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This paper is devoted to presenting a brief overview of domain decomposition methods. Over-
lapping and nonoverlapping procedures are discussed. For this latter kind of method, Poincaré-
Steklov operators are presented and a maximum principle is introduced. Conjugated gradient
and preconditioned conjugated gradient are considered. Also Schwarz’s alternating method is
briefly discussed.

1. Introduction

Domain decompositon methods for the numerical solution of partial differential equa-
tions have received much attention in recent years [Chan et al., 1989a, 1989b; Glowinski
et al., 1988, 1990; Keyes et al, 1991; Quarteroni el al., 1992]. At present, this is mainly
due to the fact that they constitute a very effective manner of parallelizing numerical
models of continucus systems. Parallel computing is aiready a very important resource
in supercomputing and it is expected to be even more important in the future.

There are additional reasons for the interest in domain decomposition methods, such as
the following: domains of irregular shape can be decomposed into subdomains of regular
shape and regions of relative nonuniformity of the differential operator or roughness of the
solutions can be isolated into different subdomains. This paper is devoted to presenting
a brief overview of domain decomposition methods.

2. General Discussion

One approach to domain decomposition deals with the systems that are obtained after
the differential equations have been discretized, but it is also possible to formulate domain
decomposition procedures treating the differential equations before discretization. In this
paper this latter approach will be applied because it is more elegant and has the advantage
of permitting use of the known properties of partial differential equations in a more direct
mannet. In addition, it is always possible afterward to give discretized versions of the
results so obtained.

In the exposition that follows the different methods will be derived from a unified
perspective, which is based on the experience and clarity that have been gained through
the considerable amount of work that has been done in recent years. This manner of
presenting matters has clear expository advantages, although it does not correspond to
the way in which, historically, the methods were developed.

In domain decomposition methods, the region in which the problem is formulated is
split into several - usually many - subregions. Given a differential equation, consider
its set of solutions at each of the subregions. Then, the main objective of domain de-
composition methods is to select a solution at each subregion in such a way that some

258

Herrera et al.: Domain Decomposition 259

matching conditions are satisfied. Generally, the methods may be classified into two
broad categories, depending on whether such subregions do not overlap - nonoverlap-
ping methods ~ or do overlap — overlapping methods. The main difference between these
two kinds of procedures is the matching conditions. For elliptic equations of second or-
der, for example, the nonoverlapping procedures require that the solution, together with
its normal derivative across the common boundaries of the nonoverlapping subregions,
be continuous. On the other hand, for the same kind of equations, when the procedure
is overlapping, the smoothness conditions are relaxed, since only the solution itself is
required to be continuous.

For elliptic differential equations of second order [Keyes and Gropp, 1987], which are
the only ones to be considered in some detail in what follows, independently of the kind
of domain decomposition that is applied - overlapping or nonoverlapping - knowing the
restriction of the solution to the boundaries of the subregions determines uniquely the so-
lution at the interior of the subregions, and the process of extending such restriction from
the boundaries to the interior involves solving local problems only. Therefore, domain
decomposition procedures frequently aim to obtain that- restriction and the problem of
obtaining the solution at the boundaries of the subregions may be referred as the “domain
decomposition problem.”

Time-dependent problems of parabolic type, when time discretization is applied, give
rise to elliptic problems at each time step and the discussion presented in this paper
applies to them in this manner. Some special methods for this kind of equation profit
from the local behavior of the responses [Israeli and Vozovoi, 1993}, but even if the
methodology is not specialized, when iterative procedures are applied, the locality of the
responses for this kind of equation produces rapid convergence.

3. Nonoverlapping Procedures

Consider the most general elliptic equation of second order, in any number of dimen-
sions, written in conservative form ‘

Lu=-V-(a-Vu)+ V- -bhutcu=fq 3.1
To apply domain decomposition methods, the region Q in which the problem is forinu-
lated is partitioned into a collection of disjoint subregions {2, ..., 2} and solutions

are constructed separately in each. However, when putting such local solutions together,
adequate “matching conditions” must be satisfied. They usually derive from physical
requirements of the models. For Eq. (3.1), one is usually led to

[(J=0 and [g—:] =0 onX (3.2

where T is the union of the intersections of the boundaries of the subregions (see Figure
1), and the square brackets stand for the jump - across T - of the function contained
inside.

