problem consists in finding II E VI
such that

Pu =1 and Bu = g (7)

(1 )

Defi1lition 2.1. -Boundary operators.
B is a boundary operator for P, iff

(Pu,v) =0, VuE NB.~Pu=O

Theorem 2.2. -Variational formulation in lcrms of the

data.
u E D.t is solution of thc boundary problcm. iff

(P-B)u=f-g (1\)

Definition 2.2. -Disjoint operators.
A pair of operators {RI1R2} of the same kind is said to
be disjoint when R1 is a boundary operator for R21 while
R2 is a boundary operator for Ri-

A syslcm of opcralors {RI,R2,...,Rn} of thc samc
kind is said to bc disjoint whcn cach pair {Rjl Rj}, with
if j, is disjoint.

Definition 2.3. -Completely disjoint.
A pair of opcrators {R I, R2} of thc samc kind arc said to
be completely (or fully) disjoint when, in addition to
being disjoint, the pair {Ri, R2} is also disjoint.

A system of operators {R., R2,..., Rn} of the same
kind is said to be fully disjoint when each pair {R;, Rj},
with i =;If j, is fully disjoint.

ThcorCI1/ 2.3. -Variational formulation in tcrms or thl:

sought infonnation.
When P -B = Q' -C' is a Green's formula, II E DI,

is solution of the boundary problem, iff

(Q' -C')II=f-g (9)

Definition 2.4. -Decomposition {R., R2} of R.
A pair of operators {R., R2} is said to be a decomposi-
tion of R, when they are completely disjoint and

R = R1 + R2 (2)

A systcm ofopcrators {RI' R2".. I Rn} is said to be a
dccomposition of R, when thcy are fully disjoint and

R = R1 +... + Rn (3)

Definition 2.8. -The subspaccs Ip and IQ'
Let P -B = Q. -C', be a Grccn's formula and \vritc
S = B -C'. Then the subspacc Ip C D) is defined by

Ip = JVp + Ns (lOa)

and thc SUbSpOlCC IQ C /)2 by

IQ=NQ+N,\., (IOh)

Proposition 2.1. -Assume the pair {Rtl R2} decomposes
R, then

N R = N R1 n N Rz (4)

REMARK. -If{Rt,R2} decomposes R, then {Ri,R2}
decomposes R..

Definition 2.9. -TH-completeness,
Given a Green"s forn1ula: P -B = Q" -C", a subsct
1, C IQ C D2' is said to bc TH-complete (for P), if and
only if, for any U E D. and V E D., one has

(BU, I") -(C' "r,w) = 0 vw E if.-===> 3u El/'I

such that BII = BU and C.II = C. J/ (11)

REMARK. -Obscrvc th~t ;\ctually. one call lakl:

II E ,Vp.

Definition 2.5. -Fonnal adjoinls.
Two operators P : D( --+ D2 and Q : Dl --+ Di arc fonnal
adjoinls when S == P -Q. is a boundary operator for P,
while S. == p. -Q is a boundary operator for Q. Theorem 2.4. -'-- Let P -B = Q' -C' be a Grccn's

formula and 111" C IQ be TH-complctc for P. Assumc
there exists a solution Ii E D.. of thc boundary valuc
problem. Thcn, an element ,i E D1 satisfic$

Co,i = co'l' (12)

Definition 2.6. -Green's formula.
The equation

P -B = Q. -C' (5)

is said to be a Green's formula for lhe pair {P, Q}, ,,'hen
P and Q are formal adjoinls and the pair {B. -C'}
decomposes S = P -Q., wl-ile {B" I -C} decomposes
S' = p. -Q.

for some solution u' E DI. of the boundary

problem, if and only if.

(C'Ii, II') = (C.u, II'). VII' E 'It"

When 1'- C ,V Q' this equation can be replaced by

(C' Ii. II') = -(f-g,II'), VII' E 1'"
Theorem 2.1. -Assume eq (5) is satisfied and it is a
Green's formula for the pair {P, Q}. Let {BI' B2} and (14)
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For example. in applications of the theory to finite
clement methods. thc set E could bc thc Ullioll or all the
interelement boundaries. In this setting the general
boundary value problem to be considered is one with

prescribed jumps. across E.
The differential equation is

!i'u=Jj}, inn (21)

(15)

