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In a previous paper a class of domain decomposition procedures, which may be
viewed as a generalization of the Trefftz method, was announced: TH-domain
decompositions. Their essential feature is that local solutions are not matched
directly, but instead are used as specialized test functions with the property that,
when they are applied as weighting functions, the information is concentrated on
the internal boundaries of the subdomains. In this manner, the solution on the
whole domain is constructed. In this paper such a method, which has already been
used in some specific applications, is presented. © 1997 Elsevier Science Limited
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1 INTRODUCTION

Domain-decomposition methods for the numerical
solution of partial differential equations have received
much attention in recent years.! At present, this is
mainly due to the fact that they constitute a very
effective manner of parallelizing numerical models for
continuous systems. Parallel computing is already a very
important resource used by supercomputers and it is
expected to be even more important in the future.

There are additional reasons for the interest in
domain-decomposition methods, such as domains of
irregular shape can be decomposed into more regular
subdomains, and regions of relative nonuniformity
of the differential operator or roughness of the
solutions can be isolated into different subdomains.
This paper presents a brief description of domain-
decomposition methods and discusses new options for
their formulation.

A theoretical approach to domain decomposition
deals with the systems that are obtained after the
differential equations have been discretized — the
discretized approach — but it is also possible to
formulate domain-decomposition procedures treating
the differential equations before discretization — the
continuous approach. In this paper the latter approach
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will be applied because it is more elegant and has the
advantage of permitting the use of the known properties
of partial differential equations in a direct manner.
In addition, it is always possible afterwards to give
discretized versions of the results so obtained.

In the exposition that follows the different methods
will be derived from a unified perspective. This is based
on the experience and clarity that has been gained
through the considerable amount of work that has been
done in recent years. This way of presenting matters has
clear expository advantages, but it does not correspond
to the way in which, historically, the methods were
developed. In domain-decomposition methods, the
region in which the problem is formulated is split into
several, usually many, subregions. Given a differential
equation, consider the set of its solutions at each one of
such subregions. Then, the main objective of domain-
decomposition methods is to select a solution at each
subregion in such a way that suitable matching
conditions are satisfied and the sought solution, over
the whole region, is constructed in this manner.

Generally, the methods may be classified into two
broad categories, depending on whether the subregions
are disjoint — non-overlapping methods — or they
have non-void intersections — overlapping methods.
The main difference between these two kinds of
procedures is the way in which the matching conditions
are applied. For elliptic equations of second order, for
example, the non-overlapping procedures require the
solution, together with its normal derivative across the
common boundaries of the non-overiapping subregions,



224 I. Herrera, J. Solano

to be continuous. On the other hand, due to the manner
in which the matching conditions are imposed when

using overlapping procedures, for the same kind of .

equations the smoothness of approximate solutions is
relaxed. This occurs since only the function itself is
required to be continuous, but its normal derivatives are
generally discontinuous.

Only elliptic differential equations of second order,’
will be considered in some detail in what follows. In this
case, independent of the kind of domain decomposition
that is applied overlapping or non-overlapping, knowing
the restriction of the solution on the boundaries of the
subregions, the internal boundaries, determines uniquely
the solution at the interior of the subregions. In
addition, the process of extending such restriction
from the boundaries to the interior involves solving
local problems only. Due to this fact, domain-
decomposition procedures frequently aim to find such
a restriction and the main goali of the ‘domain-
decomposition problem’ is obtaining the solution at
the boundaries of the subregions. A feature that
characterizes that restriction is the following: when it
is extended to the interior of the subregions, in the
manner stated before, the resulting normal derivatives
are continuous across the internal boundaries. The
procedures that are usually applied in the continuous
approach are based on this property.*™

However, there is another approach to determining
the solution of the domain-decomposition problem,
which has recently been proposed by Herrera:® TH-
domain decomposition. It is based on a generalization of
the Trefftz method (Trefftz—Herrera method’). A very
successful application of this point of view is the
localized adjoint method.®® Essentially, it is based on
the fact that when local solutions, in the subregions of
the domain decomposition, of the adjoint differential
equation are applied as weighting functions — in the
method of weighted residuals —— all the information
about the sought solution contained in approximate
ones, refers to the solution values at the internal
boundaries.'®!* In particular, if the system of weighting
functions is TH—complete,G’14 the values of the approxi-
mate solution at the internal boundaries are exactly equal
to those of the solution of the boundary value problem. An
important property is that TH-domain decomposition is
applicable to differential equations associated with
symmetric and non-symmetric operators, and the systems
of such equations.