Observe, in particular, that when the coefficients are continuous, Eq. (3.2) implies that
“diffusive flux” {(a- Vu) - n and “total lux” (a- Vu — bu) - n are continuous.

Consider first the one-dimensional case, for which the region 2 will be the interval
(0, {) and the subregions Q; will be subintervals (z;., z; ), where i = I,...,N. At cach

subinterval € , let u be a function defined on i and satisfying Eq. (3.1) there. The
boundary values which are relevant in §2;, constitute a 4-D vector

5= (ljx‘—l- v".‘-l,\Li/.'. l:.) (3.3)
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where [/ = (z;), Vij=d &/dz(z,). Observe that the four components of such a vector

are not independent; indeed, there is a 2 x 4 matrix E and a 2-D vector _i‘_ such that

R-§=F;, i=\.. N (3.4)

This is a syst.em of 2N equatlons in 4N unknowns. Introducing the notation 5’ =
(U._l, V, ,) and = (Ull V ) allows decomposition of the wmatrix R into two 2 x 2

submatrices _§_ and !__%+, so that Eq. (3.4) becomes

R-S=EF S +R-S, =F i=L..N (3.5)
while Eq. (3.2) is
B i+1
g,=43. (3:6)

Generally, Egs. (3.5) and (3.6), together with two boundary condmons constitute a

determined system for the 4N components of the vectors {§ , S S}. This is the basic
system of equations of nonoverlapping methods.

Different methods with nonoverlapping subdomains derive from different approaches
to solving this system of equations. A first option is to set, making use of Eq. (3.6),

i i i i+l
S= (U:‘-Vi) =8, =58_; i=1,...N~1 3.7)
Substituting into Eq. (3.5) one obtains
R-S+B -§=F i=1..N (3.8)

+

Equations (3.8), together with two boundary conditions, usually determine the value
of the function and its derivative at the N + 1 nodes of the partition. The system (3.8)
is a 2 x 2 block bidiagonal system and is the basis for application of dircct methods of
solution.

If a direct approach is used, one solves for the function and its derivative at cach of
the nodes. However, to develop domain decomposition methods, most frequently a trial
and error, or search, approach is applied. ‘To this end, observe that the Dirichlet problem
at each one of the subintervals is well posed and the values of the derivative at the end
points of the subintervals are determined in this manner; the essential process may be
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described as followsg Choose a collection of values {U?, ..., UN-1}, set (‘,".- =

1 1}
solve for /i and V; cach one of the equations of system (3.5), and compute

Ji = v — (39‘

Re 100sing new 1lues {U =0.

Extension of the previous discussion to more dimensions is relatively straightforward. 1f
one defines again the function J(z, y) by J = [Qu/dn}, on T, and assumes the Dirichlet
problem is well posed in each of the subregions, then J is a functional of the values
of the function u(z, y) on E. When a direct approach is used, the resulting matrices
are generally sparse because the value of J at a given point has a localized domain of
dependence. Thus, for example, consider two neighboring subregions. ©; and Q,. in
Figure 2, then at any point of the common boundary L;; = 0 N aQ;, the normal
derivative on one side is a functional of the values of u on 9%, while on the other side
it is a functional of the values on 99,. -

Q

Q Q
| v

FIGURE 2. The elemental subregions.

Hence, the domain of dependence of J at that point is 3; U9SY;. This would lead to a
block heptadiagonal structure of the matrix when a direct aproach is used. However, the
number of significant diagonals may be increased by the contmulty conditions at corners
(Figuré 1).

When a search approach is used, as when iterative procedures are applied, one searches
for a function U(z, y), defined on £, for which J = 0. The search approach is the
basis of all iterative methods. The different strategies that are followed by the iterative
procedures are intended to make the search more efficient. Maybe the most ¢lemcutal
iterative procedure is the Jacobi method [Allen e! al., 1988] and more sophisticated
methods frequently were derived with the intention of improving efficiency. One which
has been very successful is the conjugate gradient method [Hestens and Stiefel, 1952],
which in its original form can be applied to positive definite matrices only.

In the case of elliptic differential operators of second order, it is possible to associate
positive quadratic forms to nonoverlapping domain decompositions, when the differential
operator is symmetric and positive: b = 0, ¢ > 0, in Eq. (3.1). Indeed, this becomes
possible by introducing Poincaré-Steklov operators [Agoshkov, 1987]. A metiod for
doing this, which is more direct and simple and was introduced in Herrera ef al. {1994],
is explained next in a revised formn.

