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A non-overlappingTH-domain decomposition
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In a previouspapera classof domaindecompositionprocedures,whichmaybe
viewedas a generalizationof the Trefftzmethod,was announced:TH-domain
decompositions.Theiressentialfeatureis that localsolutionsare not matched
directly,but insteadare usedas specializedtestfunctionswiththepropertythat,
whentheyareappliedas weightingfunctions,theinformationisconcentratedon
the internalboundariesof the subdomains.In thismanner,the solutionon the

domainisconstructed.In thispapersucha method,whichhasalreadybeen
usedin somespecificapplications,ispresented.~ 1997ElsevierScienceLimited

Key words: domain decompositionmethods, numerical methods, partial
differentialequations.

1 INTRODUCTION

Domain-decomposition methods for the numerical
solution of partial differential equations have received
much attention in recent years.1 At present, this is
mainly due to the fact that they constitute a very
effectivemanner of parallelizing numerical models for
continuous systems.Parallel computing is already a very
important resource used by supercomputers and it is
expected to be even more important in the future.

There are additional reasons for the interest in
domain-decomposition methods, such as domains of
irregular shape can be decomposed into more regular
subdomains, and regions of relative nonuniformity
of the differential operator or roughness of the
solutions can be isolated into different subdomains.
This paper presents a brief description of domain-
decomposition methods and discussesnew options for
their formulation.

A theoretical approach to domain decomposition
deals with the systems that are obtained after the
differential equations have been discretized — the
d — but it is also possible to
formulate domain-decomposition procedures treating
the differential equations before discretization — the
c In this paper the latter approach
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de Matemhticas Aplicadas y Sistemas, IIMAS-UNAM,
ApartadoPostal22-582,14000Mexico,D.F. Mexico.e-mail:
iherrera@tonatiuh.igeofcu.unam.mx.

will be applied because it is more elegant and has the
advantage of permitting the use of the known properties
of partial differential equations in a direct manner.
In addition, it is always possible afterwards to give
discretizedversions of the results so obtained.

In the exposition that follows the different methods
will be derived from a unifiedperspective.This is based
on the experience and clarity that has been gained
through the considerableamount of work that has been
done in recent years. This way of presenting matters has
clear expository advantages, but it does not correspond
to the way in which, historically, the methods were
developed. In domain-decomposition methods, the
region in which the problem is formulated is split into
several, usually many, subregions. Given a differential
equation, consider the set of its solutions at each one of
such subregions. Then, the main objective of domain-
decomposition methods is to select a solution at each
subregion in such a way that suitable matching
conditions are satisfied and the sought solution, over
the whole region, is constructed in this manner.

Generally, the methods may be classified into two
broad categories, depending on whether the subregions
are disjoint — non-overlapping methods — or they
have non-void intersections — overlapping methods.
The main difference between these two kinds of
procedures is the way in which the matching conditions
are applied. For elliptic equations of second order, for
example, the non-overlapping procedures require the
solution, together with its normal derivative across the
common boundaries of the non-overlappingsubregions,
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to be continuous. On the other hand, due to the manner
in which the matching conditions are imposed when
using overlapping procedures, for the same kind of
equations the smoothness of approximate solutions is
relaxed. This occurs since only the function itself is
required to be continuous, but its normal derivativesare
generally discontinuous.

Only elliptic differential equations of second order,2
will be considered in some detail in what follows.In this
case, independent of the kind of domain decomposition
that is applied overlappingor non-overlapping,knowing
the restriction of the solution on the boundaries of the
subregions, the b determinesuniquely
the solution at the interior of the subregions. In
addition, the process of extending such restriction
from the boundaries to the interior involves solving
local problems only. Due to this fact, domain-
decomposition procedures frequently aim to find such
a restriction and the main goal of the ‘domain-
decomposition problem’ is obtaining the solution at
the boundaries of the subregions. A feature that
characterizes that restriction is the following: when it
is extended to the interior of the subregions, in the
manner stated before, the resulting normal derivatives
are continuous across the internal boundaries. The
procedures that are usually applied in the continuous
approach are based on this property.3–5