Time-dependent problems of the parabolic type,
when time discretization is applied, give rise to elliptic
problems at each time step and the discussion presented
in this paper is also relevant for them. Some special
methods for parabolic equations explicitly profit from
the locality of the fundamental responses,”> but even if
the methodology is not specialized in this manner, when
iterative procedures are used, rapid convergence is
usually achieved.'®

2 DOMAIN-DECOMPOSITION FORMULATION

The general ideas of the method are outlined next.
Consider the boundary value problem (BVP) defined

in © (Fig. 1), associated with a general elliptic

differential operator which consists in satisfying

Lu=-~V-(a-Vu)+ V- (bu) + cu = fo in 2
(1)
subject to Dirichlet boundary conditions:
u(X) = up(x)  inoQ )

Generally, the matrix a is assumed to be positive
definite. N

A partition {Qy,...,Qx} of Q into subdomains will
be considered and the internal boundary, separating the
subdomains from each other, will be denoted by X
(Fig. 1). In addition, define 8;Q = 90 N 81;. Of course,
3;Q is void when the closure of £, lies in the interior of
Q; however, the relation

80, C ZU,Q 3)

is always satisfied.

The goal of domain-decomposition methods is to
construct the solution (u) of the BVP, by solving
exclusively boundary value problems in each ; (Fig.
1) separately. To this end, for each i = 1,..., N, define
the function up;, in €2;, as the unique solution of the
boundary value problem

Lup; = fa in & (4)
subject to the boundary conditions
upi(x) = V(x) inX
(5)

where V(x) is a function defined on X, suitably chosen.
In particular, 7' (x) can be chosen to be identically zero
on X, and for simplicity we assume this in what follows.

upi(x) = up(x) 1in 0,8
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Fig. 1. Domain decomposition subregions.
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Having defined up;(x) for i=1,..., N, the function
up(x) is defined in Q by

up(x) = up;(X) Xe i=1,...,N (6)

Clearly, the function up(x) so defined, is continuous
in £, but generally, the normal derivative of up is
discontinuous across X, and the following proposition is
straightforward.5'17

Proposition 1

Let the function u(x) be the solution of the BVP in (2.
Then, the function ug(x), defined in Q by uy = u — up,
is the unique solution of the boundary value problem
with prescribed jumps (BVPJ) on X, defined by the
following conditions:

The differential equation Luy =0 is satisfied in §};
(i=1,...,N), separately, ug(x) = 0 for every x € 01},
uy is continuous across X and its first-order partial
derivatives have jump discontinuities across ¥, which
satisfy the jump condition

[a-Vuy]-n=—-[a-Vup]-n  onX ™

Here, the square-brackets stand for the value of the
“ump’ across T (value on the ‘positive’ side minus value
on the ‘negative’ one) and n is taken pointing towards
the positive side.

Conclusion
Let the boundary value problem, with prescribed jumps,
defined by Luy =0, ugy =0 on 0Q and the jump
conditions of eqn (7) for the normal derivative, be
Sformulated in a space of functions which are continuous
across ¥. Then such a problem can be reduced to a
search problem for a function defined on .

This is because when the restriction to X, of the function
ug(x) introduced in Proposition 1, is known, the
function uy itself can be constructed, at each £
(i=1,...,N), by solving a local Dirichlet problem in
, since 8, C X UHN C T UIN and uy =0 on 9N

3 THE ALGEBRAIC FORMULATION AND
TH-DOMAIN DECOMPOSITION

Consider two linear spaces, D; and D,, of functions
defined on a region Q. Members of D and D,, referred
to as trial and test functions, respectively, may have
jump discontinuities across some internal boundaries X.
Linear operators P, B, J:D; — D;, where Dj is the
algebraic dual of D, (i.e. the space of linear functionals
defined on D,) will be considered in what follows. As it
can be seen, there is a one-to-one correspondence
between such operators and bilinear functionals defined
on Dy & D,.

