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In recent years, the innovation of Massively Parallel Processor Systems has created the need
of a new algorithms for these architectures. The TH-collocation method is very suitable for
parallelization. In this paper, the implementation of the TH-Collocation Method on a Massively
Parallel System is carried out using the CRA Y T3D emulator and a CRA Y T3D supercomputer.
A distributed memory programming model is used, as it is explained here; furthermore, the
analysis points to particular procedures that produce optimal accuracy. The techniques for
the optimization of this program, using the GRAY utilities are discussed. Example calculation
illustrate the computational procedure and verify the theorical convergence rates.

1. Introduction
Field-scale simulations of fluids in porous media often involve problems that are so

large that solution on the full computational domain is either impossible or extremely
inefficient. Parallelization techniques [Bramble, 1986] , [Bramble, 1988], [Ewing, 1990],
have been developed to allow these large processes to be split into pieces that can be
solved independently and then put back together to give an approximation of the total
solution. The independence of the solution processes on the separate parts of the problem
gives extreme flexibility in the methods and allows efficient use of parallel architecture
supercomputers. The methods can simply separate sub domain solutions to divide the
computational effort, or can allow the use of different discretizations or even different
model equations on the separate domains. Thus, a simplified description of the physics
can be used in regions where the simplification is valid, and more rigorous models can
be used locally [Buzbee, 1974].

Many applications of fluid flow in porous media involve both large-scale processes and
highly-localized phenomena that are often critical to the physical behavior of the flow.
For large-scale problems, it is frequently impossible to use a uniform or quasi-uniform
grid that is sufficiently fine to resolve the local phenomena. Since these local processes
are often dynamic, efficient numerical simulations require the ability to perform dynamic,
self-adaptive local grid refinement. Normal introduction of local grid refinement tech-
niques destroys the vectorization capabilities of supercomputers and hence their efficienc.
Parallel techniques possess enormous potential for efficient local accuracy improvements
in many large-scale problems.

In this paper we will discuss the collocation discretization and the use Parallel System
using a GRAY T3D supercomputer. All of these computations illustrate the enormous
potential for new advances in the use of supercomputers in simulation using the lo-
cal refinement techniques. Finally, example calculations are presented to illustrate the

methodology.
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2. Preliminary Concepts
In this section, Herrera's algebraic theory of boundary value problems [Herrera, 1977],

[Herrera, 1982], [Herrera, 1984], [Herrera, 1985a, 1985b, 1985c], is briefly explained.
Consider a region 0 and the linear spaces Dl and D2 of trial and test functions defined

in 0, respectively. Assume further that functions belonging to Dl and D2 may have jump
dicontinuities across some internal boundaries whose union will be denoted by E. For
example, in applications or the theory to finite element methods, the set E will be the
union of all the inter element boundaries. In this setting, the general boundary value
problem to be considered is one with prescribed jumps across E. The differential equation
IS

/:'u=fn in a, (2.1)

where a may be a purely spatial region or, more generally, a space-time region. Cer-
tain boundary and jump conditions are specified on the boundary 8a of a and on E,
respectively.. When a is a space-time region, such conditions generally include initial
conditions. In the literature on mathematical modeling of macroscopic physical systems,
there are a variety of examples of initial-boundary value problems with prescribed jumps.
To melltion just one, problems of elastic wave diffraction can be formulated as such [He-
rrera, 1985c, 1986r The jump conditions that the sought solution must satisfy across
E, ill order to defille a well posed problem, depend on the specific applications and on
the differential operator considered. For example, for elliptic problems of second order,
contilluity of the sought solution and its normal derivative is usually required, but the
problem in \vhich the solution and its normal derivative jump across E in a prescribed
manner is also well posed [Herrera, 1986J.