However, there is another approach to determining
the solution of the d o
which has recently been proposed by Herrera:6 TH-
domain decomposition.It is based on a generalizationof
the Trefftz method (Trefftz-Herrera method7). A very
successful application of this point of view is the
localized adjoint method.8’9Essentially, it is based on
the fact that when local solutions, in the subregions of
the domain decomposition, of the adjoint differential
equation are applied as weighting functions — in the
method of weighted residuals — all the information
about the sought solution contained in approximate
ones, refers to the solution values at the internal
boundaries 10–13In particular,if the systemof weighting

6,14 the Values of the approxi-functions is TH-complete,
mate solutionat the internal boundariesare exactlyequal
tothose of thesolutionof theboundaryvalueproblem.An
important property is that TH-domain decompositionis
applicable to differential equations associated with
symmetricand non-symmetricoperators, and the systems
of suchequations.

Time-dependent problems of the parabolic type,
when time discretization is applied, give rise to elliptic
problems at each time step and the discussionpresented
in this paper is also relevant for them. Some special
methods for parabolic equations explicitlyprofit from
the locality of the fundamental responses,15but even if
the methodology is not specializedin this manner, when
iterative procedures are used, rapid convergence is
usually achieved.16

2 DOMAIN-DECOMPOSITION FORMULATION

The general ideas of the method are outlined next.
Consider the boundary value problem (BVP) defined

in Q (Fig. 1), associated with a general elliptic
differentialoperator which consists in satisfying

~Zl > –v . (Q. vu) + v . + = f~ in 0—
(1)

subject to Dirichlet boundary conditions:

@ = %(3) in 3 !2 (2)

Generally, the matrix Q is assumed to be positive
definite.

—

A partition {fll,..., fl~} of $2into subdomains will
be considered and the internal boundary, separating the
subdomains from each other, will be denoted by X
(Fig. 1). In addition, define~ifl = do n 8Qi.Of course,
~i~ is void when the closure of fli lies in the interior of
Q; however, the relation

~fli C Z U ~i!d (3)

is always satisfied.
The goal of domain-decomposition methods is to

construct the solution (u) of the BVP, by solving
exclusivelyboundary value problems in each fli (Fig.
1) separately. To this end, for each i = 1,.. ., N, define
the function upi, in Q, as the unique solution of the
boundary value problem

c = fQ in fli (4)

subject to the boundary conditions

Upi(E)= u~(~) in ~i~; U = J in X
(5)

where V(X) is a function defined on Z, suitably chosen.
In particular, V(E) can be chosen to be identicallyzero
on .X,and for simplicitywe assume this in what follows.

Fig. Domaindecompositionsubregions.



Having defined ~Pi(~) for i = 1,..., N, the function
UP(X)is defined in o by

W(3) = %&) &● fli i=l ,. .., N (6)

Clearly, the function UP(X)so defined, is continuous
in 0, but generally, the normal derivative of up is
discontinuousacross E, and the followingproposition is
straightforward.5’*7

P 1
function U(X)be the solution of the BVP in fl.

Then, the function UH(E),defined in ~ by uH ~ u – UP,
is the unique solution of the boundary value problem
with prescribed jumps (BVPJ) on .X, defined by the
followingconditions:

d = O
1,..., N), s = O E G

~ itS

d d

[ ~“ ‘ ” . o ~
Here, the square-brackets stand for the value of the
‘jump’across Z (value on the ‘positive’sideminus value
on the ‘negative’one) and I-Iis taken pointing towards
the positive side.

C

= = O
c
f a

a a
a

This is becausewhen the restriction to X, of the function
UH(X)introduced in Proposition 1, is known, the
function itself can be constructed, at each ~i

1,.. ., N), by solving a local Dirichlet problem in
~, since 801 c Z U 810 c X U 6’f2and u~ = Oon 80.

