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Received 2 March 1996; revised manuscript received 14 March 1996

Here, it is shown that the ‘‘traditional approach’’ to variable bubble-point problems, using black-oil models,
is not consistent, because it violates the ‘‘bubble-point conservation law.’’ In order to have a consistent
approach, it is necessary to incorporate shocks—discussed in previous papers—in which the bubble-point is
discontinuous. A ‘‘consistent approach’’ is applied to specific examples, and results compared with those
of the ‘‘traditional’’ one. The conclusion that the ‘‘traditional approach’’ generally yields large errors
for the production rates and other parameters of interest in the oil industry, is reached. c© 1997 John Wiley &
Sons, Inc.

I. INTRODUCTION

In this article, using results of previous research [1–5], it is shown that the ‘‘traditional’’ black-oil
model approach to variable bubble-point problems [6–9] is inconsistent, and computations are
carried out to demonstrate that such inconsistency generally yields large errors in the evaluation
of production rates and other parameters of interest for the oil industry. In addition, a consistent
formulation of black-oil models, suitable for application to variable bubble-point problems, is
supplied.

When applying black-oil models to variable bubble-point problems, it is frequently assumed
that the bubble-point pressure may vary inside the undersaturated region [6–9]. However, such an
assumption is incorrect, because it contradicts the basic postulates on which black-oil models are
built. Indeed, such postulates do not include molecular diffusion, nor mechanical dispersion, and
it has been shown that a consequence of such omission is the ‘‘bubble-point conservation law,’’
according to which: when a gas-phase is not present, oil-particles conserve their gas content
(dissolved gas:oil ratio). This result imposes very severe restrictions to the manners in which the
dissolved gas:oil ratio of an oil-particle can vary, when a gas-phase is absent; physically, it means
that when a gas-phase is not present, two oil particles cannot exchange dissolved gas, even if they
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FIG. 1. Subregions of a reservoir with variable bubble-point.

are very close. In particular, such restrictions are not respected in the ‘‘traditional’’ approach, as
explained in Section III of this article.

When the bubble-point is variable, it is necessary to introduce shocks in which the bubble-
point, i.e., the solution gas-oil ratio: R−

s , is discontinuous. However, this is not done in the
‘‘traditional’’ approach [6–9]. Since the classical Buckley–Leverett theory was developed [10,
11], modelers are prepared to deal with discontinuities of the saturation, but jumps of Rs are not
included.

In this respect, it has been shown (see, for example, [4]), and it will be further discussed in this
article, that when dealing with variable bubble-point problems, in general, in which free-gas may,
or may not, coexist with liquid oil, the region of definition of the problem may be decomposed
into three parts (Fig. 1):

a. A region where free-gas is absent, the oil-region, usually undersaturated;
b. A region where free-gas is present, the gas-region, necessarily saturated; and
c. A gas-front; i.e., a boundary between the oil and the gas regions.

Then:

—In the oil-region, only the bubble-point may have jump discontinuities and such disconti-
nuities propagate with the velocity of oil-particles.

—In the gas-region, only the saturation may have jump discontinuities, and the shocks that
can occur are essentially of the type described by the Buckley–Leverett theory. They occur
only if capillary pressure is neglected.

—At a gas-front, two possible situations must be distinguished:

a. A front that advances into an undersaturated region. At such a front, in general, both the
bubble-point and the saturation are discontinuous and the motion of the front is retarded
with respect to the gas particles.

b. A front that recedes from an undersaturated region. At such a front, only the saturation
is discontinuous and the front moves with the velocity of the gas particles.

—A bifurcation occurs when an advancing gas-front, which carries a double discontinuity:
discontinuous saturation and discontinuous bubble-point, changes its sense of motion and
starts to recede; then, the two discontinuities start to move with different velocities and, in
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this manner, they separate. In such a case, the bubble-point discontinuity moves with the
oil-particle velocity, while the saturation discontinuity moves with the gas-particle velocity.

It is important to stress that only in one case does the presence of capillary pressure preclude the
occurrence of shocks, i.e., in the saturated region, where free gas is present, and shocks occurring
in that region are essentially of the Buckley–Leverett type. Other kinds of shocks may occur even
if capillary forces are incorporated in the model.