)=0

Proof. -When II and II' are solutions of the boundary
value problem, one has

B(u-u')=O and P(u-u" Hence u -u' E Ip and B(u -li') = O. Thus

-(C.(u -II'), w} = (S(u -u'), IV} = 0 VII' E ;t-

( 16)

where n may be a purely spatial region or. more
generally, a space-time region. Certain boundary and
jump conditions are specified on the boundary iJn and
on the internal boundaries E. respectively. When {2 is a
space-time rcgion. such conditions gcnerally incluuc
initial conditions.59 In the literuturc on m;Ilhcmalic,,1
modcling of macroscopic physical systcms. thcrc arc a
varicty of cxamples of initial-boundary valuc problcms
\vith prcscribed jumps. To mention just one. problcms of
elastic \"ave diffraction can be formulatcd as such.19.R9
The jump conditions to be satisfied across E by thc
sought solution. dcpcnd on the specific application and
on the dilTcrential operator considered. For example. for
elliptic problems of second order. continuity of the
sought solution and its normal derivative. is usually
required. When the partial differential equations mimic-
continuous systems -as is frequently the case -the
jump conditions can be derived. very systcmatically.
from thc balance equations of Continuum Mcchanics.9{)

Thc definition of formal adjoint requircs that a
differential opcrator 2' and its fonnal adjoint 2".
sati~ry the colldition that ,,'.!f'u -u.!!"", he" ui\'crgcncl::
I ,.

d .f C .~ C. h C.- c.,an 1 u = u, t en u = u .
Conversely, if

(C'u, w) = (C'u, w), Vw E 111" (17)

then

(/JV,W)-(C'(U-II),W) =0, VII'Eif~ (18)

with V = O. Then, by virtue of the definition of TH-
completeness, there exists, E N p such that

B, = 0 and C', = CO(u -u) (19)

Define II' = U + ,. Then, PII' = PII = I and
Bu' = Bu = g; i.e. u' E D. is the solution of the
boundary value problem.

Finally, when u E D. is the solution of the boundary
value problem and 11' C NQ' we have

-(C'II,II') = ((Q -C),,', u) = ((Q. -C.)II, II')

= ((P -B)u, "? = (/ -g, II') (20)

which shows that the two previous equations are
equivalent.

3 GREEN-HERRERA FORMULAS
"':/'11 -II:/" '" = \7 ' {2.(II, ",)}

Consider a region n and the linear spaces D1 and D2 of
trial and test functions, respectively, defined in n.
Assume further that functions belonging to D. and D2
may have jump discontinuities across some internal
boundaries whose union will be denoted by E (Fig. I).

for a suitable vector-valued bilinear function ~(II, II').
Integration of eqn (22) over f2 and 3pplic3tion of the

gencr3lizcd di,'crgcnce thcorcm,lI(' yicld:

f {','2'/I-/l2'°,,'}d.\,= ff} lJ{1
2.(u, II') .n d.\"

L
-JE[.2':(U, II')!' n do\"

Here, the square brackets stand for the 'jumps' across E-
of the function contained inside, i.e. limit on thc positive
side minus limit on the negative one. Herc, as in what
follo\\'s, the positive side of E is chosen arbitrarily and
then the unit normal vector n is takcn pointing towards
it. Int\:grals o\'cr the region ~1, arc understood as slims or
intcgr31s o\'cr the individual regions ~11. For example. if
{OJ,...,nN} is a partition of the region ~1, then:

f \'
JII"O!!'II d.\" = t

,
I,'!I'II d.,.

Thus. such integrals arc well defined cycn
difTcrcntial operator is not defined on E.

Fig. 1. The rcgion O. its boundary D{l and intcrnal boundaries
E.
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considering initial-boundary value problems with
prescribed jumps, the linear function defined by the
prescribed jumps in this m3nner will bc denoted by Jl:
(thus, its value for any given function II' will bc Jl:(II')
and the jump conditions at 3ny point of E C3n bc
spccificd by mC3ns of the cquation ,1(11, ,) =h;, III
problcms \\'ith prcscribcd jumps, thc lincar function
,J,r" (II, '), plays a role simil3r to lh3t of the com-
plemenlary boundary values (C"(u, ,), Il C3n only bc
e\'aluated after the initial-bound3ry v31uc problcm has
bccn sol\'ed 3nd certain information about Ihc avcragc
of the solution and its derivalivcs on >.:; i:\ known, Such
information rcfcrs lo the avcragcs of lhc funclioll
and its derivatives across lhc jump, Obscr\'c that
.::1J(u, " ) and .I(u, "), by the way they have been dcfincd,

are part of the 'data of the problem' whcn jumps arc
prescribed. On the other hand, (C"(I', .) and .~r"(II. .)
are 'sought information', sincc they arc not knowl1
bcforchand.