In Herrera’s algebraic theory of boundary value
problems, such problems are formulated by means of

10

two variational formulations:®>~'° one in ‘terms of the

data’

(P-B—J)uwy=(f—g—jw) VYweD,

(8a)

and the other one in terms of the ‘sought information’:
(@ -C" =K )uw) =(f-g—jw) VweD,

(8b)

where f, g, j € Dj are linear functionals defined in terms
of the data of the problem. Both variational formula-
tions are equivalent because the operators Q*, C~,
K*: D, — Dj, which are defined so that they satisfy the
‘Green—Herrera formula™®

P-B-J=Q"-C"-K" 9)

In the more general case of higher order equations or
systems of equations — application of theory to systems
of equations has been explained in’ — the operator J is
associated with the jumps of the functions and their
derivatives across internal boundaries, and it is additive
in the jump of the function itself (J°), the jump of the
first derivative (J'), etc., so that it can be written as
J=J%+J! + ...+ J" wherenis the highest order of the
derivatives occurring in J. Similarly, K* which is asso-
ciated with the averages across the internal boundaries,
can be written as

K*=K" +K" +... 4+ K" (10)
For second-order equations, to which attention will
be restricted, the operators J and K will be written as
sums: J=J°+J! and K= K"+ K", and the linear
subspaces D,y C Dy and D,y C D, will be characterized
as follows: @t € D1y and w € Dyy, if and only if
(P—B-J%% =0 and (Q-C—-K'YWw=0
(11)
respectively. When w € D,y, eqn (8b) reduces to
—<K0*M,W> :<f_g_j7w> (12)
when a system % C Dy, is TH-complete, the fact
that a trial function & € D, satisfies eqn (12) for every

w € ¥, implies that Ju € D; solution of the boundary
value problem, for which

K% =K" (13)

4 VARIATIONAL FORMULATION AND
POSITIVENESS

In what follows, the most general elliptic operator of
second order will be considered, written in conservative
form:

Pu=-V-(a-Vu)+ V- bu+cu (14a)
Its formal adjoint is:
L*'w=-V-(a-Vw)—b-Vwtcw (14b)
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In particular a is assumed to be coercive (thus,
positive definite). As described in Section 2, the
domain € is decomposed into a system of subdomains
Q;,i=1,...,N (Fig. 1), and the union of the common
boundaries between the subdomains is denoted by .
The boundary value problem with prescribed jumps, is
defined by

Pu=fy inQ (15)

subject to suitable boundary and jump conditions on 92
and X, respectively.

The variational formulations of Section 3 can be
applied to this problem if the corresponding operators
are defined by:’

(Pu, w) =J wZudx;
? (16a)
(Q*u,w) = Jn ud*wdx
{(Bu, w) =J Blu, w)dx;
of (16b)
(C*u,w) = Jan € (w,u)dx
(Jou,w) = J Fu, w)dx;
g (16¢)
(K, u) = EJifo(w, u)dx
(J'u,w) = P N u,w)dx and
" (16d)
(K'w,u) = ZJt’l(w,u)dx
where
0 (AT TR
F (u,w) = —n-(a-Vw+bw)u; (17a)
Flu,w) = win-a-Viy
and
Ji’o(w, u)=n-[a-Vw+ bw]i
= (17b)

H N (wyu) = —[w]g-g- Vu

The square brackets and the dots stand for the ‘jump’
and the ‘average’ across the discontinuity, of the
corresponding functions. Thus, for example,

u=(uy +u_)/2 (18)
Also, the bar on top means that the dot refers to the

whole expression covered by it. In addition, it will be
understood that eqn (10) holds with n =1, i.e.

J=J'+J', K=K"+K! (19)

On the other hand, #(u,w) and €(w,u) = €*(u,w)
are two bilinear functions whose definitions depend on
the type of boundary conditions to be prescribed.’
When the boundary conditions are of Dirichlet type —

W] =u, —u_,

to which the following discussion is restricted — one
can define
B(u,w) =u(a-Vw+bw) n,
- (20)
" (u,w) =w(a-Vu)-n

A possible physical interpretation of the ‘comple-
mentary boundary values’, n-a-Vu, is diffusive flux
across the boundary. B

Assume, in particular, that the boundary and jump
conditions are

on J%;
[a-Vu]-n=0 on ¥

U=1uy

o, 21)

This corresponds to a Dirichlet problem in which
the sought solution, together with diffusive flux, are
continuous across . When a, as a function of position,
is continuous, these conditions are fulfilled, if and only
if, u and its first-order derivatives are continuous across
3. Then the functionals f, g and j, introduced in Section
3, are:

(fow) = jﬂ o dx;

(g,w) = LQ us(a-Vw+bw)-ndx;

VWEDZ

(22)
while j = 0; i.e. {j,w) =0, Vw € D,.