II. BLACK-OIL MODEL

For the present analysis, it is enough to consider a ‘‘black-oil’’ or ‘‘beta’’ model, consisting of
two phases, liquid oil and gas, whose Darcy velocities are denoted by uo and ug, respectively.
Black-oil models are based on the following assumptions [6]:

a. Gas is soluble in liquid oil, i.e., the gas-phase consists of only one component, while the
liquid oil is made up of two components (dissolved gas and nonvolatile oil);

b. No physical diffusion is present. This includes both molecular diffusion and that induced
by the randomness of the porous medium (mechanical dispersion).

In addition, the multiphase form of Darcy's Law is adopted; in particular, pressures are assumed to
be continuous everywhere. Black-oil models, in general, include the possibility of nonvanishing
capillary pressure, as is done here.

We use the notations ρ̄o and ρ̄dg for the effective densities of nonvolatile oil and dissolved gas,
respectively, together with the relation:

ρ̄dg = R̄sρ̄o, where R̄s ≡ ρgSTC

ρoSTC
Rs. (1)

The factor Rs is the ‘‘solution gas:oil ratio’’ [6], and R̄s is introduced, because it simplifies
the mathematical analysis, and some formulas adopt a simpler form, when it is used. Then the
governing equations of the black-oil model may be written as:

(φSoρ̄o)t + div(ρ̄ouo) = 0 (2a)

(φSoR̄sρ̄o)t + div(ρ̄oR̄suo) + (φSgρg)t + div(ρgug) = 0, (2b)

where φ is porosity and Sα represents saturation for phase α (oil or gas). In the following
discussions, in addition to Darcy velocities, uo and ug, ‘‘particle velocities’’ for each phase, will
be considered in some instances; they are defined by

vα = uα/φSα; α = o and g. (3)

As mentioned in the Introduction, when dealing with variable bubble-point problems, in gen-
eral, in which free gas may or may not coexist with liquid oil, the region of definition of the
problem may be decomposed into three parts (Fig. 1): one in which free-gas is present (the ‘‘gas-
region’’), another in which free-gas is absent (the ‘‘oil-region’’), and a gas-front, which limits
these two regions. To be specific, at the gas-front, the unit normal vector (n) will be taken as
pointing towards the gas region. When considering discontinuities across a surface Σ, the velocity
of Σ will be vΣ, and the unit normal vector will be taken pointing toward the positive side. In
particular, at the gas-front the gas-side will be the positive side (Fig. 1). Also, square brackets
stand for the ‘‘jump’’ of a function; thus, for example: [Rs] = R+

s −R−
s .
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FIG. 2. Paths in the Rs − p plane.

III. INCONSISTENCY OF THE TRADITIONAL APPROACH

When applying black-oil models to variable bubble-point problems, it is frequently assumed that
the bubble-point pressure may vary inside the—undersaturated—‘‘oil-region’’ [6–9]. However,
such an assumption is incorrect, because it violates the ‘‘bubble-point conservation law.’’
Bubble Point Conservation Law:
In the absence of a gas phase, oil-particles conserve their bubble-point.

Proof. Combining Eqs. (2), it is seen that

φSoρ̄o{(R̄s)t + vo · grad(R̄s)} + (φSgρg)t + div(ρgug) = 0. (4)

When the gas-phase is absent, this equation reduces to

(R̄s)t + vo · grad(R̄s) = 0. (5)
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In words: ‘‘the material oil-particle derivative of R̄s (hence of Rs) vanishes.’’ Clearly, this
implies that Rs (i.e., the bubble-point), remains constant on liquid-oil particles.

The bubble-point conservation law, just established, is a very restrictive condition; physically
it means that, when a gas-phase is not present, two oil-particles cannot exchange dissolved gas,
even if they are very close. In particular, this property leads to preservation of discontinuities of
the bubble-point.

Due to ‘‘bubble-point conservation law,’’ the paths that an oil-particle can describe on the
Rs−po plane consist of fragments of the saturation curve or of horizontal segments only [Fig. 2(a)].
The first ones take place in periods spent by the particle in regions where the gas-phase is present,
while the latter ones correspond to periods spent by the particle in undersaturated regions, where
the gas-phase is absent. Thus, if a particle starts at state ‘‘n’’ [Fig. 2(a)], so that it is undersaturated
initially, and it is then depressurized, it moves along a horizontal line toward the left, until it reaches
the saturation curve. If depressurization of the particle continues, it bubbles and liberates gas.
At such point, the state of the oil-particle lies on the saturation curve. If it is repressurized, at
first it will move along the saturation curve, until all the free-gas is removed, and at such point it
will start to move along a horizontal line, toward the right, leaving the saturation curve, until it
finally reaches a state such as ‘‘n+1’’ [Fig. 2(a)]. This path is reversible: we could start at state
‘‘n+ 1’’ and by successive depressurization and repressurization, reach state ‘‘n’’ . The point
at which the saturation curve is left by the oil-particle, under repressurization, depends on the
amount of free-gas available. In actual reservoirs, this amount of gas is supplied by the gas-phase,
and it is determined by the relative motion of the oil-phase with respect to the gas-phase.

