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The author's algebraic theory of boundary value problems has permitted
systemaltizing Trefftz method and expanding its scope. The concept of TH-
completeness has played a key role for such developments. This paper is devoted
to revise the present state of these matters. Starting from the basic concepts of the
algebraic theory, Green-Herrera formulas are presented and Localized Adjoint
Method (LAM) derived. Then the classical Trefftz method is shown to be a
particular case of LAM. This leads to a natural generalization of Trefltz method
and a special class of domain decomposition methods: Trefftz-Herrera domain

decomposition.

1 INTRODUCTION

By a boundary method, it is usually understood as a
procedure for solving partial differential equations and/
or systems of such equations, in which a subregion or
the entire region, is left out of the numerical treatment,
by use of available analytical solutions (or, more
generally, previously computed solutions). Boundary
methods reduce the dimensions involved in the pro-
blems, leading.to considerable economy of work and
constitute a very convenient manner for treating
adequately unbounded regions. Gencerally, the dimen-
sionality of the problem is reduced by one, but even
when part of the region is treated by finite elements, the
size of the discretized domain is reduced.'?

There are two main approaches for the formulation of
boundary methods; one is based on boundary integral
equations and the other one, on the use of complete
systems of solutions. The author has studied extensively
a version of the method based on the use of complete
systems of solutions, known as Trefftz method.’
Although Trefftz's original formulation was linked to
a variational principle, this is not required. What is
peculiar of Trefltz method, is that solutions of the
homogenous differential equation — more generally,
adjoint differential equation — are used as weighting
functions.

The method has been used in many fields. For
example, applications to Laplace’s equation are given
by Mikhlin,® to the biharmonic equation by Rektorys’
and to elasticity by Kupradze.! Also, many scattered
contributions to the method can be found in the
literature. Special mention is made here of work by
Amerio, Fichera, Kupradze, Picone and Vekua.’~!’
Colton has constructed families of solutions which are
complete for parabolic equations.'*!?

Some years ago, the author started a systematic
research of Trefftz method oriented to clarify the
theoretical foundations required for using complete
systems of solutions in a reliable manner, and expand
the versatility of the method, making it applicable to any
problem which is governed by partial differential
equations and/or systems of such equations which are
lincar.

For symmetric systems, the results obtained were
presented in several reponss'"""o and later integrated in

‘book form.! They include: (a) a criterium of complete-

ness (introduced in Ref. 16 and called Trefftz—~Herrera,
or TH-completeness); (b) approximating procedures and
conditions for their convergence;'7-"? (c) formulation
of variational principles;*®-2% and (d) development of
complete systems of solutions.'®*¢=2 In addition, the
algebraic frame-work in which the theory has been
constructed (the Algebraic Theory of Boundary Value
Problems), has been used for developing biorthogonal
systems of solutions.®* Free-boundary problems,
which are non-linear even when the governing differ-
ential equations are linear, were also treated—using
Trefftiz method.>'** Numerical procedures for fitting the
boundary conditions were also discussed.™

Function theoretic methods supply general results {or
developing analytically complete systems of solutions.™
The work by Vekua in 1948,'* by Bergman in 1961%
and by Gilbert in 1969, and 1974,% on this subject
was followed by many others (sce, for example Refs
37-40). The author’s algebraic thecory of boundary
problems permitted applying the results of, function
theoretical methods to specific problems; in particular
the concept of TH-completeness has been quite
relevant. According to Begchr & Gilbert, in their
recent survey of function theorctic methods (Ref. 41,
p- 115):
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The function theoretic approach which was pio-
neered by Bergman®® and Vekua'? and then further
developed by Colton,””¥  Gilbert,*** Kracht-
Kreyszig,* Lanckau* and others, may now be effect-
ively applied because of results of the formulation by
Herrera® as an effective means to solving boundary
value problems.

In addition, they present many applications of the
TH-completeness concept. A MACSYMA program is
given which illustrates how the TH-complete families
generated by integral operators may be used to solve
boundary value problems. They also combine Trans-
mutation Theory of Carroll®* with the idea of TH-
complete familics to solve boundary value problems and
show how the farficld for a stratified occan of finite
depth may be computed.

Many engineering applications have been made (see,
for example Refs 45-48). A method specifically designed
to deal with elastic diffraction problems was presented in
Ref. 19 and later applied to answer questions of seismic
engineering and seismology.**

Work done after the results for symmetric operators
appeared, permitted extending the algebraic theory to
non-symmetric operators, leading to a generalized
version of Trefftz method, > presently known as
Localized Adjoint method,®~%! in which discontinuous
trial and test functions can be used simultaneously.
Although, in actual numerical applications only in
special cases the use of discontinuous trial and test
functions is advisable, the frame-work for systematic
analysis supplied by the author’s algebraic theory is
quite useful to elucidate many questions about the
performance of weighting and base functions. Indeced,
since the base functions can be appropriately thought as
interpolators (or extrapolators) of the actual informa-
tion contained in approximate solutions, and this latter
information is determined by the weighting functions
that are applied, such analysis is required for matching
effectively both of them.%

Applications of this approach have been made
successively to ordinary differential equations, for
which highly accurate algorithms were developed,“"“‘3
multidimensional steady-state problems,* and optimal
spatial methods for advection diffusion equations.®~%