The variational formulation in terms of the ‘sought
information’ (eqn 8b), yields information about the
sought solution in the interior of the subdomains (the
term {Q*u, w)), the complementary boundary values on
99 (the term (C*u, w)), the normal derivative on ¥ (the
term (K u,w)), and the value of the solution itself
on ¥ (the term <K° u,w)). In order to concentrate
the information on the value of the sought solution
on Y, exclusively, weighting functions which eliminate
the information everywhere else will be chosen. This
requires dropping the terms (Q*u,w), (C*u,w) and
(K" u,w). This is achieved if the weighting functions
satisfy the condition (Q —C — K')w =0, which is
equivalent to

PLw=0, @w-)=0and ¥ '(w,-)=0 (23)
or more explicitly

-V-(a-Vw) —b-Vw+cw=0  ineach
(24a)

and
ond§; and [w]=0 onX  (24b)

Thus, for the case under consideration, the subspace
D,y C D, of Section 3, is the subspace of functions
which are continuous, vanish on the boundary and
satisfy the homogeneous differential equation, in each §;
separately. For such test functions the variational
equation in terms of the sought information reduces to

w=0
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eqn (12), i.e.

_(KO.ua W) = <f_ g—J W) (25)

If, as it will be assumed in what follows, #~ C D,y is a
TH-complete system, then the fact that a trial function
it € D, satisfies eqn (25) for every w € %/, implies that

K a=Kk"u (26)

If we restrict attention to continuous trial functions #,
then from eqns (16), (17) and (22), it follows that when
test functions wy are taken from D,y

A (up, wir) = [, 0wy /On]uy 27)
where @, = n-a-n, and a more explicit statement of the

variational principle is

—(K% g, wy) = — J (an Owy /On] it dx
z

- ] wit [0 dx
Q

- J ug(a,Owy/On + b - nwy) dx
a9
Vwy €W (28)

The case when the differential operator is symmetric
(b =0), has special interest. Then, it is convenient
taking D, = D, = D and, to simplify the notation, write
Dy = D,y. Also, observe that due to the symmetry of

the differential operator:
=K', J'=k° (29)

Given @y € Dy and wy € Dy, the identity

(K ity ) = = |_itnlon O/ 0] .

= J (VﬁH-g-VwH+cﬁHwH) dé
Q =
(30a)

holds; it exhibits the symmetry of the expressions
involved. In addition, when ¢ > 0 one has

—<K0‘ﬁH» ay) = — L ity [a, Oty /On] dx

= L(va,, -a- Vilg + ciyy) dx > 0
(30b)

and the equality applies, if and only if #g =0 in €.
Thus, the restriction K® (K®: Dy — D}) of the operator
K° to Dy, is positive definite. Observe that eqn (30b)
exhibits K° as a Poincaré-Steklov operator.'

In view of the identity (30a), there are two equivalent
expressions for the variational principle (28). The first

one:

~(K g, wig) = = [l O /O] dx

- j Wi o At — j g (8 Oy /Om) dx
9] o0
Ywew (31a)

characterizes directly the values of # on ¥, and it can be
applied using any trial function &y € D, not necessarily
belonging to Dy. The second one:

—(K %y, wy) = J (Vg -a-Vwy + cigwy) dx
0 a

= j Wit fo dx — j (8, Ow /On) dx
0 o0
Vwe W (31b)

characterizes any function ity € Dy which takes, on %,
the values of the solution u, of the boundary value
problem. Observe that in order to supply this equation,
the trial function #y; must belong to Dy.