On the other hand, on theRs − po plane, the states of an oil-particle cannot follow a path such
as the one joining states ‘‘n’’ and ‘‘n+ 1’’ [Fig. 2(b)], since this would imply that Rs changes
without reaching the bubble-point. That is, Rs would change when the gas-phase is absent and
the bubble-point conservation law would be violated. However, in the ‘‘traditional’’ approach
to variable bubble-point reservoirs, such paths on the Rs − po plane are admitted [6]. This is the
inconsistency of the ‘‘traditional’’ approach that we have been referring to.

IV. SHOCKS REQUIRED IN A CONSISTENT APPROACH

At first a glance, the previous discussion suggests that in a black-oil model the only way in which
an undersaturated oil-particle may become saturated is by depressurization to the bubble-point.
This, however, is not correct, because in a black-oil model an oil-particle may become saturated
in another manner: it may follow a discontinuous path on the Rs − po plane, such as SH-SH′,
in Fig. 2(c). This corresponds to an oil-particle that is initially undersaturated (point ‘‘n’’ ), so
that the gas-phase is absent. At some point the oil-particle is reached by a gas-front (point SH)
and becomes suddenly saturated (point SH′); under further pressurization Rs moves along the
saturation curve. Such a path has the discontinuity SH-SH′, and, therefore, [Rs] 6= 0 there. In
actual reservoir models, this corresponds to a discontinuity of Rs at the gas-front. The physical
implication is that the gas transferance, at the gas-front from the gas-phase into the liquid-oil-
phase, is so intense that it gives rise to a discontinuity in Rs.

The previous discussion indicates that a consistent formulation of black-oil models requires the
incorporation of shocks, in which not only the saturation, but also the dissolved gas-oil ratio Rs

may be discontinuous. Thus, the remainder of this section is devoted to presenting an exhaustive
description of the shocks required, in a consistent formulation of black-oil models. In particular,
the kind of shocks that can occur and the conditions under which they are generated, in each one
of the three parts in which the region of study has been divided, will be discussed.
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A. At a Gas-Front

Two situations must be distinguished.

1. At an Advancing Gas Front
According to the previous discussion, at an advancing gas-front, when oil particles carrying values
of Rs below the saturation value reach the gas-front, where Rs necessarily equals the saturation
value, a discontinuity will be produced (segment SH-SH′, of Fig. 2). This is the mechanism of
shock generation at an advancing gas-front. Observe that, in general, at such a shock there are
two discontinuous variables: [Rs] 6= 0 and [So] 6= 0.

2. At a Receding Gas Front
At a front that is receding, on the contrary, Rs is necessarily continuous, because the gas-phase
leaves saturated oil behind it, as it goes away. In this case, the only discontinuous variable at the
front is the saturation, since Rs is continuous there.

B. In the Oil-Region

In the interior of that region, the oil saturation equals to one, necessarily. Thus, the only possible
discontinuous variable is Rs. In contrast to the ‘‘gas-region,’’ where oil is necessarily saturated
andRs is uniquely determined by pressure, when the gas-phase is absent the liquid oil will usually
be undersaturated, and Rs can take any value below the saturation curve [Fig. 2(a)].

This is related to the initial conditions associated with well-posed problems. When free
gas is present, the oil is saturated and the pressure determines Rs, and it is not necessary to
include this parameter in the initial conditions. On the contrary, if the oil is undersaturated, Rs

is not determined by pressure and must be prescribed as an initial condition. In particular, if
the prescribed initial or boundary values of Rs are discontinuous, a shock in the undersaturated
region would be introduced, because, by virtue of the ‘‘bubble-point conservation law,’’ the
liquid-oil particles will retain theirRs values; observe that such discontinuity will propagate with
the velocity, vo, of oil particles. Therefore, shocks of this kind can be produced by the initial
conditions—or possibly, by the boundary conditions.

Later, it will be seen that another generation mechanism for this kind of shocks occurs when
an advancing gas-front changes its sense of motion—that is, when it stops and starts to recede.
When this happens, the gas-front shock, which carries two discontinuities, one ofRs and another
one of saturation, bifurcates. At the point of reversal, the discontinuity in gas:oil ratio starts to
move with the velocity of the oil, while the discontinuity in saturation starts to move with the
velocity of the gas.