As an illustration, the most gcncral elliptic operator of
second order can be written as:

2'/,.= -\7- (.! -\7/,) +!!- \7/' -1- (c -1-!\7 -!!)It

In such case

!1",," = -V"(~.(V'II') -h.VII'+ (c-!v'h)1I

(JOb)

and

[/(u. ",) = ~ .(U\'7'" -"'\'7u) + QUII

Whcn the boundary conditions arc of Oirichlct typc
one can definc:

In the general theory of partial differential equations,
Green's formulas are used extensively. For the con-
struction of such formulas it is standard to introduce a
decomposition of the bilinear function fHa (see, for
example, Lions & Magenes91). Indicating, transposes of
bilincars forms by means of a star, thc gcneral form of
such dccomposition is:

oOAa(u, w) == @.(u, w)" n = f4(u, II') -<I.(u, }I') (25)

where f4(u, w) and ('C( }I', u) = ('C. (u, I~') are two bilinear
functions. Whcn considering initial-boundary value
problems, the definitions of these bilinear forms
depend on the type of boundary and initial conditions
to be prescribed. A basic property required of ::H(u, I~.) is
that for any u that satisfies the prescribed boundary and
initial conditions, f4(u,lI') is a well-defined linear
function of w, independent of the particular choice of
u. This linear function will be denoted by go (thus, its
value for any givcn function w will be gO(I~'), and the
boundary conditions can be specified by requiring that
f4(u, w) = gO(IV), for every IV E D2 (or more briefly:
f4(u, ") = gn). Thc lincar function ('6. (1/, "), on the othcr

hand, can not be evaluated in terms of the prescribed
boundary values, but it also depends exclusively on
certain boundary values of u (the 'complementar).
boundary values'). Generally, such boundary values
are determined only after the initial-boundary value
problem has been solved.

In a similar fashion, convenient formulations of
boundary value problems with prescribed jumps
requires constructing Green"s formulas in discontinuous
fields. This can be done by introducing a general
decomposition of the bilinear function

fJPl;(II, II') == -[~(u,I~')I" n = .f(II,J~') -.~.(U.I~') JJ(u. "') = (n.!. ~'" + bl/l")", alld
(32)(26) '6' (/I, II') = 11'(0' ~ ,\7/1)

whose definition, on E, is point-wise. For continuous
coefficients The complementary boundary values n.!! .Vii, can be

interpreted as diITussive flux. However, depending on
the specific application considered. other physical
interpretations are feasible.

According to eqns (29), one has:

,1(11.1") = -(0. ~. '\ll" + bnl") [II] + liio.!!. '\ll/r

(33..)

and

(33b)fO (II, II') = [n. ~'V'II' + bnll']/i -1"1 n:~

In eqns (33), a bar is used to make it clear that the
dot on top refers to the whole expression covered by
the bar. In these equations bn = ~. n. It can be sho"'n

that in the form eqns (33) have been written,; they are
valid even if the coefficients of !I' are discontinuous
across E.

,/(u, IV) = -.@.([u],.v).n (27a)

.:I(".(u, IV) = .:1("(.", u) = 2.(11, [.'i). n (27b)

The decomposition of eqns (26) and (27), stems from the
algebraic identity:

[~(u, .,,)] = ~([u], .i') + .2.(11, [.'i) (28)

where

[u] = u+ -u_, U = (u+ -u_)/2 (29)

The general theory includes the treatment of differential
operators with discontinuous coefficients5-l,S6 and for the
examples to be considered in the sequel. fonnulas \\'ill be
given that are valid also in that case,

An important property of the bilinear function
f(u, .v) is that, when the jump of 11 is specified, it
defines a unique linear function of .", \vhich is
independent of the particular choice of 11. When
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is the jump of diffusive fluxo Thcn, by virtue of eqns (32)'
and (33), one has

ga(l'o) = (n.!. \71,')ua and

Going back to the general developments. it is seen
that in view of eqns (23), (25) and (28), one can write:

In w!i'udx -Iun f!4(u, w)d.X" -IE ,/(u, w)d.x- =
(41 )

jE(II') = -(n.!; .'\711' + bnll')" jO + IIi I

In order to associate a variational formulatiol1 with
this problem, define the linear functionalsj, g,jfD2 by
means of:

(36a)

(Bu, IV) = J .'!4(u, 11')d.\";
iX1 (36b)