A very successful application of LAM, to problems of
transport was presented in a couple of papers.”>® The
resulting methology is known as Eulerian-Lagrangian
Localized Adjoint Method (ELLAM) and was devel-
oped by the ELLAM group (M. A. Celia, R. E. Ewing,
T. F. Russel and the author), which was formed for this
purpose. Many applications of ELLAM have been
made®®~7 and a recent account of the subject was
presented in Ref. 61. '

On the other hand, in recent years domain decom-
position’ methods have received much attention, as a
tool for solving partial differential equations. This is
mainly due to the development of parallel machines,

since such methods are efficient for parallelizing
numerical algorithms. In addition, they can be used to
design adaptive algorithms which capture steep {ronts
that appear in many problems, such as modeling of
transport. Domain decomposition mcthods are also
used to simplify problems with complicated gcometrics
or match regions with different physical parameters or
different types of differential equations. A wealth of
literature on the subject has appeared in recent yecars
(sce for example Refs 75-83).

The author’s generalized version of Trefftz method in
which discontinuous trial and test functions are
admitted, leads in a direct manner to domain decom-
position procedures. Such methodology was advanced
in a previous publicalion.“ although only recently
research on the procedure, as an approach to domain
decomposition methods, was initiated.* =%

The present paper aims to explain briefly the different
topics that have been mentioned. Duc to the abundance
of material it was difficult to make an exhaustive survey;
thus, it is not intended. Instead, we dwell on the difTerent
matters unevenly, making the cxplanations more exten-
sive in subjects which are more recent and less published
material is available.

Section 2, is devoted to present the abstract frame-
work of the theory. Although much of it has been
published elsewhere, the way it is prescnted is new.
Section 3, presents Green—Herrera formulas which are
used, in Section 4, to develop Localized Adjoint
Method. In Section 5, the classical Trefftz method is
revisited and Section 6, is devoted to apply the author’s
version of Trefftz method to develop domain decom-
position proccdures. It is worth mentioning that a non-
standard method of collocation — TH-collocation —
which possesses some attractive features in comparison
with standard collocation, is also presented in this last
section.

2 ALGEBRAIC THEORY OF BOUNDARY VALUE
PROBLEMS

In this Section some of the most basic concepts and -
results — although proofs are generally not supplied —
of the author’s algebraic theory of boundary value
problems, are presented. Some of these concepts and
results were introduced in Refs 54 and 57. They also
imply a kind of operator extensions whosc conncction
with the theory of distributions was discussed in Ref. 88.

The discussions refer to linear operators of the type
P : D, — D3, whose domain is a the lincar space D), and
whose values are linear functionals on D, (i.c. elements
of Dj: the algebraic dual of the linear space D,), as well
as to operators whose domain is D, and with values in
Dj. such as the transpose P* : D, — Dy of P.

The notation (Pu, v) is used to denote the value of the
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functional Pu at v € D;. Clearly, {Pu,v) is bilinear and
this defines a one-to-onc correspondence between
operators P:D; — D; and bilincar forms (Pu,v), on
D, ® D,.

Definition 2.1. — Boundary operators.
B is a boundary operator for P, iff

(Pu,v) =0, Vve Ng. =Pu=0 (n

Definition 2.2. — Disjoint operators.
A pair of operators {R|, R,} of the same kind is said to
be disjoint when R; is a boundary operator for R,, while
R; is a boundary operator for R;.

A system of operators {Ry, R;,..., R,} of the same
kind is said to be disjoint when cach pair {R;, R;}, with
i #Jj, is disjoint.

Definition 2.3. — Compiletely disjoint.
A pair of operators { Ry, Ry} of the same kind are said to
be completely (or fully) disjoint when, in addition to
being disjoint, the pair {R}], R3} is also disjoint.

A system of operators {R), Ry,..., R,} of the same
kind is said to be fully disjoint when each pair {R;, R},
with i # j, is fully disjoint.

Definition 2.4. — Decomposition {R;, R,} of R.

A pair of operators {R;, R,} is said to be a decomposi-

tion of R, when they are completely disjoint and
R=Ry+ R, (2)
A system of operators {R;, Ra,..., R,} issaid to be a

decomposition of R, when they are fully disjoint and

R=R +...+R, (3)

Proposition 2.1. — Assume the pair { Ry, R} decomposes
R, then

Ng = Ng, NNy, ' (4)

REMARK. — If {R,, R;} decomposes R, then {R], R3}
decomposes R'.

Definition 2.5. — Formal adjoints.

Two operators P: Dy — Djand Q : D; — Dj are formal
adjoints when S = P — Q° is a boundary operator for P,
while §* = P* — Q is a boundary operator for Q.

Definition 2.6. — Green's formula.
The equation

P-B=Q -C (5)

is said to be a Green's formula for the pair {2, @}, when
P and Q are formal adjoints and the pair {B.—-C"}
decomposes S = P —- Q°, wkile {B°,-C} decomposes
S =P -Q.

Theorem 2.1. — Assume eq (5) is satisfied and it is a
Green’s formula for the pair {P,Q}. Let {B, B;} and

{C},C;}, be decompositions of B and C, respcctively.
Then, the equation

(P=-B)-B,=(Q-C) -3 (6)
is a Green's formula for the pair {(P - B,),(@ - C))}.