C. At the Gas-Region

In this region, the oil is saturated and Rs is determined by oil pressure. Even more, Rs is usually
taken to be continuous as a function of oil pressure. In turn, the oil pressure is necessarily
continuous as a function of position. Thus, Rs is continuous in this region and the only possible
discontinuous variable is saturation.

Shocks in this region, in which the only discontinuous variable is the saturation, were origi-
nally described by Buckley and Leverett [10, 11], and further discussed by many authors. They
are generated when characteristic curves carrying different values of saturation intersect, giving
rise to multivalued solutions that are not physically admissible. A very clear discussion of this
process was presented by Sheldon and Cardwell [12, 13]. A recent account, from a present-day
perspective, is given in [2].
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Note that, as generally recognized, such shocks are developed only when capillary pressure is
neglected. However, the other kinds of discontinuities, which have been discussed above, may
occur even if capillary pressure is incorporated in the model.

V. CONSISTENT APPROACH

The point of view adopted in the black-oil model formulation is to consider all reservoirs as
continuous systems. As is well known, the general theory of such systems is ‘‘Continuum
Mechanics.’’ Thus, to overcome the inconsistency of the ‘‘traditional’’ approach discussed in
Section III, it will be necessary to resort to the basic principles of Continuum Mechanics.

The systematic procedure for deriving the basic equations satisfied by any continuous system
has two parts (see for example Chapter 1 of [14], for a description suitable for our purposes):
the ‘‘general local balance laws’’ and, when discontinuous solutions (shocks) occur, such local
laws must be complemented with the ‘‘general jump conditions.’’ The general local balance laws
reduce to Eqs. (2), when the assumptions of the black-oil model, specified in Section II, hold.
However, as explained in Section IV, for developing a consistent approach to variable bubble-
point reservoirs it will be necessary to include shocks of quite general character. Thus, Eqs. (2)
must be complemented with the equations derived from the ‘‘general jump conditions,’’ for each
component of the system, The mathematical expression of the ‘‘general jump conditions’’ is (see
[14], and the Appendix):

[ψ(v − vΣ) − τ ] · nΣ = q. (6)

Here, ψ is the intensive property associated with the component under consideration, v is the
particle velocity of the phase in which the component lies, vΣ is the shock velocity, τ is diffusive
flux, and q is the rate, per unit area of the shock, at which the mass of the component is being
supplied to the phase under consideration.

In the case of the two-phase (free-gas and liquid-oil) system, which constitutes the black-oil
model, the gas-phase is made of only one component, gas; while the liquid-phase is made of
two components, dissolved gas and nonvolatile oil. Thus, there are three components altogether.
The extensive properties associated with them, relevant for our purposes, are: mass of free-gas
(Mg), mass of dissolved gas (Mdg), and mass of nonvolatile oil (Mo). Each one of them can be
expressed as a volume integral over the region occupied by the system (B):

Mg =
∫

B
φSgρgdx, Mo =

∫
B
φSoρ̄odx, Mdg =

∫
B
φSoRS ρ̄odx. (7)

The intensive property associated with each component is its mass per unit volume; i.e., the
integrand in each one of these expressions.

On the other hand, τ ≡ 0, since the black-oil model does not incorporate diffusive flux.
Regarding q, we will write qg

o for the rate per unit area, at which mass is being supplied through
the shock, to the gas-phase by the liquid-oil-phase. Conversely, qo

g will be the rate per unit shock
area, at which mass is being supplied to the liquid-phase by the gas-phase. Observe that this
mass goes into the liquid-phase as dissolved-gas and that the mass received by the nonvolatile oil
component is null; i.e., q ≡ 0 in the jump condition [Eq. (6)] corresponding to the nonvolatile
oil component. Thus, the jump conditions satisfied by gas, dissolved gas, and nonvolatile oil
components are:

[φSgρg(vg − vΣ)] · nΣ = qg
o (8a)
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[φSoRS ρ̄o(vo − vΣ)] · nΣ = qo
g (8b)

[φSoρ̄o(vo − vΣ)] · nΣ = 0, (8c)

respectively.
Observe, that the rates of mass-exchange between the two phases, qg

o and qo
g , that occur through

the shock are not known. Actually, they can be evaluated only after the problem has been solved.
However, for applying Eqs. (8), they do not need to be known, because adding Eqs. (8a) and
(8b), and using the fact that qg

o + qo
g = 0, it is obtained:

[φSgρg(vg − vΣ)] · nΣ + [φSoRS ρ̄o(vo − vΣ)] · nΣ = 0. (9)

Equation (8c) can be written as

ρ̄+
o (uo − φvΣSo)+ · n = ρ̄−

o (uo − φvΣSo)− · n. (10a)

Using this latter equation, Eq. (9) becomes:

(ρ̄+
o /ρg)[R̄s](uo − φvΣSo)+ · n+ (ug − φvΣSg)+ · n = (ug − φvΣSg)− · n. (10b)

Equations (2) must be complemented with Eqs. (10) to obtain a consistent black-oil model for
variable bubble-point problems. Equations (2) apply everywhere in the interior of the definition
of the problem, while the jump conditions (10) apply in the shock. In addition, Eqs. (8a) or (8b)
can be used, after the problem has been solved, to obtain the rate of mass-exchange through the
shock between the phases.

VI. SHOCK VELOCITIES

As a first illustration of the application of the consistent approach presented in Section V, in this
section the velocities for each one of the shocks described in Section IV will be derived.

A. At a Gas-Front

A gas-front is characterized by S−
g = 0. —recall that the normal vector on Σ has been taken

pointing toward the region occupied by the gas-phase—and the right-hand side of (10b) vanishes.
Using Eq. (2), it is obtained:

[Rs]
ρ̄+

o S
+
o

ρgSg
(v+

o − vΣ) · n+ (vg − vΣ) · n = 0. (11)

Making use of the relation

vg − vΣ = vg − v+
o + v+

o − vΣ (12)

yields
(

1 + [Rs]
ρ̄+

o S
+
o

ρgSg

)
(v+

o − vΣ) · n = −(vg − v+
o ) · n. (13)

This equation can be written as:

(vΣ − v+
o ) · n = ε(vg − v+

o ) · n, (14)
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FIG. 3. The bifurcation mechanism: (a) the bifurcation point at xB ; (b) the two shocks after bifurcation.

if the ‘‘retardation factor,’’ ε, is defined by

ε =
1

1 + [R̄S ] ρ̄+
o S+

o

ρgSg

. (15)

Observe that the 0 < ε ≤ 1, and, therefore, ε can be interpreted as a retardation factor of the
shock motion with respect to the gas. In particular, when ε = 1, there is no retardation effect.

1. At a Gas-Front Advancing into a Region of Undersaturated Oil

In this case [R̄s] ≡ R̄+
s − R̄−

s > 0, so that ε < 1, and the motion of the shock is retarded with
respect to the gas.

2. At a Gas-Front Receding from a Region of Undersaturated Oil

This situation is characterized by [Rs] = 0, so that ε = 1. In this case, the shock is not retarded
and vΣ · n = vo · n.

B. In the Oil-Region

In this case, the gas-phase is absent, so that the terms involving it, in Eq. (10b), vanish. Also, the
only possible discontinuous variable is Rs, since So = 1, at both sides of the shock. Hence, Eq.
(10b) implies

vΣ · n = vo · n, on Σ, (16)

since [Rs] 6= 0.
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C. At the Gas-Region

The oil is saturated in this region, so that [Rs] = 0, since the pressure is continuous and, in turn,
Rs is continuous as a function of pressure. Thus, Eq. (10b) reduces to

vΣ · n =
[ug] · n
φ[Sg]

. (17)

A special case of this equation is the immiscible and incompressible case considered by the
classical Buckley–Leverett theory, for which Eq. (17) becomes the well-known relation (see, for
example, [2]):

vΣ · n = φ−1 [fg]
[Sg]

uT · n, (18a)

where

uT = uo + ug and ug = fguT . (18b)

VII. SHOCK BIFURCATION

The case when a gas-front advancing into a region of undersaturated gas changes its sense of
motion, thus becoming a receding one, has special interest. Indeed, at the point where it stops and
starts to recede, a discontinuity ofRs at the oil phase remains. Such discontinuity will move with
velocity, vo, as shown in Section VI, thus, it will move towards the interior of the ‘‘oil-region’’
and, at later times, it will be located in its interior. On the other hand, also according to the results
of that section, the saturation discontinuity, at the receding gas-front, will move with the velocity
of the gas. Therefore, at a point where an ‘‘advancing’’ gas-front changes its sense of motion,
it ‘‘bifurcates,’’ giving rise to two shocks: one in which the only discontinuous variable is the
saturation, and the other one in which the only discontinuous variable is the bubble-point. This
phenomenon is illustrated in Fig. 3. If the front, when it starts to recede, is located at xB , then the
discontinuities ofRs and So are together there [Fig. 3(a)]. However, as the receding motion of the
front progresses, these discontinuities separate, because they move with different velocities; this
is shown in Fig. 3(b), where the discontinuity of the bubble-point (RS) is located at xΣR, to the
left of the gas-front, where the saturation discontinuity (xΣS) lies. Figure 4—corresponding to
the illustrative example to be explained next—shows the paths of the shocks and the bifurcation
point, in space–time.