(C.U,IV) = Jro (6'(IV, u)dx

(Ju, IV) = J .f(u, w)d.\" and
E (36c)

(K.u, IV) = JE .:1("(IV, u)d.\"

Equation (35) is an identity between bilinear forms; a
more brief expression for it is:

P- B -J = Q. -C' -K. (37)

This is Green-Herrera formula for operators in discon-
tinuous fields. S9

4 LOCALIZED ADJOINT METHOD

The boundary value problem with prescribed jumps can
be formulated point-wise by means of the eqn (21)
together with

f!4(u, .) = gi)( . and /(11, .) = jl;(' (38)

<J, "? = J "ind.\"; (g, II') = f go( II' )d.,.;
n Jon (42)

{j, "? = J~jE("')d.\"

Then a variational formulation of the initial-boundary
value problem \\'ith prescribed jumps. using thc linear
functionals defined before, is: .

Pu=/; Bu=g; Ju=j (43)

In \\'hat follows, it will be assumed that the operators
Band J, defined in Section 3 (Eqns 36,b and 36,c), are
boundary operators for P. which arejilily di,\joint, in the
s~nse of Section 2, This depends on the choice or the
subspaces D) and D2' Consider, for example, the very
important case when !L' is the elliptic operator of cqn
(30a) and 0 is a bounded domain of R2 with a piece\vise
smooth boundary 00. such as the polygonal domains
discussed by Bramble, Pasciak & Schatz,92.93 for
instance, and each of the subregions 01 of the
decomposition of 0. also have piecewise smooth
boundaries -they may be. for example. triangles or
quadrilaterals. If the coefficients arc sufficiently smooth.
for example COO(O), take D. = D2 = D, and define the
linear space D as follows. For every u E D. Ict U(~~i) bc
its restriction to ~~,; then. thc linear space of functions D.
is defined by the condition that U(!~i) E H"(~~i) for every
u E D and every 0; of the decomposition, For such D, it
is sufficient to chose s ~ I. When s ~ 2, it is straight
for\\'ard to verify that Band J are boundary operators
for P \\'hich are fully disjoint. If 1 ~ s < 2. this is more
subtle and \\'ill be explained clscwhere.94

When these conditions are satisfied. the system of
eqns (43) is equivalent to the single variational equation

((P -B -'""1)/1, "? = {f -g -j,lI'} 'tIl'cD2 (44)

Here u is any function satisfying the prescribed
boundary and jump conditions, while ga and jI: are
linear functions with the property that

f.4(u, w) = giJ(w) and .1(11, II') = jE(II')i

(39)
\1'w E D2

Thus for example, when !L' is the elliptic operator of
eqns (30), and the boundary and jump conditions are

u=uo, onanj [u]=jO, [~.\7u].n=jl, onE

This is said to be 'thc variational formulation in terms of
the data of thc problcm', bccausc PII, BII and ill arc
prc~cribcd. Making usc of Grccn-l-Icrrcra formula (37),
the variational formulation (44) is trans[ormcd into

({QO -Co -KO)II, II') = {J -g -j, '11 V"I'(D2

(45)
This is said to be 'the variational formulation in tcrms of
the sought information', because Qou, Cou and Kou arc
not prescribed. Notice that the variational formulations,
(44) and (45), are equivalent since (37) is an identity. Thc

Here, Ua, jO and j I are prescribed functions -defined

on an, the first one and on E the last two. In agreement
with previous discussions, a physical interpretation ofjl
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linear functionals Q.u, C.u and K.u supply information
about the sought solution at points in the interior of thc
rcgion !2, lhc complcmcntary boundary valucs at ;111. and
the gcneralized averages of thc solution at E, rcspccti\'cly.
as can be verified by inspection of cqns (36).

Localizcd Adjoint Mcthods (LAM) arc based on the
following observations. When the method of weighted
residuals, with a system {wi,. .., \I,N} C D2 of \\"eighting
or test functions is applied, an approximate solution
ufD2 satisfies:

«P-B-J)li 11'°) = (/-g-j \I'O), " (46)

,Na=

or equivalcntly, using thc variational principlc in terms
of thc sought information

((Q. -C. -K.)u,wO) = (/-g-j,I"n)
(47)a = 1,...,N

Since the exact solution satisfies (45) it must be that

((Q' -C' -K')u,~~IO) = ((Q' -C' -K')u,iI'O)

a = I"",N (48)

Either in this or in the form:

((Q.-C.-K.)(Li-u),I~,Q)=O, a=l ,N

(49)

these equations can be used to analyze the information
about the exact solution that is contained in an
approximate onc.S4.S7,S9

5 THE CLASSICAL TREFFTZ METHOD

When these conditions are satisfied cqns (45), for the
approximate solution Ii. reduce to

-(C.,i,I"") = (.[-g-j,lf'), Vw' E '1,0 (5~)

\\"hich are equi\'al~nt to

(C' Ii, II"'} = (C.u, II"'), VII'" E 'I" (53)

since the exact solution u also satisfies

-(C.u,w") = (J-g-j,w"), Vlf'E'I'" (54)

As it has been seen in Section 2 of this chaptcr. when the
system of functions {w"} == ;/,. is TH-complctc. then any
function Ii satisfies the systcm of eqns (52). if and only ir

C.,i = C.u (55)

In \vords: lIohL'1I thL' 5)'.I.t"11/ (if W(';,I,'ht;II,1: (or t(',\ot)
jilllct;OIlS ir', is TH-colI/plc/L', a jilllct;OIl Ii io~ (11/
appro.xill/ate solu/ioll -in the sense of the weighted
residuals method. defined with precision before -!f unci
0111)' if its Coillplell/elltar)' boullclar)' l'llluc,~ UII iJ~l, (1,.('
those of the e.xact solu/iull. This result exhibits clcarly
that \vith such weighting functions the information has
been effectively concentrated on the boundary iJ~2 of 12.

The condition QII'" = 0, is tantamount to rcquiring

fe.w" = 0, in n (56)

by \'irtue of the second of eqns (36), Thus, in order to
concentrate the information on the boundaries, the test
functions must be solutions of the homogeneous version

of the adjoint differential equation, Many applications
of Trefftz method have been conccrncd with self-adjoint
operators. in which case eqn (56), may bc rcplaccd by

!ell" = 0 in n (57)

The second of eqns (51) i.e. Kw" = 0-. impose somc
smoothness conditions on the test functions. If thc
differential operator is the general elliptic operator of
cqn (30). then such conditions can bc sccn to hc

[wI =0, and [n'~'VII'+bl/"i=O (51\)

That is. continuity of the function and of the totalllux.
When the coefficients are continuous these equations arc
equivalent to continuity of the function and its first

partial derivative.
For applications of TrcfTtz method. it is frequently

more convenient to define D = D1 = D~ as a Sobolev
space H'(O). When the operator is elliptic of second
order. s = 1/2 is convenient.4.s.41 Under very general
conditions the null subspace of P: N l' C D. is a TH-
complcte systcm.4.S.41 Howcvcr. for thc rcprcscntation of
solutions it has grcatcr intcrcst to h.I\'C dcnul11crahlc
subsets 1'- C N p which are TH-complete. Bcgchr &
Gilbert,"'! have presentcd a thorough and updatcd
exposition of analytical methods for dcvcloping TH-
complete systcms. They includc gcncr.11 clJuations
related to Laplace operator. such as

tiu-q(!)u=./it, Oc R" (59)

Specialized weighting functions can be developed that
concentrate the information in a specified manner. The
inform.ltion contained in the sougllt solution has becn
classified in three groups: the values of the solution in
the interior of the subregions nj, which are given b)'
Q'u; the complementary boundary values at the external
boundary an, which are given by C' u; and the average
values, of the solution and its derivatives, in the
interelement boundaries E, which are given by Ko.

The classical Trefftz method corresponds to the case
when the information is concentrated on the comple-
mentary boundary values which are defined at the outer
boundary an of the region n. By inspection of eqns (45),
it is seen that this requires that the system of test
functions {lIln} = i/'- C D2' have the property

(Q'u, w/}) = (Qwn, u) = 0 and
(50)

(K'u, w/}) = Kwa, u) = 0

Thus

QIII/} =0. and KII,n=O (51)

since eqns (50), must be satisfied for any function u.
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Table 1. TH~omplete systems in ~'o dimensions

Boundedn n Exterior of a bounded region

{In r, r-" cos nO, r-" sin nO}
Laplace equation
{l, r"cosnO, r"sin nO}

Reduced wave equation 6u + u = 0
(Jo(r), J,,(r) CDS ,,0, J,,(r) sin "O}

n = 1,2,...