Definition 2.7. - The (abstract) boundary value problen.
Let B be a boundary operator for P. Given f € D5 and
g € D3, the boundary problem consists in finding u € D,
such that

Pu=f and Bu=g N
Theorem 2.2. — Variational formulation in terms of the
data.

u € D), is solution of the boundary problem, ilf

(P-Blu=f-¢g (8)

Theorem 2.3. — Variational formulation in terms of the
sought information.

When P~ B= Q' — C' is a Green's formula, v € Dy,
is solution of the boundary problem, iff

(@ -Clu=f-¢ (9)

Definition 2.8. — The subspaces /p and /.
Let P~ B= Q" - C", be a Green's formula and write
S = B — C". Then the subspace /p C D, is defined by

1p=le+Ns (‘Od)
and the subspace /p C D: by
IQ = A’Q -+ A’s- (10‘))

Definition 2.9. — TH-completeness.
Given a Green's formula: P— B = Q' - C°, a subsct
¥ C Ip C Dy, is said to be TH-compilete (for P), if and
only if, for any U € D, and V € D,, onc has
(BU,w) = (C'V,w)=0
such that Bu=BU and C'u=C'V (1)

REMARK. — Observe that actually, onc cun take
u€ Np.

Vwe W '=>3ue€lp,

Theorem 2.4, — Let P—-B=Q' - C" be a Green's
formula and %~ C Iy be TH-complete for P. Assumc
there exists a solution v € D, of the boundary valuc
problem. Then, an element @ € D, satisfies

Ci=Cu (12)
for some solution u’' € Dy, of the boundary
problem, if and only if,

(Cit, w) = (C"u,w),
When #~ C Ny, this equation can be replaced by

(Ciowy = —(f —g,w), Ywe W’ (14)

Ywe W
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Proof. — When u and u' are solutions of the boundary
valuc problem, onc has

Bu-u)=0 and Plu-u" o
Hence u— u' € Ip and B(u —u') = 0. Thus

—(C'u=u),w)=(S(u—u'),w)=0 Vwe ¥
(16)
and if C*'t = C"u, then C'iz = C"u’.
Conversely, if
(C*a,w) = (C'u,w), VweW (17)

then
(BV,w) = (C*(it — u),w) =0, Vw e W (18)

with ¥ = 0. Then, by virtue of the definition of TH-
completeness, there exists r € Np such that

Br=0 and Cr=C'(i—u) (19)

Define «'=u+r. Then, Pu'=Pu=f and
Bu'=Bu=g; ie. u' €D, is the solution of the
boundary value problem. :

Finally, when u € D, is the solution of the boundary
value problem and %" C Ny, we have

—{(C*u,w) = ((@ — C)w,u) = {(Q" — C")u,w)
=((P- Bu,w)={(f—g,w) (20)

which shows that the two previous equations are
equivalent.

3 GREEN-HERRERA FORMULAS

Consider a region Q and the linear spaces D; and D, of
trial and. test functions, respectively, defined in Q.
Assume further that functions belonging to D, and D,
may have jump discontinuities across some internal
boundaries whose union will be denoted by ¥ (Fig. 1).

aQ
/

‘ /

L/

Fig. 1. The region , its boundary 912 and internal boundaries
L.

For example, in applications of the theory to finite
clement methods, the set £ could be the union of all the
interclement boundaries. In this sctting the general
boundary value problem to be considered is onc with
prescribed jumps, across L.

The differential equation is

Lu=fi inQ (21

where Q may be a purely spatial region or, more
generally, a space-time region. Certain boundary and
jump conditions are specified on the boundary 09 and
on the internal boundaries I, respectively. When Q2 is a
space-time region, such conditions gencrally include
initial conditions.® In the litcrature on mathematical
modecling of macroscopic physical systems, there are a
variety of examples of initial-boundary value problems
with prescribed jumps. To mention just onc, problems of
clastic wave diffraction can be formulated as such.'*
The jump conditions to be satisfied across £ by the
sought solution, depend on the specific application and
on the differential operator considered. For example, for
elliptic problems of second order, continuity of the
sought solution and its normal dcrivative, is usually
required. When the partial differential equations mimic-
continuous systems — as is {requently the case — the
jump conditions can be derived, very systematically,
from the balance equations of Continuum Mechanics.*®®

The definition of formal adjoint requires that a
differential operator # and its formal adjoint 2°,
satisfy the condition that wX’u — 1" w be a divergence;

wu—udLw=V-.{2(uw)}

for a suitable vector-valued bilinear function Z(u, w).
Integration of eqn (22) over Q and application of the
generalized divergence theorem,” yicld:

J {(wZu - uSL widx =J 2(u,w) 0 dx
n o0

- L[Q(u, w)]-n dx

Here, the square brackets stand for the ‘jumps’ across X_
of the function contained inside, i.e. limit on the positive

side minus limit on the negative one. Here, as in what

follows. the positive side of ¥ is chosen arbitrarily and

then the unit normal vector n is taken pointing towards

it. Integrals over the region €2, arc understood as sums of

integrals over the individual regions §2;. For example, if

{,....,Qx} is a partition of the region €2, then:

N
| wPudx=) | wPudx
J”H u ZJ‘ W u Ay

Thus. such integrals arec well defined ecven
differential operator is not defined on L.
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In the general theory of partial differential equations,
Green’s formulas are used extensively. For the con-
struction of such formulas it is standard to introduce a
decomposition of the bilinear function #; (see, for
example, Lions & Magenes"'). Indicating, transposes of
bilinears forms by mecans of a star, the general form of
such decomposition is:

Ra(u,w) = Q(u,w) -n = B(u,w) — € (u,w) (25)

where %(u,w) and €(w,u) = €"(u,w) are two bilinear
functions. When considering initial-boundary value
problems, the definitions of these bilincar forms
depend on the type of boundary and initial conditions
to be prescribed. A basic property required of #(u, w) is
that for any « that satisfies the prescribed boundary and
initial conditions, #(u,w) is a well-defined linear
function of w, independent of the particular choice of
u. This linear function will be denoted by g, (thus, its
value for any given function w will be g,(w)), and the
boundary conditions can be specified by requiring that
B(u,w) = gy(w), for every w e D, (or more briefly:
B(u, -) = gp). The lincar function €”* (x, - ), on the other
hand, can not be evaluated in terms of the prescribed
boundary values, but it also depends exclusively on
certain boundary values of u (the ‘complementary
boundary values’). Generally, such boundary values
are determined only after the initial-boundary value
problem has been solved.

In a similar fashion, convenient formulations of
boundary value problems with prescribed jumps
requires constructing Green’s formulas in discontinuous
fields. This can be done by introducing a general
decomposition of the bilinear function

Ry (u,w) = —=[2(u,w)] o n = F(u,w) = A (1, w)
(26)

whose definition, on X, is point-wise. For continuous
coeflicients

Fu,w) =~2([u],w)-n (27a)
A (u,w) = A (w,u) = D, [w])n (27b)

The decomposition of eqns (26) and (27), stems from the
algebraic identity:

(2(u, w)] = D([u], W) + 2(a, [w]) (28)
where |

] =y =,

u=(u, —u.)/2 (29)

The general theory includes the treatment of differential
operators with discontinuous coefficients**® and for the
examples to be considered in the sequel, formulas will be
given that are valid also in that case.

An important property of the bilinear function
F(u,w) is that, when the jump of u is specified, it
defines a unique linear function of w, which is
independent of the particular choice of u. When

considering initial-boundary value problems with
prescribed jumps, the linear function defined by the
prescribed jumps in this manner will be denoted by jy:
(thus, its value for any given function w will be ji.())
and the jump conditions at any point of £ can be
specified by mcans of the equation J{(w, <} =jy. In
problems with prescribed jumps, the lincar function
A "(u, -), plays a role similar to that of the com-
plementary boundary values €°(u, -). It can only bc
evaluated after the initial-boundary valuc problem has
been solved and certain information about the average
of the solution and its derivatives on ¥ is known. Such
information refers to the averages of the function
and its derivatives across the jump. Obscrve that
A(u, -) and f(u, -), by the way they have been defined.
are part of the ‘data of the problem’ when jumps arc
prescribed. On the other hand, €*(u, -) and X" (u, )
are ‘sought information’, since they arc not known
beforchand.

As an illustration, the most general elliptic operator of
second order can be written as:

Lu=-V-(8-Vu)+b-Vu+(c+ 1V -bu
In such case
L'w=-V-(a-(Vw)=b- Vw4 (c—iV-b)u
i . (30b)
and
Z(u.w) = a-(uVw — wVu) + bun

When the boundary conditions arc of Dirichlet type
one can define:

AQuw) = (n-a-Vw+b,whu, and

(32)
€ (u,w) =w(n-a-Vu)

The complementary boundary values n-a-Vu, can be

interpreted as diffussive flux. However, depending on

the specific application considered, other physical

interpretations are feasible. ’
According 1o eqns (29), one has:

J(uw)=—=(n-23-Vw+b,w)|u]+ifn-a-Vuf
(33a)

and

X(uw)=[n-a-Vw+b,wli—[wn-a.-Vu (33b)

In eqns (33), a bar is used to make it clear that the
dot on top refers to the whole cxpression covered by
the bar. In these equations b, = b-n. It can be shown
that in the form egns (33) have been written, they arc
valid even if the coefficients of £ are discontinuous
across L.
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Going back to the general developments, it is seen
that in view of eqns (23), (25) and (28), one can write:

Jn wludx — Jm B(u,w)dx — J}; Fu,w)dx =

J u? wdx — J C* (u,w)dx —J X (u,w)dx  (34)
Q2 o0 x
which, in turn, can be written as:
(Pu,w) — (Bu,w) — (Ju,w) = (Q"u,w) — (C"u,w)
— (K*u, w) (35)

with the notation

(Pu,w) = Jn wZudx; (Q'u,w) = J u? wdx
Q

(36a)
(Bu,w) = [ B(u, w)dx;
‘ R (36b)
(C'u,w) = | €(w,u)dx
Jon
(Ju,w) = r F(u,w)dx and
JrE (36¢)
(K'u,w) = JE.)((W, u)dx

Equation (35) is an identity between bilinear forms; a
more brief expression for it is:

P-B-J=Q -C -K' (37)

This is Green—Herrera formula for operators in discon-
tinuous fields.>

4 LOCALIZED ADJOINT METHOD

The boundary value problem with prescribed jumps can
be formulated point-wise by means of the eqn (21)
together with