For simplicity Dirichlet boundary conditions will be considered exclusively, but the
procedure has more general validity. Let Dy be the subspace of functions of D, which
are continuons, vanish on the boundary, and sitisfy the homogencous differential equation
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in Q. Then, given ity and vy € Dy, the following identity holds:
—/; uyla-Viy]-ndz = /n(v‘fln -a-Viy + cugoy)dz (3.10a)
which exhibits the symmetry of the expressions involved. In addibtion .
—A ugla- Vig) - ndze = /ﬂ(va,, -a- Vig +cify)dz > 0 (3.106)

and the equality holds, if and only if iy = 0in Q. If u € D is a solution of the boundary
value problem then '

—/ 11”[g~Vﬁ"]-p_d§_=/ it;:£ud£—/ u(a-Viy) ndz
b - a an -

= / in fo dz ~ / usla-Vig) ndz  (3.11)
1] an =

where up is the boundary value of u. Observe that when uy € Dy is given, evaluation
of the last two integrals is possible because both fq and uy are data of the problem.

Assume for the time being that there is a function uy € Dy, such that uy = u on X
then for any @y € Dy, one has

—/ tpfa- Vig) ~ud§+2/ ugla- Viay] -ndz > / upfa-Vug]-ndz (3.12)
p>) - T - b -

and the minimum of the left-hand side is attained if and onlyifuy =uyg=uon . It
is finally observed that the left-hand member of (3.12) can be expressed by means of any
of the two following functionals

-?r_x(au)s/{va"-az-vau+ca%,}dg—2{/ imfndz—/ ua(ﬂ-Vflu)-nda}
1] a an =

(2 ‘lfln’\
and

gg(le)E—/‘; 1211@~Vflu]~ﬂdg?_—'l{./n lefnd£—/anua(g'Vﬁn)'ﬂd£} (3.13b)

Our conclusion is that a function uy € Dy satisfies the condition ug =u,on X -
here, u € D is a solution of the boundary value problem - if and only if the functionals
3y and Oy, which are identical, attain their minimum.

Taking the variation of these functionals two variational formulations follow; the first

S Von+ cinomiiz = [ fonde ~ [ wola-Tom)-ndz (3140
l o an =

characterizes any function u € D which takes, on £, the values of the solution  of the
boundary value problem, while the second one

—/ ﬂn[g'VvH]'ﬂf1£=/ vufnd£—/ usla - Vou) - nde (3.148)
z 1] an =

characterizes directly the values of u on . Of course, the full statement of these varia-
tional principles requires that Eqs. (3.14) be satisfied for every vy € Dy.

4. Overlapping Procedures

Going back to the one-dimensional case of Section 3, the domain decomposition of
the interval may be defined as the collection of subintervals Qi = (zi~1,2i41), where
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t=1,...,N —~ 1. These subintervals are not disjoint. Again, the domain decomposi-
tion problem may be transformed into finding the values of the solution of the prob-
lem at {z;,...,zy-1}, which in turn may be formulated as a search problem. Let
{Uy,...,Un_1} be a collection of values which are being tested as possible solutions of
this problem. Consider the Dirichlet problem in €, with boundary values U;_; and
Uisr, at xi—; and z;41, respectively. The value of the solution of this problem at r; is
linear in U;_y, Uiy and fq. Thus, it can be written as L* U;_; + Ly Uiy +G'(fa), and
the condition that characterizes the solution is

LiUiny = Ui + Ly Uiy = G (fa) (4.1)

This is a tridiagonal system. A first point to be observed is that only the values of
the function occur in the system and the derivatives are not involved. This is typical of
overlapping procedures. '

Let T;; be the set of internal boundaries contained in Q;; and T = U, Zij. Then
L= (U” 9Q;;) — 0. When U(z, y) is a function defined on L, the symbols Uy,
and Up,, will be used to represent _the_restrictions of such a function to ;; and aQ,;,
respectively. On every Q;;, consider the Dirichlet problem for which the boundary data
is Us,,. Then the restriction of the solution of this problem to T;; is linear on Us,, and
on fq, and can be written as L(Us,;) +G(fa). Any functioni U defined on I is a solution
of the domain decomposition problem if and only if

Us,, = L(Us,,)+G(fa) on I (4.2)

and the resulting system of equations is at most nine-diagonal. The size of the blocks
depends on the kind of discretization applied.