3 THE ALGEBRAIC FORMULATION AND
TH-DOMAIN DECOMPOSITION

Consider two linear spaces, D1 and D2, of functions
defined on a region fl. Members of and referred
to as trial and test functions, respectively,may have
jump discontinuitiesacross some internal boundaries Z
Linear operators - where the
algebraic dual of D2 (i.e. the space of linear functional
defined on will be considered in what follows.As it
can be seen, there is a one-to-one correspondence
between such operators and bilinear functional defined
on @

In Herrera’s algebraic theory of boundary value
problems, such problems are formulated by means of

two variational forrnulations:8-10one in ‘terms of the
data’

– B – = – g – Vw E

(8a)

and the other one in terms of the ‘sought information’:

((Q* - C* - K = ( f - ~ - W) Vw E

(8b)

where j E are linear functional definedin terms
of the data of the problem. Both variational formula-
tions are equivalent because the operators Q*, C*,

A which are defined so that they satisfy the
‘Green–Herrera formula’:9

P – B – J = – –

In the more general case of higher order equations or
systemsof equations — application of theory to systems
of equations has been explained in9 — the operator J
associated with the jumps of the functions and their
derivativesacross internal boundaries, and it is additive
in the jump of the function itself the jump of the
first derivative etc., so that it can be written as
J = + + . . . + wherenisthe highestorder of the
derivativesoccurring in Similarly, which is asso-
ciated with the averages across the internal boundaries,
can be written as

~“ = KO*+ ~]” + . . . + K“’ (lo)

For second-order equations, to which attention will
be restricted, the operators J and K will be written as
sums: J = + J 1 and K = + and the linear
subspaces c and c willbe characterized
as follows:ii ~ and w E if and only if

- B - = O and (Q - C - K1)w= O
(11)

respectively.When w E eqn (8b) reduces to

= - g (12)

when a system W c TH-complete, the fact
that a trial function ii E satisfieseqn (12) for every
w E W, implies that 3U G solution of the boundary
value problem, for which

= (13)

4 VARIATIONAL FORMULATION AND
POSITIVENESS

In what follows, the most general elliptic operator of
second order will be considered, written in conservative
form:

Li?u= –v . (g. vu) + v .&4+ Cu (14a)

Its formal adjoint is:

&*w = –v . (g. Vw) – ~ . Vw + Cw (14b)



In particular ~ is assumed to be coercive (thus,
positive definit~). As described in Section 2, the
domain Q is decomposed into a system of subdomains
fli, i= 1,. .., N (Fig. 1), and the union of the common
boundaries between the subdomains is denoted by X.
The boundary value problem with prescribed jumps, is
defined by

= f in Q (15)

subject to suitableboundary and jump conditionson dfl
and Z, respectively.

The variational formulations of Section 3 can be
applied to this problem if the corresponding operators
are defined by:y

/
(Pu,w) = w3?udx;

n

/
(Q*u,w) = u~$wdx

Q

(Bu,w) =
f

@ dx;
ao

(c*u, w) =
1

%(w, dx
ao

/
( = ~ w)dx;

U) =
1

c%_O(W,U)dx
E

I(.h,W) = /J1(u,w)dx

/
(KIW, U) = ~X’(w, u)dx

(16a)

(16b)

(16c)

and
(16d)

# -w) = -~. +!?W)[u];
(17a)

g 1 w) = w .vu]

and

@(w, u) = g .[g.Vw + !2W]zi;
(17b)

X’(W, u) = –[W]IJ. g“.vu

The square brackets and the dots stand for the ‘jump’
and the ‘average’ across the discontinuity, of the
corresponding functions. Thus, for example,

[u]= u+ – u-, L = (u+ +

Also, the bar on top means that the dot refers to the
whole expression covered by it. In addition, it will be
understood that eqn (10) holds with n = 1, i.e.