Blu, ) =gy(+) and  J(u, ) =jy(- (38)

Here u is any function satisfying the prescribed
boundary and jump conditions, while gz and jz are
linear functions with the property that

Bu,w) = ga(w) and £ (u,w) = jg(w);

39
Ywe D, (39)

Thus for example, when 2 is the elliptic operator of
eqns (30), and the boundary and jump conditions are

u=uy, ondQ; [u] =;° [g-Vu]-n=j', on X

Here, u, j% and j' are prescribed functions — defined
on 9%, the first one and on I the last two. In agreement
with previous discussions, a physical interpretation of ;!

is the jump of diffusive flux. Then, by virtue of eqns (32)*
and (33), one has

go(w) = (n -32-Vw)uy and
(41)

Je(w)=—(n-a-Vw+ b,,w)j0 +uy!

In order 1o associate a variational formulation with
this problem, define the linear functionals f, g, jeD; by
means of:

Gon = | whdv g = [, gotmes
o] 0 (42)
() = [ g(iax

Then a variational formulation of the initial-boundary
value problem with prescribed jumps, using the lincar
functionals defined before, is: '

Pu=f; Ju=j (43)

In what follows, it will be assumed that the operators
B and J, defined in Section 3 (Eqns 36.b and 36.c), are
boundary operators for P, which are fully disjoint, in the
sense of Section 2. This depends on the choice of the
subspaces D, and D,. Consider, for example, the very
important case when & is the elliptic operator of eqn
(30a) and Q is a bounded domain of R* with a piecewise
smooth boundary df, such as the polygonal domains
discussed by Bramble, Pasciak & Schatz’** for
instance, and each of the subregions Q; of the
decomposition of €, also have piccewisc smooth
boundaries — they may be, for example, triangles or
quadrilaterals. If the coefficients are sufficiently smooth,
for example C=(Q), take D; = D; = D, and define the
lincar space D as follows. For every u € D, let u(§2;) be
its restriction to €,; then, the linear space of functions D,
is defined by the condition that u($2;) € H*(;) for every
u € D and every ; of the decomposition. For such D, it
is sufficient to chose s> 1. When 52 2, it is straight
forward to verify that B and J are boundary operators
for P which are fully disjoint. If 1 < 5 < 2, this is more
subtlc and will be explained elsewhere.’

When these conditions are satisfied, the system of
eqns (43) is equivalent to the single variational equation

(P=B=Tyu,w)=(f —g—jw ViweD, (443

This is said to be ‘the variational formulation in terms of
the data of the problem’, because Pu, Bu and Ju are
prescribed. Making use of Green—Herrera formula (37),
the variational formulation (44) is transformed into

(@ -C =KYuw)=(f—-g—j,w) Vn'ch
(45)
This is said to be ‘the variational formulation in terms of
the sought information’, because Q"u, C*n and K" are

not prescribed. Notice that the variational formulations,
(44) and (45), are equivalent since (37) is an identity. The

Bu=g;
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linear functionals Q*u, C*u and K'u supply information
about the sought solution at points in the interior of the
region 1, the complementary boundary values at Jf2, and
the generalized averages of the solution at I, respectively,
as can be verified by inspection of eqns (36).

Localized Adjoint Mcthods (LAM) are based on the
following observations. When the method of weighted
residuals, with a system {w' yeens wN} C D, of weighting
or test functions is applied, an approximate solution
ieD, satisfies:

P—-B-N)i,w)={(f—g—jn°
( Jit,w®) = (f = g —j,w), »
a= N

or equivalently, using the variational principle in terms
of the sought information

(Q"—=C —K")a,w) =(f—g—Jjn")
a=1,...,N

(47

Since the exact solution satisfies (45) it must be that
(@ - C = K")a,w?) = ((Q" = C" = K")u,w")
a=1,...,N (48)
Either in this or in the form:

((Q* — C* — K*)(it — u),w™) =.O, a=1,...,N

(49)

these equations can be used to analyze the information
about the exact solution that is contained in an
approximate onc.*"%

5 THE CLASSICAL TREFFTZ METHOD

Specialized weighting functions can be developed that
concentrate the information in a specified manner. The
information contained in the sought solution has been
classified in three groups: the values of the solution in
the interior of the subregions €);, which are given by
Q*u; the complementary boundary values at the external
boundary 91, which are given by C*u; and the average
values, of the solution and its derivatives, in the
interelement boundaries I, which are given by K".
The classical Trefftz method corresponds to the case
when the information is concentrated on the comple-
mentary boundary values which are defined at the outer
boundary 952 of the region 2. By inspection of eqns (45),
it is seen that this requires that the system of test
functions {w"} = ¥ C D,, have the property

(Q'u,w*) = (Qw",u) =0  and

: (50)
(K'u,w®) = Kw*,u) =0
Thus
Ow"=0, and Kw" =0 (51)

since eqns (50), must be satisfied for any function u.