(J/~II(,). J/~I)(,)cos nO, J/~I)(r)sin nO}

Table 2. TH-i:omplete systems in three dimensions

Bounded 11 n = Extcrior ora boundcd rcgion

{r-II-lp:(COS B)ejq,,}
Laplace equation
{I' P%(cos 9) dq-,,}

Helmoholtz or reduced wave equation
{jn(r)P%(cos (9) dq.,?}

n=O,I,2,...; -n~q~n

{h~I)(r)P:(cos 8)ejq,,}

de\'elopment of parallel machines. since such methods
are efficient for parallelizing numerical algorithms, In

addition. they can be used to design adaptive algorithms
\\'hich capture steep fronts that appear in many
problems. such as modeling of transport, Domain
decomposition methods are also used to simplify
problems \vith complicated geometries or match regions
\\ith different physical parameters or different type of
differential equations. A \vealth of literature on the
subjected has appeared in recent years (see for example
Refs 75-83).

A basic feature of domain decomposition IT\ethods is
that the region O. in which the boundary value problem
is fonnulated. is decomposed into subregions
{Ol.. ...OE}. Then the global problem. in O. is obtained
by sol\1ng local problems in each of the subregions.
exclusively. The generalized version of Tre/Ttz method.
proposed by the author .54-57,62.63 in which discontin-
uous trial and test functions are admitted. leads in a

direct manner to domain decomposition procedures,
This can already be seen in one dimensional

problems.56.63 Thus. consider the most general ordinary
differential equation of second order which is linear. A
physical situation that this equation mimics is transport
in the presence of advection. diffusion and linear sources.
and a notation related with such processes will be-
adopted. The general equation to be considered is:

Examples of such systems are given in Tables land 2.
For the Helmholtz or reduced wave equation the author
has shown that a system of plane waves, which have a
very simple structure, is TH-complete in any bounded
and simply connected region.19

In these tables In(r) and H~I) are Bessell and Hankel
functions of the first class.9s,96 ~ is the associated
Legendre 'function, while jn and h~ are the spherical
Bessel and Hankel functions.9s We recall, in addition,
that the TH-complete systems given in Tables I and 2 for
LaplaCe equation in a bounded region are hannonic
polynomials expressed in polar and spherical coordinates

Equations associated with the bihannonic (62)
differential operator, also have great interest and are
not included among the elliptic second order operators,
that have been discussed here, since they are of higher
order.. To incorporate this equation in the general
frame-work we have developed, recall the .identity

w~2u -u62~v

= \7. {W\7 ~u -\7w6u + ~~~'\7U -U\7 ~II'}

(60)

which exhibits the biharmonic operator as a symmetric
one, for which

£(u,w) = w~ ~Ll -~~~'~Ll + ~~~'~u -Ll~ ~~i' (61)

The author has presented TH-complete systems for this
operator ,27.28 and Begehr & Gilbert discussed the matter
further .41

+ Ru = hl,

(62a)

The developments will be carried out in a way that
possible discontinuities of the cocmcicnt~ acro~~ E. will
be accommodated. The function u will bc assumed to be

continuous

6 TREFFrZ APPROACH TO DOMAIN
DECOMPOSITION AND TH-COLLOCATION

In recent years domain decomposition methods have
received much attention, as a tool for solving partial
differential equations. This is mainly due to the I'IJ = O. on E, (62b)
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and the smoothness condition implied by conservation 
90of mass:

on E (62c)[VU - D::] O, 
to be satisfied. 

,. parlítion {O = Xo, X" •.• ,XE-" XE; = I} is ¡ntro­
duced. In this case the interelement boundary E, is a 
finite set of points; namely, E = {x" ... ,XE_¡}' Trial 
and test functions will be assumed to be sufficiently 
differentiable in the interior of each of the subintervals of 
the partition, so that the differential operator is defined 
there and the jump discontinuities can only occur at 
internal nodes. Observe that the normal vector n = 1 at 1, 
and n = -1 at O. On E, the choice n = 1 is convenient, 
because in this manner the positive side of E is the side 
that is determined by the sense of the x-aXÍs. Suitable 
boundary conditions are assurned to be satisfied, at Oand 
t, in order to have a well defined boundary value problern. 
The boundary conditions can be Dirichlet, Neumann, or 
Robin,56 but they are left unspecified, since the following 
developments accornrnodate all of thern. 

