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ABSTRACT

Eulerian - Lagrangian Localized Adjoint Mcthod (ELLAM), based on Herrera’s algebraic
theory of boundary value problems, offer the advantages of Eulerian - Lagrangian mcthod
(ELM) in the numerical trcatment of Advection-Dominated Flows, whilc also conscrving
mass and handling gencral boundary conditions. In this paper a generalized ELLAM mcthod
of cclls is presented, in which the test functions are piccewise constant, and are advected with
the transport velocity. It goes along lincs prescnted previously by Herrera & Herrera and
subsumes many specific methods based on combined Lagrangian and Eulcrian approaches so-
called characteristics methods (CM). Optimal weighting and interpolating functions arc uscd

simultancously. Comparison with other methods are made.



1.- Introduction

Advection-diffusion transport equations are important in many branches of
engineering and applied science. These equations are characterized by a
nondissipative (hyperbolic) advective transport component and a dissipative
(parabolic) diffusive component. When diffusion is the dominant process,
virtually all numerical solution procedures perform well. However, when
advection is the dominant transport process, most numerical procedures exhibit
some combination of excessive nonphysical oscillations and excessive numerical
diffusion. In terms of results of numerical solutions, numerical dispersion gives
the appearance of an artificial, grid-dependent increase in physical dispersion.
Numerical " oscillation, common in second-order schemes, is manifested by
overshoot and undershoot about the true solution. Both of those problems can
be resolved by the use of refined space and time grids; however, the added
computational effort needed to reach the required degree of refinement
commonly makes a simulation intractable for most computers.

Recent developments have generally been along one of two approaches:
Eulerian or Characteristic. For advection-dominated problems, Eulerian
methods generally require small time steps for reasons of accuracy, and tend to
be ineffective because of the strong influence of the time derivative. The second
approach (Characteristic methods), solve separately for the advective and
dispersive components of the ADE. Advection is solved on a Lagrangian-type
grid by tracking along characteristics on the velocity field. Dispersion is solved
on an Eulerian spatial grid. Many approaches to characteristic methods have
appeared in the literature under a variety of names, including Eulerian-
Lagrangian methods (Neuman''), method of characteristics (Konikow'"),
modified method of characteristics (Douglas’; Russell’), an operator-splitting
methods (Espedal*). These methods have the significant advantage that Courant
number restrictions of purely Eulerian methods are alleviated because of the
Lagrangian nature of the advection step. Problems with characteristic methods,
in general, arise in three areas: inability to rigorously treat boundary fluxes when
characteristics intersect inflow or outflow boundaries, inability to ensure
conservation of mass, and the introduction of numerical dispersion, for some
methods, due to low-order interpolation or integration (Healy’).

This paper presents details of development and implementation of a
generalized Eulerian-Lagrangian method of cells (Herrera’). This method, is a
general characteristic-based numerical solution procedure that applies to a
variety of transport equations. In this approach, finite differences and boundary
elements are incorpored in a new “algebraic theory”. Details of the ELLAM
approach have been presented by Celia"?, Herrera®, Healy’, and Wang'? The
present paper begins by reviewing the LAM procedure, including discussion of
the general approach as well as specific formulations that have been developed
to date. This is followed by the specific space-time LAM formulation that
naturally leads to a generalized Eulerian-Lagrangian method of the cells. Finally,
a discussion of several additional topics is presented.



2.- Preliminary Notions

Considering a region Q and the linear spaces D, and D, of trial and test
functions defined in Q (space-time region). Assume further that functions
belonging to D, and D, may have jump discontinuities across some internal
boundaries whose union will be denoted by 3. According to Herrera’s theory,
the definition of a formal disjoint requires that a differential operator £ and its
formal adjoint £* satisfy the condition that w £ 1 - u £* w be a divergence, i.e.,

wlu-ul*w =V {D(u w) (D

for suitable vector-valued bilinear function 2 (n, w). Integration of Eq. (1)
over Q and application of the generalized divergence theorem (Herrera®) yields

Io{w,du ~ulL* w}dx = ané(w, u)dx + L_?z(w, u) dx, - (2)

with  2,(u, w) = D(u, w)-n and 2y (u, w) =- [2 (u, W)]-)_I, 3)