A. Illustrative Example

The bifurcation point and the discontinuity paths in the x–t plane, corresponding to a simple,
one-dimensional numerical example, in which capillary pressure is neglected, (po = pg = p),
are illustrated in Fig. 4. The parameter values used in the example are given in Table I; also,
a simplified equation of state was assumed in which there is a critical pressure, p∗, such that
RS is constant whenever p > p∗; this leads to a constant jump in Rs([Rs] = 1.78 × 10−2). In
addition, it is assumed that p > p∗ throughout. A positive pressure gradient, ∂p/∂x, is initially
applied at the gas-side, and smoothly decreased, until at time tB it changes sign. The phases
are assumed to be incompressible and, therefore, at tB the gas-phase also changes its sense of
motion. This, in turn, implies that tB is also the bifurcation time. The initial distributions were
taken as uniform, but different on each subregion. The retardation of the advancing front is quite
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FIG. 4. Front position for Example 1 with bifurcation time.

TABLE I. Parameter values for the illustrative example.a

PROPERTIES

ρo = 47 pound/ft3; ρg = 0.02 pound/ft3; µo = 0.3 cp; µg = 0.03 cp
φ = 0.05; k = 100 m darcies; kro = 0.5; krg = 0.4

DATA

Sg = 0.2; S+
o = 0.8; [R̄s] = 1.78 × 10−2;
vg = 10(t − tB)

xO = 800; xB = 633.5; tB = 30

DERIVED PARAMETERS

v+
o = 0.3125(t − tB); ε = 5.94 × 10−3;

ADVANCING (t < tB)

v−
o = 3.239 × 10−1(t − tB)

vΣSR = 0.3697(t − tB); xΣSR = 633.5 + 0.1848(t − tB)2

RECEDING (t > tB)

v−
o = 2.25(t − tB)

vΣS = 10(t − tB); vΣR = 2.25(t − tB)
xΣS = 633.5 + 5(t − tB)2

xΣR = 633.5 + 1.125(t − tB)2
a Distances are in feet and times in days.
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FIG. 5. Curve of gas in solution.

significant since ε = 0.0059.Recalling Eq. (15), it is seen that ε is controlled by the ratios ρ+
o /ρg

and S+
o /Sg, as well as [R̄S ] = [RS ](ρgSTC/ρoSTC), which for this case take the values 2350,

4, and 0.0178, respectively, giving a fairly large product: 167.32. Due to the drastic retardation
effect, the velocity of the receding gas-front is much larger than that of the advancing one, and the
scales involved when the fronts are advancing and receding are quite different, as can be clearly
appreciated in Fig. 4. On the other hand, for this example, the contrast between vΣR and vΣS is
not as sharp: vΣR/vΣS

∼= 0.2. Of course, if the parameters are varied, the behavior of the fronts
and the bifurcation may change very much.

VIII. NUMERICAL EXAMPLE

The illustrative example presented in Section IV (Fig. 4)—referred to as Example 1—, in spite of
its simplifying assumptions shows that the effects described by the authors' theory, may be quite
significant, and their numerical implications deserve to be studied more thoroughly. In particular,
the magnitude of the numerical errors introduced by the application of a ‘‘traditional’’ black-oil
model, which has been shown to be inconsistent, to variable bubble-point problems should be
clarified. Thus, in this section an example, in which shocks and a bifurcation occur, will be
numerically treated by two methods: one in which shocks are explicitly incorporated using the
authors' theory, and the other will be a ‘‘traditional’’ formulation [6–9], in which shocks are not
incorporated explicitly. Then, comparisons of the results of these methods will be made.