In view of the symmetry of (K @1y, wy) and eqn (29),
the variational principle (31a), can also be written as:

(T gy, wy) = —[ Wizl ity /O] dx
z

- j Wi fordx — j iy (8 Owyy /Om) dx
Q o

Vwe W (32)

This equation characterizes the jumps of a function
iy € Dy, such that 4y =wu, on X. The following
discussion clarifies this statement. The right-hand side
of eqn (32) involves integrals over Q2 and 92, and for
later developments it will be useful to express them as
integrals over ¥, as was done for the left-hand side of
eqn (31a). Let up and uy be defined as in Section 2, i.c.
Lup=foinQ; (i=1,...,N), up=1us on 9Q, up =0
on ¥ and up 4+ uy = u, where the function u is a solution
of the boundary value problem. In view of the definition
of up, it is clear that uy = u on X. Also, uy € Dy and it
can be seen that

Juy=-J'up, K%uy=K"u (33)
Hence
(up,wy) = —(ug, wy) = —(K ug, wy)

= —(K%up,wy) = —(K"u, wg) (34)

Using eqn (25), this permits writing the variational
principle of eqn (32) in the form:

— (I ag, wy) = (J 'up, wh) Ywe¥w (35)
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or more explicitly:

- J wy(a, Oty /On] dx
b

:J wyla,0up/Onjdx  Ywe W (36)
T

It can be shown that this equation is satisfied, if and
only if

[a, Dty /On] = —[a,O0up/On] on X (37a)
For continuous coefficients this reduces to
[Bdty/On] = —[Bup/On] on X (37b)

Finally, from the above discussion it is easy to see that
eqn (36) is satisfied by a function iy € Dy, if and only
if, iy =u on ¥.

The following remarks are also relevant. Equation
(36) implies that

j wade—j o (2 Owpy /Om) dx
Q o0

= J wyla,0up/Onjdx  YweW (38)
b

and the variational principles of eqn (31), can be
replaced by

—j gl Owy /O] dx
z

J wyla, Qup/0n| dx Ywe W (39a)
)
and

Q =

= J wy(a, Bup/On] dx Ywe W (39b)
X

Equation (39a) has special interest because it permits
expressing the variational principle in a form that
involves surface integrals over X, exclusively.

Before leaving this section, it must be mentioned that
a minimum principle can be formulated, because the
operator K: Dy — Dy, is positive definite. There are
two expressions for the functional associated with this
principle:

F () = - Jz ity [a, Oty /On] - n dx
- 2{]9 i fods — || ua(anOitn/0n) d&}

(40a)
and

FHliy) = Jn{vaH-g-vaH +ca¥}dx

—2{JQ dyfodx— Jan uy(a, Oty /On)-n d&}
(40b)

The minimum principle states that either one of
these expressions attains its minimum on Dy, if
and only if @y € Dy satisfies eqn (26) for a solution
u€ D, of the boundary value problem. Again,
functional & (iiy) of eqn (40a), can be expressed
in terms of integrals over X, when use is made of
eqn (38).

5 DISCRETIZATION

In actual applications, the variational principles in
Section 4 must be discretized. Discretization is specially
simple when eqn (39a) is applied.

In what follows the L*(X) inner product, for functions
defined on X, will be considered, and projections of
such functions will be taken with respect to that
inner product. For simplicity, it will be assumed
that the function up, whose definition was given in
Section 2, is already known. This is reasonable when
discussing domain-decomposition methods, since its
construction involves exclusively solving boundary
value problems which are local, i.e. defined in each
one of the subregions of the domain decomposition,
separately.

Let S%(Z) be a finite-dimensional linear space of
functions defined on X. This may be made, for example,
by functions which are piece-wise polynomials, and
an example in which they were taken as piece-
wise bicubic polynomials, was given in Refs. 6 & 19.
Such a finite-dimensional space induces a unique sub-
space Dy(Q)) C Dy, also finite dimensional, defined
by the properties that a function v € Dy (), if and only
if its trace on & belongs to §°(Z).

In the space SO(X), the variational formulation (39a)
may be written as

AU=b (41)

where b € S%(X) is the projection on S5%(x), of the
function [a,0up/On] defined on X, while the finite
dimensional linear transformation A of $°(X) into
itself, is defined as follows: o

Given any U € S§°(X), let iy be the unique element of
Dy(Q), such that its trace on X, equals U. Then,
AU € S%(X) is defined as the projection, on S°(%), of
the function —|a, Oty /On) defined on L.

It can be seen that the finite-dimensional mapping A, so
defined, is symmetric and positive definite, since

(U,AU) = - [_itnla, 0t /0] dx “2)

Thus, conjugate gradient methods, or preconditioned
conjugate gradient methods, are applicable.
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