The definition of a formal disjoint requires that a differential operator /:, and its formal
adjoint /:,* satisfy the condition that w/:'u -u/:,*w be a divergence, i. e.,

w£,u -u£'*w = \7. {Q(u, w)} (2.2)

for suitable vector-valued bilin~ar function Q(u,w). Integration ofEq. (2.2) over nand
multiplication of the generalized divergence theorem [Allen, 1988] yields

r {w£u .-: u£.w} dx = r
in ian

na(w, u) dx + l nE(U, w) dx

where

1?a(u,w) = Q(u,w).!!and1?E(u,w) = -[Q(u,w)].!!. (2.4)

Here the square brakets stand for the "jumps" across ~ of the function contained
inside, i.e., limit on the positive side minus limit on the negative side. Here, as in what
follows, the positive side of ~ is chosen arbitrarily and then the unit normal vector n
is taken pointing towards the positive side of~. Observe that generally £u will not be
defined on ~, since u and its derivatives may be discontinuous. Thus, in this article, it is
understood that integrals over n are carried out excluding ~. Consequently, diffe:rential
operators will always be understood in an elementary sense and not in a distributed

sense.
In the general theory of partial differential equations, Green's formulas are used exten-

sively. For the construction of such formulas it is standard to introduce a decomposition
of the bilinear function Ra (see, for example, Lions and Magenes [Lions, 1972]). Indi-
cating transposes of bilinear forms by means of an asterisk, the general form of such
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decomposition is
n&(u, w) = :f?(u, w) .!! = B(u, w) -C*(u, w), (2.5)

where B(u, w) and C(w, u) = C*(u, w) are t\VO bilinear functions. When considering
initial-boundary value problems, the definitions of these bilinear forms depend on the
type of boundary and initial conditions to be prescribed. A basic property required of
B(u, w) is that for any u that satisfies the prescribed boundary and initial conditions,
B(u, w) is a well-defined linear function of w, independent of the particular choice of u.
This linear function will be denoted giJ (thus its value for any given function w will be
g&(w)), and the boundary conditions can be specified by requiring that B(u, w) = g&(w)
for every wE D2 (or more briefly: B(u,.) = 9a). For example, for the Dirichlet problelll
of the Laplace equation, it will be seen later that B( u, w) can be taken to be u~ on an.
Thus, if u is the prescribed value of u on an one has B(u, w) = ua~ for any function

u that satisfies the boundary conditions. Thus g(w) = u&~ in this case.
The linear function C* (u, .), on the other hand, cannot be evaluated in terms of the

prescribed boundary values, but it also depends exclusively on certain boundary values of
u (the "complementary boundary values"). Generally, such boundary values can only be
evaluated after the initial-boundary value problem has been solved. Taking the example
of the Dirichlet problem for the Laplace equation, as before, C* (u, w) = w~ and the

complementary boundary values correspond to the normal derivative on an.
In a similar fashion, convenient formulations of boundary value problems with pres-

cribed jumps require constructing Green's formulas in discontinuos fields. This can be
done by introducing a general decomposition of the bilinear function RE(U, w) \vhose
definition is pointwise. The general theory includes the treatment of differential operators
with discontinuous. coefficients [Herrera, 1985c]. Ho\vever, in this article, only continuous
coefficients will be considered. In this case, such decomposition is easy to obtain, and it
stems from the algebraic identity:

m(u, w)] = :f?([u] , w) + Q(it, [w]), (2.6)

where

(2.7)

(2.4) \vith

[u] = u+ -u_, it = (u+ + u_)f2.