The example to be treated—referred as Example 2—is quite similar to that of Section VII, but
to make it more realistic, the saturationRs−po curve of Fig. 5, for whichRs is pressure dependent
everywhere, will be used. Except for such replacement, everything else will be as before. Thus, a
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FIG. 6. Front position for Example 2 with bifurcation time.

composite system consisting of two regions—the gas and oil regions, respectively—is considered,
and its basic properties are chosen to be those of Table I. In particular, initially there is a left-region
of undersaturated oil and a right-region containing a gas-phase, where the oil is saturated. Again,
production is obtained from the left-boundary at a constant pressure, while gas is injected on the
right-boundary at a variable rate: vg = 10(t − 30). Therefore, at the gas-front (xΣSR), when it
is advancing into the region of undersaturated oil, two discontinuities coexist—one of saturation
(So) and the other one of the solution gas:oil ratio (RS). Initially, the gas-front moves toward the
left with variable velocity, which is not given by a simple closed expression (see Fig. 6), because
the retardation factor, ε, as given by Eq. (3b), is fully dependent on the detailed shape of the
RS − p curve, illustrated in Fig. 5. At t = tB = 30 days, the sense of motion changes and the
shock bifurcates, since the discontinuities start to recede with different velocities.

First, let us discuss briefly the effect of incorporating a more realistic RS − po curve. Quali-
tatively, there is little change: again, as in Example 1, two discontinuities coexist at the gas-front
when it is advancing toward the region of undersaturated oil, and its motion is retarded (i.e.,
ε < 1); there is a time, tB , when the sense of motion is reversed and, then, the shock bifurcates.
However, in Example 2 (in contrast with Example 1), the velocity of the front is non-constant and
it is not possible to give a simple, closed expression for it. Quantitatively, the main change is also
in the velocity, vΣRS , of the advancing gas-front, which is quite significant (Fig. 7). This velocity
is evaluated with Eq. (14). The difference in velocities is due to the fact that the retardation factor
ε is no longer constant with time (Fig. 8), and it is strongly influenced by the detailed shape of
the saturation RS − po curve. The trajectories of the shocks, for t < tB , and the position of
the bifurcation point xB differ considerably in Examples 1 and 2, because the velocities of the
advancing fronts differ significantly in both examples. However, the time of bifurcation is the
same: t = tB = 30 days. On the other hand, the corresponding velocities of each one of the
receding shocks are essentially the same, in both examples; the shock inRS ,moving with the oil
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velocity, while the speed of the saturation discontinuity is that of the gas—there is no retardation
effect.

Secondly, the main objective of the numerical comparisons is addressed: to establish the sig-
nificance of using a ‘‘consistent’’ black-oil model when treating variable bubble-point problems.
For this purpose, the example that has just been described was also treated using the ‘‘traditional
numerical formulation’’ [6–9]. When a ‘‘traditional formulation,’’ in which no discontinuity in
RS is incorporated, the saturation front advances toward the undersaturated region much faster
than it should, as illustrated in Fig. 9. Thus, in about three days the saturation front reaches the
left-boundary; this is about one tenth of the bifurcation time tB of our ‘‘consistent’’ black-oil
model, in which the gas-front begins to recede without reaching the left-boundary, and, therefore,
it never reaches this boundary. Obvious consequences of this drastic difference in the front ve-
locities, when the inconsistent ‘‘traditional’’ black-oil model is applied, are big inaccuracies in
the evaluation of gas production at the boundary and many other quantities of interest for the oil
industry.

Also shown in Fig. 9 is the front position corresponding to Example 1, which only considers
two values ofRS , one at each side of the front. We readily observe the influence of theRS curve.

IX. DISCUSSION AND CONCLUSIONS

When applying black-oil models to variable bubble-point problems, it is frequently assumed
that the bubble-point pressure may vary inside the undersaturated region [6–9]. However, it
has been shown that such an assumption is inconsistent, for black-oil models, and that this

FIG. 7. Comparison of front velocity (t < tB).
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FIG. 8. Comparison of retardation factor (t < tB).

is due to the fact that no diffusion mechanism—neither molecular diffusion nor mechanical
dispersion—is included in the formulation of black-oil models. A consistent numerical treatment
of variable bubble-point problems, in black-oil models, generally requires the incorporation of
discontinuities in the solution gas:oil ratio RS . It has also been shown that numerical predictions

FIG. 9. Comparison of front position with and without jump.
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made using the ‘‘traditional’’—inconsistent—approach [6–9], in which no discontinuities in RS

are incorporated, may differ drastically from those made using a ‘‘consistent approach,’’ in
which discontinuities of RS are included. Thus, to obtain a satisfactory accuracy, it is necessary
to include discontinuities inRS . To achieve a fuller and deeper understanding of these facts—and
to suggest to modelers proper ways of handling them—the following discussion is presented.