J = J“ + J1, K = + (19)

On the other hand, @(u,w) and %?(w,u) = %“(u,w)
are two bilinear functions whose definitionsdepend on
the type of boundary conditions to be prescribed.9
When the boundary conditions are of Dirichlet type —

to which the following discussion is restricted — one
can define

97(U,w) = U(Q “Vw + bw) “n,—

f%$(u,w) = W(Q .vu) . ~.
(20)

A possible physical interpretation of the ‘comple-
mentary boundary values’, n. ~. Vu, is diffusive flux—
across the boundary.

Assume, in particular, that the boundary and jump
conditions are

u = u~ on dfl;

= o, [~.vu] . ~ = o on Z

This corresponds to a Dirichlet problem

(21)

in which
the sought ~olution, together with-diffusive flux, are
continuous across X. When g, as a function of position,
is continuous, these conditi&nsare fulfilled,if and only
if, u and its first-order derivativesare continuous across
Z. Then the functionals~, g andj, introduced in Section
3, are:

whilej - O;i.e. (j, w) = O,Vw E
The variational formulation in terms of the ‘sought

information’ (eqn 8b), yields information about the
sought solution in the interior of the subdomains (the
term the complementary boundary values on
80 (the te.rrn(C*U,w)), the normal derivativeon X (the
term and. the value of the solution itself
on X (the term In order to concentrate
the information on the value of the sought solution
on 2, exclusively,weighting functions which eliminate
the information everywhere else will be chosen. This
req~ires dropping the terms (Q*u,w), (C*U,w) and

This is achieved if the weighting functions
satisfy the condition (Q – C – K 1 = which is
equivalent to

9*W = o, %f(w,.)= Oand fll(w,.) = O (23)

or more explicitly

–v . (a . Vw) – ~ . Vw + Cw= o in each fli—
(24a)

and

W=() on ~fl; and [w]= O on E (24b)

Thus, for the case under consideration, the subspace
D2~ c D2 of Section 3, is the subspace of functions
which are continuous, vanish on the boundary and
satisfythe homogeneousdifferentialequation, in each fli
separately. For such test functions the variational
equation in terms of the sought information reduces to
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eqn (12), i.e.

-(KO”U,w) = (f-g -j, w) (25)

If, as it willbe assumedin what follows,W c a
TH-complete system, then the fact that a trial function
ii c satisfieseqn (25) for every w E W, impliesthat

KO*ti= KO”u (26)

If we restrict attention to continuous trial functions i,
then from eqns (16), (17) and (22), it followsthat when
test functions WH are taken from

= [ (27)

where = and a more explicitstatement of the
variational pri~ciple is

J
‘(~”’ ii,WH)= – ~[a.dWH/dn]tidX

one:

I-(KOtiH, WH) z - =&H[an~WH/&l]d&

VwE w (31a)

characterizesdirectly the values of u on X, and it can be
applied using any trial function tiHE IIOtIN3XSSdy
belongingto The second one:

/
– = ~(vi& . + C

[- f
characterizes any function tiHc which takes, on Z,

—— WH ~ d~ the values of the solution of the boundary value

The case when

—
!

ua(an 8wH/~n b -EwH) d~
aa

vw~ G w (28)

the differentialoperator is symmetric
(!?~ 0), has special interest. Th&, it is convenient
taking = = D and, to simplifythe notation, write

= Also, observe that due to the symmetry of
the differentialoperator:

J“ = = (29)

Given tiHE and wHc the identity

I
‘(~O’tiH, WH)= – ~ tiH[a.8WH/&]d~

I
= ~ & +

(30a)

holds; it exhibits the symmetry of the expressions
involved. In addition, when c >0 one has

I
S - ~~H[an~fiH/&Z]dX

/
= $ViiH “~”VGH+ cti~)d~ ? O

(30b)

and the equality applies, if and only if iiH= O in !2.
Thus, the restriction ~“ (go: ~ of the operator

to positive definite. Observe that eqn (30b)
exhibits as a Poincar6-Steklovoperator.18