When these conditions are satisfied cqns (45), for the
approximate solution #, reducc to

—(Cria,w") = ([ - g —Jjw"),
which are equivalent to

(C i, w®) = (Cu, w™), yw' e W’ (53)
since the exact solution u also satisfics

—(Cu,w®) = (f —g—j,w"), Yu' €W’ (54)

As it has been seen in Section 2 of this chapter, when the
system of functions {w"} = ¥" is TH-complete, then any
function @ satisfics the system of eqns (52), if and only if

Cu=C'u (55)

vw' e’ {52)

In words: when the system of weighting (or test)
Sunctions W, is TH-complete, a function @ is an
approximate solution — in the sensc of the weighted
residuals method, defined with precision before — if and
only if its complementary boundary values on 92, are
those of the exact solution. This result exhibits clearly
that with such weighting functions the information has
been effectively concentrated on the boundary 052 of §1.
The condition Qw” = 0, is tantamount to requiring

LW =0, inQ (56)

by virtue of the second of eqns (36). Thus, in order to
concentrate the information on the boundaries, the test
functions must be solutions of the homogencous version
of the adjoint differential equation. Many applications
of TrefTtz method have been concerned with self-adjoint
operators, in which case eqn (56), may be replaced by

L =0 inQ : (57)

The second of egns (51) i.e. Ku” = 0—, imposc some
smoothness conditions on the test functions. If the
differential operator is the general clliptic operator of
cqn (30). then such conditions can be scen to be

[w] =0, and n-a-Vw+bwl=0 (58)

That is. continuity of the function and of the total flux.
When the coefficients are continuous these cquations are
equivalent to continuity of the function and its first
partial denivative.

For applications of Trefltz method, it is frequently
more convenient to define D = D, = D, as a Sobolev
space H*(§2). When the operator is elliptic of second
order, s=1/2 is convenient.***' Under very general
conditions the null subspace of P: Np C D, is a TH-
complcte syslcm.“'“ However, for the representation of
solutions it has greater interest to have denumerable
subscts %~ C Np which are TH-complete. Begehr &
Gilbert,*! have presented a thorough and updated
exposition of analytical methods for developing TH-
complete systems. They include general equations
related to Laplace operator, such as

Au - g(x)u = /n, Qcr (59)
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Table 1. TH-~complete systems in two dimensions

Bounded

Q Exterior of a bounded region

Laplace equation
{1, F"cosn8, "sin n6}

Reduced wave cquation Au+u=20
{Jo(r), Ju(r)cos nd, J,(r)sin n0}

n=12,...

{Inr, r™"cos nf, r~"sin nf}

{II:',”(r). H(rycos no, 1" (r)sin no})

Table 2. TH-complete systems in three dimensions

Bounded

2 = Exterior of a bounded region

Laplace equation
{7 Pi(cos 6)e/7}

Helmoholtz or reduced wave equation
{Jn(r)Py(cos (6) €%}

n=0,1,2..;-n<q<n

{r— 'Pi(cos 8)e/?*)

{hV(r)Pf(cos 6) e}

Examples of such systems are given in Tables 1 and 2.
For the Helmholtz or reduced wave equation the author
has shown that a system of plane waves, which have a
very simple structure, is TH-complete in any bounded
and simply connected region."”

In these tables J,(r) and H{" are Bessell and Hankel
functions of the first class.9%% P? is the associated
Legendre ‘function, while j, and A} are the spherical
Bessel and Hankel functions.”® We recall, in addition,
that the TH-complete systems given in Tables | and 2 for
Laplace equation in a bounded region are harmonic
polynomials expressed in polar and spherical coordinates

Equations associated with the biharmonic (A%
differential operator, also have great interest and are
not included among the elliptic second order operators,
that have been discussed here, since they are of higher
order. To incorporate this equation in the general
frame-work we have developed, recall the identity

wA?u — ul?w
= V- {wVAu - VwAu + AwVu — uVAw}
(60)

which exhibits the biharmonic operator as a symmetric
one, for which

D(u,w) = wVAu - VwlAu+ AwVu —uVAaw  (61)

The author has presented TH-complete systems for this
operator,?”*® and Begehr & Gilbert discussed the matter
further.¥!

6 TREFFTZ APPROACH TO DOMAIN
DECOMPOSITION AND TH-COLLOCATION

In recent years domain decomposition methods have
received much attention, as a tool for solving partial
differential equations. This is mainly due to the

development of parallel machines, since such methods
are efficient for parallelizing numerical algorithms. In
addition, they can be used to design adaptive algorithms
which capture steep fronts that appear in many
problems, such as modeling of transport. Domain
decomposition methods are also used to simplify
problems with complicated geometries or match regions
with different physical parameters or different type of
differential equations. A wealth of literature on the
subjected has appeared in recent years (sce for example
Refs 75-83).

A basic feature of domain decomposition methods is
that the region €, in which the boundary value problem
is formulated, is decomposed into subregions
{Q,...,9¢}. Then the global problem, in 2, is obtaincd
by solving local problems in cach of the subregions,
exclusively. The generalized version of Trefliz method,
proposed by the author,~%"628} in which discontin-
uous trial and test functions are admitted, leads in a
direct manner to domain decomposition procedures.

This can already be seen in one dimensional
problems.*®* Thus, consider the most general ordinary
differential cquation of second order which is lincar. A
physical situation that this equation mimics is transport
in the presence of advection, diffusion and linear sources,
and a notation related with such processes will be
adopted. The general equation to be considered is:

dx \  dvx
in Q=[0,/] (62a)

Lu= ——d— (Dd—u - Vu) + Ru =/,

The developments will be carried out in a way that
possible discontinuitics of the cocflicients across X, will
be accommodated. The function « will be assumed to be
continuous

[u] =0, on I, (62b)
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and the smoothness condition implied by conservation
of mass:”

Ou
[Vu - Da] =0, on X (62c)

to be satisfied.