The desired decomposition is obtained by combining the second of Eqs

(2.6):
1lE(U, w) = .1(U, w) -K.(u, w)

with

.1(u, W) = -Q([uJ, tV) '!!, (2.9a)

K-"(u,w) = lC(w,u) = Q(u,[wJ) '!!. (2.9b)

An important property of the bilinear function .1(u, w) is that, when the jump of u is
specified, it defines a unique linear function of W, which is independent of the particular
choice of u. When considering initial-boundary value problems with prescribed jumps,
the linear function defined by the prescribed jump in this manner will be denoted by
JE (thus its value for any given function w will be JE(W) and the jump conditions at
any point of E can be specified by means of the equation .1(u,.) = JE. In problems
with prescribed jumps, the linear functionallC"(u,.) plays a role similar to that of the
complementary boundary values C"(u, .). It can only be evaluated after the initial-
boundary value problem has been solved and certain information about the average of
the solution and its derivatives on E is known. Such information will be called the

"generalized averages".
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Introducing the notation

(Pu, w) = In w£u dx, (2.10a)

(Bu, w) = fan B(u, w) dx, (2.10b)

(Ju, w) = IE .J(u, w} dx,

(Q.u,w) = lw£.udX,

{C.u,w):;= { C(w,u)dx,
Jan

(J{.u, w) = ( K,(w, u) dx
Jan

(2.10c)

Eq (2.3) can be written as

(Pu, w) -(Q.u, w) = (Bu, w) -(C.u, w) + (Ju, w) -(J(.u, w). (2.11)

This is an identity bet\veen bilinear forms and can be written more briefly, after rear-
ranging, as

P -B -J = Q. -C. -K.. (2.12)

This is the Green-Herrera formula for operators in discontinuous fields [Ewing, 1990},
[Herrera, 1985a].

The~ initial-boundary value problem with prescribed jumps can be formulated point\vise
by means of Eg. (2.1) together with

8(u,.) = 98 and .J(u,.) = jE. (2.13)

In order to associate a variational formulation with this problem, define the linear
functionals f, 9, j E D; by means of

(I, w) = 1wIn dx, (g, w) = r gn(w) dx, (j, w) = r jE(W) dx. (2.14)
n Jan JE

Then the variational formulation of the initial-boundary value problem with prescribed..
jumps IS

Pu = I, Bu = g, Ju = j. (2.15)

The bilinear functional J just constructed, as well as B, are boundary operators for P,
which are fully disjoint. (For the definitions of the concepts that appear in italics here,
the reader is referred to Herrera's original papers [Herrera, 1977, 1982, 1984, 1985a,
1985b, 1985c, 1986]). When this is the case, the system of equations (2.15) is equivalent
to the single variational equation

((P -B -J)u, w) = (/ -9 -j, w) 'v'w E D2. (2.16)

This is said to be "the variational formulation in terms of the data of the problem",
because Pu, Bu and Ju are prescribed. Making use of formula (2.12), the variational
formulation (2.16) is transformed into

((Q*-C*-K")u,w) = (/-g-j,w) 'VwED2.. (2.17)

This is said to be "the variational formulation in terms of the sought information" be-
causeQ.u, C.u and J{* are not prescribed. The variational formulation (2.16) and (2.17)
are equivc\'lent by virtue of the identity (2.12). The linear functionals Q*u. C*u and J{*u
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supply information about the sought solution at points in the interior of the region n,
the complementary boundary values at an, and the generalized averages of the solution
at }:::, respectively, as can be verified by inspection of Eqs. (2.10), and are illustrated in
the examples that follow.

Localized adjoint methods are based on the following observations. When the method
of weighted residuals is applied, an approximate solution u E Dl satisfies

((P-B-J)u,w") = (/-g-j,w"), a = 1,...,N, (2.18)

where {wl,..., wN} C D2 is a given system of weighting functions. However, these
equations, when they are expressed in terms of the sought information, become

((Q. -C.-I{.)u,w") = (/-g-j,w"), a = 1,...,N. (2.19)

Since the exact solution satisfies (2.17), it must be that

,N. (2.20){(Q*-C*-J{*)u,wa) = {(Q*-C*-J{*)u,wa) = (f-g-j,wa), a= 1,

Either in this form or in the form

((Q*-C*-J{*)(u-u),wa) = 0, a = 1,...,N (2.21)

Egs (2.20) can be used to analyze the information about the exact solution that is
contained in an approximate one. In localized adjoint methods, these observations have
been used as a framework for selecting more convenient test functions.