Generally, in the physical reality, diffusion mechanisms are present, even if in some cases they
may be rather weak. Mathematical models are only an approximation, in which all the complexity
of the physical reality is never incorporated. For a ‘‘modeler,’’ a wise strategy to be followed is
to incorporate only those processes that are relevant, at the level of accuracy required of the results
of the model. If, in some application, diffusion is not relevant, it is correct to neglect it and apply
the black-oil model, in a consistent manner—incorporating shocks—as it has been explained by
the authors here and in previous articles [1–5]. However, if, on the contrary, diffusion processes
are relevant, the model must be modified in a consistent manner, and diffusion processes—either
molecular diffusion, mechanical dispersion, or both—must be incorporated explicitly.

What must not be done, however, is to apply an inconsistent model, because numerical results
obtained using inconsistent models are unwarranted. Indeed, for example, the velocity of the
gas-front predicted by the inconsistent traditional approach is the same as the velocity of the gas-
phase. However, velocity of the gas-front predicted by a consistent approach differs considerably
from that of the gas-phase. Preliminary analysis, already made [15], indicates that this is the case
even if diffusion mechanisms are incorporated, and that the actual velocity of the front cannot be
determined unless the diffusion mechanism is clearly defined.

Using results obtained in previous articles [1–5], in the present article a consistent black-oil
model has been formulated, which is adequate for applications to variable bubble-point problems
when molecular diffusion and mechanical dispersion can be neglected. Such a model incorporates
three kinds of possible shocks and a bifurcation mechanism, which also may occur. The shocks
can be classified according to whether they occur at: (1) a gas-front, (2) a region occupied by
undersaturated oil, and (3) a gas-region. Simple expressions have been derived for the velocities
of each one of them. For shocks of type (3), only the saturation can jump and they are essentially
described by Buckley–Leverett theory. In case (2), only the bubble-point [i.e., the solution oil:gas
ratio (Rs)] can jump. In case (1), at an advancing gas-front, both So and Rs are discontinuous,
but if the gas-front is receding, then only the saturation can jump. In addition, when an advancing
gas-front changes its sense of motion and starts to recede, the shock bifurcates, giving rise to two
shocks, one moving with the oil velocity, where only Rs is discontinuous, and the other one with
the velocity of the gas, where only So jumps.

From a different point of view, the results and discussions that have been presented in this
article contribute to clarify some aspects of black-oil models. In particular, a consequence of
omitting molecular diffusion and mechanical dispersion, as is done in black-oil models, is the
‘‘bubble-point conservation law,’’ according to which: when a gas-phase is not present, oil-
particles conserve their gas content (bubble-point). This is, indeed, a very severe restriction to the
manners in which the solution gas:oil ratio of an oil-particle can vary, when a gas-phase is absent.
Physically, this means that, when a gas-phase is not present, two oil particles cannot exchange
dissolved gas, even if they are very close. This property leads to preservation of discontinuities
(shocks) of the bubble-point.

Frequently, capillary forces are perceived as diffusive, and in some instances such perception is
justified. However, it must be stressed that the ‘‘bubble-point conservation law’’ holds even in the
presence of capillary forces. Thus, such forces do not preclude the validity of the ‘‘bubble-point
conservation law.’’ On the other hand, when either molecular diffusion, mechanical dispersion,
or both are included in the models, the ‘‘bubble-point conservation law’’ ceases to be valid.
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APPENDIX

There are some differences between our Eq. (6) and Eq. (1.3.6) of Ref. [15]. These differences
are explained in this appendix.

First, there is a change in notation: our Greek letter, ψ, stands for the product ρψ of [15].
Secondly, the right-hand side of Eq. (6), is ‘q’ while that of Eq. (1.3.6) is zero. This is because
this latter equation is not as general as our Eq. (6), which includes the possibility of a concentrated
mass exchange, with the exterior—or other components of the system—through the shock surface
Σ.The possibility of having such kind of exchange, in some models, is similar to the limiting cases
of forces concentrated on a surface, acting on a body, studied in Mechanics. When a gas-front
advances into a region of undersaturated oil, mass exchange between the gas and the liquid-oil-
phase is very intense at the front and can be mimicked only if a nonvanishing ‘q’ in Eq. (6), is
incorporated. This is the reason for taking qg

o and qo
g , different to zero in Eqs. (8a) and (8b). As

mentioned before, they represent the rate of mass-exchange, through the shock, between the gas
and liquid phases.
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