A partition {0 = xo, x,...,Xg_y, xg =1} is intro-
duced. In this case the interelement boundary L, is a
finite set of points; namely, X = {x,,...,xg_,}. Tral
and test functions will be assumed to be sufficiently
differentiable in the interior of each of the subintervals of
the partition, so that the differential operator is defined
there and the jump discontinuities can only occur at
internal nodes. Observe that the normal vectorn = 1 at/,
and n = —1 at 0. On X, the choice n = 1 is convenient,
because in this manner the positive side of X is the side
that is determined by the sense of the x-axis. Suitable
boundary conditions are assumed to be satisfied, at 0 and
1, in order to have a well defined boundary value problem.
The boundary conditions can be Dirichlet, Neumann, or
Robin,” but they are left unspecified, since the following
developments accommodate all of them.

The lformal adjoint of the operator &, as defined by

(62a), is
d dw dw
‘w=——|D—| -V—
Lw i (D dx) e + Rw (63)
Therefore
. _d dw du
wlu—ufl'w= d—x-{u<Dd_-+ Vu) - uDa}
(64)
and
D(u,w) = Dgﬂ + Vw| — wD% (65)
dx dx
Application of eqns (27) yields
du
Flu,w) = —[y] (D—+ Vw) + W [Ddr] (66a)
H " (u,w) = A (w, u)—u[D%—+ Vu] —[N]Dg
(66b)
Therefore
E-1
(Ju, w) Z Fu
j=1
E-| -
Z{ (D—+ Vw) —W [Dgﬁ] }i
j=1
(67a)
E-1
(K*u,w) = Z H*(u, w),;

z{ [l 1] - [W]D'g__g}j

(67b)
For Dirichlet problems, one can define
H(u,w) = u( (j-—‘;—+ Vw) . n;
(68a)
du P
E(w,u) = wDIr- 'n
For Neuman problems, du/dx is datum and
B(u,w) = —ng; . n;
(68b)

€(w,u) = —u(D%+ Vw) ‘n
In the most general form of Robin's boundary con-
ditions, a linear combination of the derivative and
the value of the solution are prescribed, and this
general case was trealed in Ref. 56. One, which is
specially important is when the total flux Ddu/dx — Vu
is prescribed. Then

B(u,w) = —w(D% - Vu) ‘n
’ (68¢c)

E(wu) =

Domain decomposition methods are classified into
overlapping and non-overlapping, depending on
whether the domains of the decomposition have a
non-void or a void intersection, respectively (sce, for
example Ref. 75). Both kinds of procedures can be
formulated using the author’s version of Trefftz method.
It all depends on the conditions satisfied by the
weighting functions.

A non-overlapping domain decomposition procedure

When the test functions {w',...,wf} are rcquired to
satisfly £*w' =0, in Q; = (x,_,,x;) and €(w, -) =0, at
0 and / where i=1,...,E, one can construct the
weighting functions independently, in each one of the
non-overlapping regions §2; (see Refs 56 and 63). There
are two linearly independent solutions in each §,, lor
i=2,...,E—1. However, due to the boundary con-
ditions €(w, - ) = 0, at 0 and /, there is only onc in the
subregions 0, and Qg. This, yields 2(E — 1) linearly
independent test functions altogether.

On the other hand, for this choice of weighting

functions, eqn (47) reduces to
—(Ku, Wy = (f — g~ j,n"),
( y={(f ) (69)
a=1,...,2(E-1)

By inspection of eqns (67), taking # and Ddu/dx as
unknowns, it is seen that there are two unknowns
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associated with each internal node; hence, a total of
2(E — 1) unknowns. %3

A rigorous discussion of the conditions under which
the resulting system of eqns (69) possesses a unique
solution requires the use of the concept of TH-
completeness of Section 2. However, in the present
case the situation is specially simple, since the system of
weighting functions is finite. When considering prob-
lems in more than one dimension matters get more
complicated, since TH-complete systems arc of infinite
dimension.

As a last remark, it must be mentioned that the system
of eqns (69), which is 2(£ — 1) x 2(E — 1), has a block
bidiagonal structure, the blocks being 2 x 25663

An overlapping domain decomposition procedure
Take the partition {0 = x¢, Xy,...,Xg_1, Xg =1}, as

before, and define the collection {,...,Q2¢_,} of
subregions, by:

Qi = (x;—1, Xi41) (70)
Then, the subregions are overlapping. Next, consider a
collection of functions {u',u?,...,u*""'} such that, for

every [ =1,...,E — 1, satisfies LU = fy (eqn 62a), in
;. In addition, when i = 1 and i = £ — 1, «/' satisfies the
left and right boundary conditions, respectively. Let
u(x), be the exact solution of the boundary value
problem in [0,/], which is assumed to exist and be
unique. Then the following result, which will be the basis
of the overlapping domain decomposition procedure is
easy to see:

The conditions

Wt (x)=d'(x), for i=1,...,E-1 (71)
are satisfied if and only if
u(x;) = u'(x;), for E - (72)