In section 3, attention will be restricted to functions which are continnous across }::;,
with a possibly discontinous first derivative. Then, for the most general elliptic operator
of second order, to be considered there, we have

ow au
B(u,w)=(an~+b.n)u, C(w,u)=anW~; (2.22)

while

(2.23)

with an =!!. ~ .n.

3. TH-Collocation.
To illustrate Trefftz-Herrera Domain Decompositions, let us discuss the general elliptic

differential equation of second order defined by

£u == -V.(~.\7u)+\7.(hu)+cu (3.1a)

whose formal adjoint is:

£*w = -'\].(~.'\]w)-J2.'\]w+cw, (3.1b)

in t\VO dimensions. Referring to Fig. 1 of Herrera et. ai, 1996, in these proceedings,
CO(Q) weighting functions which are bi-cubic -i.e., cubic in x and in y, separately- on
the elemental rectangles, will be used. When standard collocation is applied, it is usual
to represent such polynomials by means of Hermi tes; however, that will not be done here
since it is not convenient for our purposes.

Local coordinates will be introduced; more specifically, linear mappings will be used
for transforming some subregions of Q into the unit square Q[ = [0,1] x [0,1]. Then th.e

formal adjoint, Eq. (4.1b), is transforined into

£*tV = -'\](~ .'\]tl.l) -!!. '\]tll + Cw (3.2)
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where A,:!;! and C are related to !!, hand c by means of the mapping. Bi-cubic polyno-
mials defined on n1, constitute a linear space, denoted by n , of dimension 4 x 4 = 16.
Define f. and 17 by f. = x-I and 17 = y -1, then the subspace whose members contain
the factor f.17, denoted by fIE-1/ has dimension 9 and that whose members vanish on the
whole boundary anI of the unit square, denoted by no, has dimension 4. Observe that
no c nE-1/ and that the dimension of algebraic complements of fIo with respect to fIE-1/ , is
5. In Table 1, the functions lV"(X,y), v = 1,...,4 and B"(X,y), v= 0,...,4, have been
defined. The system {Nil} constitutes a basis of fIo. while {B"} generates an algebraic
complement of no with respect to nE-1/'

For constructing the weighting functions, Gaussian collocation is applied to the poly-

nomial representation:
4

,\'"2) + }:C;jNj(Xl
j=l

~V;(X .\2) = BV(X X2)

and the four coefficients CJ are detexmined by the condition £* W" = o which is imposed
at four Gaussian points of the unit square nI. In principle, five approximate solutions
of the adjoint differential equation can be constructed in this manner, corresponding
to v = 0,...,4. However, only the solutions associated with v = 0,1,2 will be used
in the sequel, because other\vise the resulting system of test functions would not be
linearly independent since some repetition would occur when developing the test functions
associated with neighboring nodes. This yields three approximate solutions and similar
sets of sol4tions can be constructed in the remaining subregions nIl, nIl I and nIV (Fig.
2 of Herrera et al., 1996, in these proceedings), of the square [-1,1] x [-1,1].

When putting together such solutions in a continuous manner, five approximate so-
lutions, that will be denoted by W"(X1,X2), v = 0,...,4, are obtained. They \\'ill be
characterized as shown in Fig. 1.

4
w

I I I
I I:>:::~::' ,/////,I:~"~::~;Y/////~.

FIGURE 1. The supports of the weighting functions.