The formal a<.ljoint of the operator Y, as dcfincd by 
(62a), is 

. d(dW) dwYw=:-- D- -V-+Rw (63)
dx dx dx 

Therefore 

" d { (dW ) dU}wYu- uY w =: - u D-+ Vw - wD­
dx dx dx 

(64) 

and 

( 
dw )!?i)(u, w) =: u D- + Vw 
dx 

du- II'D­
dx 

(65) 

Application of eqns (27) yields 

dw ). [ dU] (66a),/(u, w) = -[u] ( D dx + Vw + IV D dx 

dw ] dUJ("'(u, w) J("(w,u) = ti D-+ VII' - [wJD­[ dx dx 

(66b) 

Therefore 

E-l 

(Ju, w) = L: ,/(u, w)} 
}=l 

E - I { (dW ) [dU]L: [uJ D- + VII' - .¡. D - }i 
. I dx dx

J= 

(67a) 

E-l 
(K"u, w) = L: J("'(u, w») 

}=I 

E-l{ [dW ] du}= - L: ú D- + Vw - [w]D­
. 1 dx dx .

J= J 

(67b) 

For Dirichlet problerns, one can define 

at{u,w) = u(D~ + VII') '0; 

(68a) 
du 

((j(II' u) = wD- . n , <Lx -

For Neuman problerns. duldx is daturn and 

du
!1I(u w) = -wD- •n' , dx -, 

(68b) 

((j(II', u) = -u(D dll' + vw) .n 
dx 

In the rnost general form of Robin's boundary con­
ditions, a linear combination of lhe derivative and 
the value of the solution are prescribed, and this 
general case was treated in Ref. 56. One, which is 
specially important is when the tolal flux Ddujdx - Vii 
is prescribcd. Thcn 

du 
!1I(u,11') = -1\' D­ VU) '0;( dx 

(68c) 
dw 

<6(11', u) = -uD dx . n 

Dornain decomposition rnelhods are classificd into 
ovcrlapping and non-ovcrlapping, depending 011 

whether the dornains of the decornposition have a 
non-void or a void intersection, respeclively (sec, for 
exarnple Ref. 75). Both kinds oC procedures can be 
formulated using the author's version ofTrelTtz melhod. 
Jt al! depends on the conditions satisfied by the 
weighting functions. 

A non-o\'erlappiog dornaio decornposition procedure 

\Yhen lhe test functions {w l
, ... , II'E} are required lo 

satisCy Y'l\i O. in ni == (X¡_ ¡,x¡) and '('(11', .) 0, al 
O and I where i = 1, ... ,E, one can conslruct the 
weighting functions independently, in each one of the 
non-overlapping regions ni (see Refs 56 and 63). There 
are t\Vo linearly independent solutions in each ni, ror 
í = 2, ... ,E - 1. However. due to the boundary con­
ditions C6( 11', • ) =O, at Oand /, lhere is on1y one in the 
subregions nI and nEo This, yields 2(E 1) linearly 
independent test functions altogelhcr. 

On Ihe other hand, for this choice of wcighting 
funclions, eqn (47) reduces lo 

-(K'Ii, wll ) = (f - g - j.WO), 
(69) 

a = 1, ... , 2(E - 1) 

By inspection of eqns (67), taking IÍ and Ddujdx as 
unknowns. it is secn that there are two unknowns 
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This implies that at each interior node there is only one
unkno\\"n: namely the value or the solution. The
resulting system or equations is (E -1) x (E -1) and

tridiagonal. See Rers 56 and 63 ror details.

TH-Collocation

associated with each internal node; hence. a total of
2(£ -1) unknowns.56,63

A rigorous discussion of the conditions under which
the resulting system of eqns (69) possesses a unique
solution requires the use of the concept of TH-
completeness of Section 2. However. in the present
case the situation is specially simple. since the system of
weighting functions is finite. When considering prob-
lems in more than one dimension matters get more
complicated. since TH-complete systems are of infinite
dimension.

As a last remark. it must be mentioned that the system
of eqns (69), which is 2(£ -I) x 2(£ -I). has a block
bidiagonal structure, the blocks being 2 x 2.56.63

An ovcrlapping domain dccomposition procedure

The test functions can be constructed by any means,
Analytical means were used in Ref. 97, but such
procedures havc many restrictions, Numerical mcthods.
on the othcr hand, arc vcry gcncral; in particular,
collocation is very effective. A possibility is to usc
Gaussian collocation on polynomials to satisfy thc
differential equation in an approximate manner, as
was done in Ref. 63. This leads to an alternative to
standard collocation -TH-collocation -, based on
the use of TH-complcte systems of weighting functions.