5. Conjugate Gradient Method

If the search space is a linear space, a basis for it can be constructed and the solution
be found by successively trying each of the members of the basis. If the dimension of
the space is N, this process would involve N steps: one for each new search direction.
The computations required are simplified if an orthogonal basis is available. However,
when N is large, construction of such a basis is generally quite expensive, since each
new element has to be orthogonalized with respect to each of the previous ones. A
fundamental advantage of the conjugate gradient method (CGM, or simply CG) is that
it supplies a simple manner of constructing new search directions which are orthogonal
to all those that have already been tried, except the very last one. Consider the equation

AU =3 (3.1)

where A is positive definite and symmetric with respect to an inner product and write
U, for the unique solution of (5.1). The procedure for constructing an orthogonal basis
may be described as follows:
(a) Choose U® arbitrarily.
(b) Define the error ¢* = U/, — U°.
(¢) Choose the first search diréction p' = Ae® =b— ﬁ_#o‘
(d) In the space spanned by {p', ..., p*}, where the system {p, ..., P} is orthog-
onal, choose U* so that ¢* L span A T
Note: This requires (/8 = (/%=1 4 a*pt with of = (cF, p*)/(p*, p*).

(¢) lucorporate Ac* in the scarch space.
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Note: Since ég" is orthogonal to {p', ..., E" }, the only requirement for the new
search direction p_:"“ is that it be orthogonal to p*. Thus, E“‘“ = Jef — ﬂ"“g",
with g = (d_g", E“)/(z", E"),

Final note: The term of = (¢*, p*)/(p*, p*) is not computable for an arbitrary inner
product since ¢* is not known. A suitable inner product is (¢*, p*) = ¢* - Ap* = p* de* =
Ek k= 2" (b- ﬁ{__Uk), where the dot stands for the standard Euclidean inner product.
For an algorithm derived in this manner, suitable for numerical implementation, see, for
example, Allen [1988].

6. Preconditioners

Another important property of CGM is that the manner of generating the new search
directions is not random; on the contrary, it is related to the solution of the problem since
AceF isincorporated at every step. Indeed, the angle between e* and A e* is controlled by
properties of the matrix A; more specifically, it has to be small if the condition number
is small. In other words, the selection of the search direction is very good when the
condition number is small. It can be shown [Golub and Van Loan, 1983, Section 10.2)
that

2k
o= 2 < ha - 2% [ 2] (©1)

where p is the square root of the condition number of A. Also. ||}| is used to indicate
the energy norm associated with A. From this relation it may be concluded that CGM
converges rapidly when the condition number is not large. However, if p is large, then
(p—1)/(p+1) is close to 1 and the performance of CG may be poor. When applying
the conjugate gradient method, the domain decomposition procedure may involve many
subdomains, and frequently this leads to systems of equations which are poorly condi-
tioned. In such cases means of diminishing the condition number of the system have to
be sought. One way of achieving such a reduction is by the use of “preconditioners.”

Before proceeding to discuss the preconditioned conjugate gradient (PCG) method,
some comments are in order, in particular, when a condition number must be considered
large. If we are dealing with a system of 1000 equations, then a condition number such
that 100 iterations are required for convergence is pretty large, but probably satisfactory,
since it reduces by a factor of 1/10 the number of search directions required to find the
solution. .

PCG consists in choosing a preconditioner - i.e., a matrix B, positive-definite and
symmetric — and writing the equivalent system

B'AU=B""b (6.2)

This system is symmetric in the inner product (U, V) = U BV and CGM will converge
faster when applied to (6.2) than when applied to the original system, if p', the square
root of the condition number of the modified system, is smaller than p: the closer to 1,
the faster.

Because of the importance of reducing the condition number effectively, a lot of work
has been done to develop efficient preconditioners. Noticing that the only matrix with
condition number equal to 1 is the identity matrix, preconditioners may be thought of
as approximate inverses of the original matrix 4. Considerable progress has been made
in the understanding of the problems associated with the construction of preconditioners

for systemis occurring in domain decomposition miethods (see, for example, Bramble ¢t
al. {1986, 1987]).
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Actually, the best strategy in the construction of such preconditioners depends on
many factors related not only to the nature of the system considered but also to the
frequency with which the same system will have to be solved (several accounts of the
matters involved may be found in Glowinski et al. [1988, 1990}, Chan et al. [1989a, 1989b]
and Keyes et al. [1991]).
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