To derive an algorithm, based on this result and using
Trefftz method, it is convenient to develop a system of

weighting functions {w',...,wE"}, such that w', for
eachi=1,...,E — |, has support in §; and satisfies
2w =0, inQ; W]=0 atx;

%(w,-) 0, atOand!/ (73a)

The continuity condition [w'] = 0, implies that
wi(xi_1) = w(xip)) =0 (73b)

since the support of ' is contained in ;. There is only
one linearly independent solution, in every subregion €;,
which fuifills conditions (73). At the same time, for this
choice of test functions, eqn (66b) reduces to

A (uyw) = A (w,u) =u [D %L:] (74)

This implies that at each interior node there is only onc
unknown: namely the value of the solution. The
resulting system of equations is (E — 1) x (E — 1) and
tridiagonal. Sce Refs 56 and 63 for details.

TH-Collocation

The test functions can be constructed by any mecans.
Analytical means were used in Ref. 97, but such
procedures have many restrictions. Numerical methods,
on the other hand, are very general; in particular,
collocation is very eflective. A possibility is to usc
Gaussian collocation on polynomials to satisfy the
differential equation in an approximate manncr, as
was done in Ref. 63. This leads to an alternative to
standard collocation — TH-collocation —, based on
the use of TH-complete systems of weighting functions.

Collocation is a well established method for solving
partial differential equations (see, for example Ref. 98);
the usual procedure — standard collocation — is a
direct constructive method; that is, approximate solu-
tions are constructed, piece by piece, and then they are
put together imposing suitable smoothness conditions at
the junctions. Gaussian collocation on polynomials is
also used fn:que:mly98 and, for second order differential
equations, continuity of the function and its first
derivative is required at the junctions.

On the other hand, when TH-collocation is applicd,
the procedure is indirect. Indeed, collocation is uscd to
construct weighting functions which satisly, in an
approximate manner, the homogencous-adjoint differ-
ential equation. The resulting method possesses some
attractive features. Thus, for example, as was mentioned
before, when applying standard collocation, continuity
of the function and its first derivative is required. In TH-
collocation, on the other hand, continuity conditions are
relaxed, since the test functions for the overlapping
version, are continuous but with discontinuous first
derivative. Another important point is that, in standard
collocation, the resulting system of equations involves
both, the function and its derivative, while in TH-
collocation the system of equations involves the function
only. Due to these facts the structure and size of the
matrices of the systems of equations to be solved are
simpler and smaller. Finally, in TH-collocation, when
the elliptic operator is symmetric and the test functions
are also used as base functions, the matrix is positive
definite, which is not the case for standard collocation.

TH-Collocation in several dimensions

TH-collocation has also been applied in scveral
dimensions,** "% in the casc when 2 is the gencral
elliptic operator of eqn (30a). Here, a bricf description of
the procedure for two dimensional problems is pre-
sented. With slight modifications the same can be donc
in three dimensions.
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Fig. 2. Overlapping of Q-1 -1 with

For simplicity, consider a rectangular region decom-
posed into rectangles (Fig. 2a). With each internal node
(xi,yj), associate a subregion (f2;) made of four
rectangles, which surround such node. For nodes
located on the boundary, only the rectangles lying
inside €2, are included in ;. The subregions so defined,
arc overlapping. For the boundary value problem, of
Section 3, defined by eqn (30a) and suitable boundary
conditions, it is not difficult to establish the property
that is formuiated next.

Assume a unique solution, u, of the boundary value
problem exists and, for every Q;, let u" be a function
defined in Q;, which satisfies the differential eqn (21).
Then u” =, in Q, Vi,j, if and only if, ul = u¥ on
4;N08, (see Fig. 2b), Yij and VK|, and in addition, the
boundary conditions are satisfied by u", when ;1 092
is not void. Here, 0S)y, stands for the boundary of 9,
and 9S) is the boundary of Q.

Clearly, the set ; N 9Qy,, is that part of the boundary
of Q,, that lies inside Q.

Numerical procedures based in this kind of formula-
tion, require only the evaluation of the function. The
derivatives of the sought solution nced not be evaluated,
which as mentioned before, is an advantage over
standard collocation, for which one has to solve for
both, the function and its derivatives. Thus, the test
functions, w?, in addition to satisfying £'w® =0,
locally, must be continuous; [w?] = 0, on the edges of
the rectangles; in particular, functions whose support is

Group 0

Group 2

W/

Group 4

it lie)

Fig. 3. The five groups of weighting functions. according to
their supports.

sam_—

§2;;, must vanish on 99;. A possibility, that was applicd
in Refs 85 and 86, is to use polynomials of the same
degree (G), in both x and y. In general, G can be any
positive integer. Independently of the spccific value of G,
groups of 2G — 1 test functions can be associated with
each node. One of the test functions of each group can
be taken to be equal to one at the corresponding node
(x;, say) and the support of such function is the whole
subregion Q; (see Refs 85 and 86, for details). The
remaining functions of the group have smaller support
and can be divided into four subgroups according to
their support (Fig. 3). The structure of the matrix is
block nine-diagonal, blocks being (2G ~ 1) x (2G — 1).
In addition, the classification of the test functions into
five subgroups, is independent of the degree of the
polynomials.
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