In view of the identity (30a), there are two equivalent
expressions for the variational principle (28). The first

problem. Observe that in order to supply this equation,
the trial function iiHmust belong to

In viewof the symmetryof and eqn (29),
the variational principle (31a), can also be written as:

Vwe (32)

This equation characterizes the jumps of a function
i2HE such that tiH= u, on Z. The following
discussion clarifies this statement. The right-hand side
of eqn (32) involves integrals over 0 and Ml, and for
later developments it will be useful to express them as
integrals over Z, as was done for the left-hand side of
eqn (31a). Let and uH be defined as in Section 2, i.e.
JZUP= in fli 1,..., N), UP= ua on Ml, UP= O
on Z and up + uH = u, where the function u is a solution
of the boundary valueproblem. In viewof the definition
of up, it is clear that = u on Z. Also, E and it
can be seen that

J = =

Hence

(JIUP, WH) = –(JIUH, WH) = –(KOUH, WH)

= –(KO*UH, WH) =

Using eqn (25), this permits writing the variational
principle of eqn (32) in the form:

‘(./’&,&,WH)= ( Vwc w (35)
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or more explicitly:

—
/

W~[a.diiH/dn]d?
E

(36)

It can be shown that this equation is satisfied, if and
only if

[a.8tiH/dn] = ‘[a.dUp/~n] on X (37a)

For continuous coefficientsthis reduces to
[tX2H/8n]= -[~up/&z] on X (37b)

Finally, from the above discussionit is easy to see that
eqn (36) is satisfiedby a function iiHc if and only
if, ~H= u on ~.

The following remarks are also relevant. Equation
(36) implies that

s
d~ –

/
ua(a. 8WH/dn)d~

n m

and the variational principles of eqn (31), can be
replaced by

- i 6’wH/6’n]
E

Equation (39a) has special interest because it permits
expressing the variational principle in a form that
involvessurface integrals over E, exclusively.

Before leaving this section, it must be mentioned that
a minimum principle can be formulated, because the
operator ~: A positive definite. There are
two expressions for the functional associated with this
principle:

(40a)

and

(40b)

The minimum principle states that either one of
these expressions attains its minimum on if
and only if ilHc satisfies eqn (26) for a solution
u G of the boundary value problem. Again,
functional ~~(iiH) of eqn (40a), can be expressed
in terms of integrals over Z, when use is made of
eqn (38).

5 DISCRETIZATION

In actual applications, the variational principles in
Section4 must be discretized.Discretization is specially
simplewhen eqn (39a) is applied.

In what followsthe L2(X)inner product, for functions
defined on X, will be considered, and projections of
such functions will be taken with respect to that
inner product. For simplicity, it will be assumed
that the function up, whose definition was given in
Section 2, is already known. This is reasonable when
discussing domain-decomposition methods, since its
construction involves exclusively solving boundary
value problems which are local, i.e. defined in each
one of the subregions of the domain decomposition,
separately.

Let ~“(~) be a finite-dimensional linear space of
functionsdefinedon Z. This may be made, for example,
by functions which are piece-wise polynomials, and
an example in which they were taken as piece-
wise bicubic polynomials, was given in Refs. 6 & 19.
Such a finite-dimensionalspace induces a unique sub-
space fiH(fl) c also finite dimensional, defined
by the properties that a function v e fi~(f2), if and only
if its trace on .Xbelongs to So(X).

In the space ~“(~), the variational formulation (39a)
may be written as

(41)

where b c ~O(Z) is the projection on ~“(~), of the
function [a.8up/&] defined on Z, while the finite
dimensional linear transformation ~ of So(x) into
itself, is defined as follows:

U ~ so(~), letiiH

AU E ~O(.Z)is

It can be seen that the finite-dimensionalmapping ~, so
defined, is symmetricand positive definite, since

Thus, conjugate gradient methods, or preconditioned
conjugate gradient methods, are applicable.
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