WO(O,O) = 1 and its support is the whole square [-1, 1] x [-1, 1]; wl (.Y 1, X2) vanishes
identically on 011 U 01 I I; thus, its support is 01 U OIV; W2(X l, .\'2) vanishes identically
on OIIIUOIV; thus, its support is O/UOII; ~V3(Xl, X2) vanishes identically on o/unlv;
thus, its support is 011 U 0111; W4(Xl,X2) vanishes identically on 01 U 011 thus, its

support is 0111 U OIV.
Let OliO (II = 1, ...,4) be the left, lower I right and upper boundary of 0, respectively,

and observe that when a node belongs to olin, only W" vanishes on the boundary. In
conclusion, with every interior node (Xi, Yj) of the partition there are associated five test

functions, satisfying approximately

(Q- =0

at bol.ndary nodes there is only one: and
11ellts in the x and y directions is I and J,

they will be denoted by wij (II = 0,...
at corner nodes none. If the number of
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3

{1]Xy2

{1]X

4

~1/X2y2

Cl1Y

1

{1/XY
{1/X2

TAl

v

NV(x,y)

BV(x,y) ~1l

respectively, then this yields a system of (I + l)(J + 1) -4 linearly independent test

functions.

4. The trial functions
The test functions that have been developed have the property that concentrate all

the information on the internal boundaries E and correspondingly, the trial functions
will supply information on E, exclusively. In particular, a function itH E VIH will be
constructed by collocation which satisfies, approximately, the first of Eqs. (2.3). The
following notation is adopted: when p and q are functions defined in 0, the relation
p ~ q, means that p = q at each one of the Gaussian points of the elemental rectangles.
The basic trial functions will be denoted by ~rj' where the ranges of i,j and v, are the
same as for the test functions; they satisfy (P -B -J)u = O. More precisely, they satisfy
£~rj ~ 0, are continuous and vanish on the external boundary aO. The construction of
such functions is the same as that of weighting functions, except that £* is repla<;ed by

£ .The approximate solution has the expression

UH = ~ U!'.<I>':'. (4 1)L... I) I) .

where the coefficients Uij are determined by the system of Eqs.(5.3). This is

Mkl~jUij = Fkl (4.2)

where summation convention is understood -repeated indexes are summed over their
ranges- and

k[:'~j = -h "O(wr"<I>ij)dx = -han<I>ij[ow/onjdx (4.3a)

while

Fkl =< f-g,wfl >= r wflindx- r ua(~.\7wfl+hwfl) .!!dx. (4.3b)
in Jan

It is interesting to observe that

-h KO(W~I' <I>i,j)dx = k~. \7wfl. <I>i,j -(h. \7wfl + cwf,)<I>ijdx, (4.4)

which allows replacing the surface integral over}::: by a volume integral, which needs to be
carried out over the intersection of the supports of w:1 and <I>ij' only. If Gaussian integra-
tion is applied, the fact that collocation points and the pivotal points for the quadrature
coincide, makes the process very economical. As has already been mentioned, the func-
tion UH gives an approximate solution on}:::. If we wish extending this information to
the interior of the subregions, it is necessary to construct up such that £Up ~ in and
vanishes on }:::. This involves local problems only and can also be done by collocation,
and constitutes postprocessing of the solution. Then up + UH is an approximation to
u everywhere. Finally, it must be mentioned that \vhen £ is positive definite, so is the

system of equations (5.2).

2

~1)X2y

~1)y2

ILE 1.
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5. Results
A wide variey of computations have been performed on supercomputers using the

techniques described in the previous sections. Many of these computational experiments
were of such size and complexity as to test the computational limits of the computers
used.

Of course, the implementation of any algorithm in a parallel processing enviroment
is extremely sensitive to the data structure and its use. The memory characteristics
of the computer govern the algorithms and their efficiencies. The relative success of
the compilers for shared memory machines are indicative of the greater difficulty in
developing efficient parallel algorithms on distributed memory machines for the complex
problems arising in reservoir simulation applications.

The CRA Y supercomputer offer multi-tasking for implementation of parallel process-
ing, thus allowing the user to provide separate routines for tasks to be run in parallel. In
addition, GRAY also allo\vs "microtasking" for parallelism with each separate routine.
However, the data structure detetmines the efficiency of each of these types of parallel
algoriLllllls.

To demonstrate the applicability of the computational algorithm, and to verify the
theoretical results of the sections, several numerical examples are solved. A completely
general computing program was developed and implemented on a GRAY T3D supercom-
puter.