Collocation is a well established method for solving
partial differential equations (see, for example Ref. 98);
the usual procedure -standard collocation -is a
direct constructive method; that is, approximate solu-
tions are constructed, piece by piece, and then they arc
put together imposing suitable smoothness conditions at
the junctions. Gaussian collocalion on polynomials is
also used frequently98 and, for second order differential
equations, continuity of the function and its first

deri\'ati\'e is required at the junctions,
On the other hand, when TH-collocation is applied.

the procedure is indirect. Indeed, collocation is uscd to
construct \,'eighting functions which satisfy, in an
approximate manner, the homogeneous-adjoint differ-
ential equation. The resulting method possesses some
attracti\'c fcatures, Thus. for example. as was mcntioncd
bcforc. \,'hcn i,pplying stilndard collociltioll. colltilluity
of the function and its first dcriviltivc is rc4uircd, In TII-
collocation, on the other hand, continuity conditions arc
relaxed, since the test functions for the overlapping
version, are continuous but with discontinuous first
derivative. Another important point is that. in standard
collocation, the resulting system of equations involves
both. the function and its derivative, while in TH-
collocation the system of equations involves the function
only. Due to these facts the structure and size of the
matrices of the systems of equations to be solved arC"
simpler and smaller. Finally, in TH-collocation. when
the elliptic operator is symmetric and the test functions
are also used as base functions, the matrix is positive
definite, \vhich is not the case for standard collocation,

Take the partition {O=xo, x,,"."\"E-I, _\"E=/}, as
before, and define the collection {Ol'.'.' OE -I} of

subregions, by:
OJ = (Xj-I,Xi+ I) (70)

Then, the subregions are overlapping. Next, consider a
collection of functions {ul, u2, ...,liE -I} such that, for
every i = 1,..., E -1, satisfies .:i'uj = In (eqn 62a), in
Op In addition, when i = 1 and i = E -1, Ui satisfies the
left and right boundary conditions, respectively. Let
u(x), be the exact solution of the boundary value
problem in [0, I], which is assumed to exist and be
unique. Then the following result, which will be the basis
of the overlapping domain decomposition procedure is
easy to see:

The cO/llli t io/I,\'

u'+I(X,)=u'(x,), for i=l,...,E-l (71)

are satisfied if and only if

U(Xj) = uj(Xj), (72)for ,£-

To derive an algorithm, based on this result and using
TretTtz method, it is convenient to develop a system of
wei~hting functions {w.,..., I~,E -I}, such that I~.I. for
each i = 1,..., E -1, has support in OJ and satisfies

,-_c' -.{"\ [ j] 0= I, In ~'Ij W = , at .\"j;

1 = 0,. at 0 and I (73a)

fL"I!" = 0,

(t'(W, .)

The continuity condition [1~'1 = 0, implies that

}Vi(Xi-l) = }Vi(Xi+l) = 0 (73b) TH-Collocation in scvcral dimcnsions

TH~ollocation has also bccn ,Ipplicd in scvcral
dimensions,84-s7 in thc casc when !I' is thc gcllcral
elliptic operator of eqn (30a). Here, a bricf dcscription of
the procedure for two dimensional problcms is prc-
sented. With slight modifications thc samc can bc donc
in thrcc dimcnsions.

since the support of II'; is contained in n;- There is only
one linearly independent solution, in every subregion nj,
which fulfills conditions (73). At the same time, for this
choice of test functions, eqn (66b) reduces to
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Group 0 Group 1 Group 2

~
:(Xj I yl~-

Group 3 Group'

(a)

Fig. 3. The five groups of weighting functions. according to
their supports.

- ---~+.o.. (Xj'Yj) '.

I

nij' must vanish on onij. A possibility, that was applied
in Refs 85 and 86, is to use polynomials of the samc
degrce (G), in both .\" and y. In gcncral, G can bc any

positive integer. Independently ofthc specific value ofG.
groups of 2G -1 lest functions can be associated with
each node. One of the test functions of each group can
be taken to be equal to one at the corresponding nodc

(.\"ij' say) and the support of such function is the whole
subregion nil (see Refs 85 and 86, for details). The
remaining functions of the group have smaller support
and can be divided into four subgroups according to
their support (Fig. 3). The structure of the matrix is
block nine-diagonal, blocks being (2G -I) x (2G -I).
In addition, the classification of the test functions into
five subgroups, is independent of the degrce of lhc

polynomials.

:1,(;' .~~..l- -

U" 

nJO"I,1-1

I 

(XI I" )
r J-l(b)

Fig, 2. Overlapping oC11I-1,1-1 with 111,1
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