The procedure is very easy to program and turns out to be quite versatile. Optimizing
a program begins by finding where the main work load is located, that is to say, locating
which parts of the code are the most time-consuming. This was done using the GRAY
utilities Flo\vview and Perfview. Compiler options and directives were used to refine
the optimization. A very useful one was the AtExpert tool. With this utility one can
visualize the parts of the program that run in parallel and estimate its speed-up. Fig. 2,
based on an actual ATexpert window, illustrates this.

.
p

.

.
d
u
P

4.00

2.00
114

0.00
PARALLEL REGIONS

Subroutine malriz

3.00s
p
e
e
d
u
P

~.oo

1.00

0.00,

0.00 1.00 2.00 3.00 '.00

CPU's

FIGURE 2. Serial and parallel portions (upper panel) and overall speedup (lower panel) as
determilled by ATcxpert.
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Numerical results computed using this methodology are shown in the convergence
plots of Fig. 3. The figure shows the solution error as a function of grid spacing for cases
using different choices of interpolation knots. All convergence rates correspond to the
theoretical predictions of the previous section.

30- 9 8 7 6 5

j / /-
4

25 3
2

20-
0

~-
~

on
0

'"f

1

15

1.0

5

0

0 1 4 52 3

Log 10 (Num. Subintervals)

1: G=3 m=3.9 4: G=6 m=9.7 7: G=9 m=14.S

2: G=4 m=S.9 S: G=7 m=11.4 8: G=10 m=16.1

3: G=S m=7.9 6: G=8 m=13.1 9: G=11 m=18.4

FIGURE 3. Solution errors for U" + (2X2 + 4x)/[(x + 1)(x2 + 2x + 2)]u' + [1- 2/(X2 + 2x + 2)]u
= 1/(x2 + 2x + 2) with Dirichlet's conditions u(O) = 0.5, u(l) = 0.2. The solution is
u(x) = 1/(x2 + 2x + 2); the experimental slope is m.

The computer program was tested by applying it to three equations, but in this article
just the results for the first equation are presented; the boundary conditions were Dirich-
let conditions. r"'or everyone of the examples, one can choose arbitrarily the number E
of subintervals and the number n of collocations points. When n is fixed, this defines a
straight line of slope 2n -1.

Fig. 3 displays the negative value of the error decimal logarithm, at the nodes, versus
the decimal logarithm of the number of subintervals considered in a certain position. As
expected, when the weight function degree is imposed, straight lines are obtained as the
number of subintervals varies. The experimental slopes of these straight lines also appear
for G = 3,4,5,6,7,8,9,10 and 11.

6. Conclusion
The algebraic theory for numerical methods, as developed by Herrera [Ewing, 1990],

[Herrera, 1977, 1982, 1984, 1985a], provides a broad theoretical framework for the de-
velopment and analysis of numerical approximations. Analysis of the method provides
error estimates. Furthermore, the analysis points to particular procedures that produce
optimal accuracy. Examples developed in this article illustrate the computational proce~
dure and verify the theoretical convergence rates. Actually, the method presented here
has considerable generality and its applicability is not restricted, by any means, to cases
where the discretization procedure used is collocation.

i"rom a more general perspective, the results of Ulis article illustrate some of the advan-
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tages of an approach for developing algorithms to numerically treat Ordinary Differential
Equations that the authors are advocating, and whose basic ingredients consist of (a)
identifying the information about the sought solution contained in the approximate one,
and (b) using this insight to choose the interpolation procedure.

Finally, we want to emphasize that parallelization using optimal collocation forms
a general and powerful framework for investigating and comparing a wide variety of
numerical methods for problems for Ordinary Differential Equations. The framework
motivates different choices of test functions to approximate different properties of the
unknowns, such as fluxes. The general theory is expanding to provide more insight.
These techniques appear to have enormous flexibility and potential for treating many
applications of fluid flow in porous media.
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