0  and X are boundary and jump conditions specified on the boundary of Q.
A decomposition of the bilinear function 24 1is

2,(u,w) =D, w)-n==28uw)-e* (uw), €]

where &(u, w) and € (w, u) = ¢* (u, w) are two bilinear functions. When
considering initial-boundary value problems, the definitions of these bilinear
forms depend on the type of boundary and initial conditions to be prescribed.
A basic property required of #(x, w) is that for any u» that satisfies the
prescribed boundary and initial conditions, &, w) is a well-defined linear
function of w, independent of the particular choice of u.

In a similar fashion, convenient formulations of boundary value problems
with prescribed jumps requires constructing Green’s formulas in discontinuous
fields. This can be done by introducing a general decomposition of the bilinear
function & (v, w) whose definition is pointwise. The general theory includes
the treatment of differential operators with discontinuous coeficients
(Herrera®). If continuous coefficients are considered, such decomposition is
easy to obtain, and it stems from the algebraic identity:

[Q (u,w)] =D ([u], u") + 2(12, [w]), (5)

where
[4] = u, - u, = (u, u)l2. (6)
The decomposition is obtained by combining the second of Egs. (3) with (5):

2, (u,w) = 9(u, w) - Z*(u, w), @)



with I, w) = - D([u], W) - n, (8)
%, w) = &(v, 1) = (i, [v]) ©
On the other hand, Eq. (2) can be written as
(P, w)=(Q* u, W) = (B, wy=(C*u, wy+{J, w)=(K ", w)
This is an ideﬁtity between bilinear forms and can be written more briefly as
P-B-J=Q -C -K’ ()

In order to associate a vanational formulation with this problem, define the
linear functionals f, g, j € D2* by means of

(f, w) = jnwfn dx, (g, w) = Lng“ (w)dx, (j,w) = Lj,:(w) de. (12)

Then a variational formulation of the initial-boundary value problem with
prescribed jumps is

Pu=f, Bu=g, Ju = j.

The bilinear functional J just constructed, as well as B, are boundary operators
for P, which are fully disjoint. When this is the case, the system of equations
(12) is equivalent to the single variational equation

((P -B-J)u, w) =(f-8g-J w) Vw € D,. (14)

This is said to be “the variational formulation in terms of the data of the
problem,” because Pu, Bu, and Ju are prescribed. Making use of formula (11),
the variational formulation (14) is transformed into

<(Q* -C* -K¥u, w) =(f-g-jw) Vw eD, (15

This is said to be “the vanational formulation in terms of the sought
information,” because Q*u, C*u, and K*u are not prescribed. The variational
formulation (14) and (15) are equivalent by virtue of the identity (11). The
linear functionals Q*u, C*u, and K*u supply information about the sought
solution at points in the interior of the region £, the complementary boundary

values at 0 €, and the generalized averages of the solution at ¥, respectively.
Since the exact solution satisfies (15) it must be that

<(Q*-C*-K*) i, w“’) = ((Q*-C*-K*) u, wa> a= N, (16)

Eq. (16) can be used to analyze the information about the exact solution that is
contained in an approximate one. In localized adjoint methods, these
observations have been used as a framework for selecting more convenient test
functions.



3.- Fundamentals of ELLAM Cells

To illustrate the underlying concept of ELLAM, consider the following
transport equation in conservative form for subsurface contaminants, subject to
boundary conditions at x = 0 and ¢, and to initial conditions

du 0 Ju .
Lu= E—E(DE—VU) +Ru = fQ(x,l) in O,
u (x,t") = u"(x). 18)
The adjoint operator is
= PP 3 - TRy s
go=2_O(p00) 2% py
&  2x ax Ox

For the case when the coefficients of Eq. (17) are constant, the source term
vanishes (R = 0). The partition is defined uniform, and the test functions used in
ELLAM cells are piecewise constant in space (Herrera®). This typical C! test
function is shown in figure 1. Notice that the piecewise linear test functions are
defined in a “corner-centered” grid while the piecewise constant functions are
defined on a block-centered grid.
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Figure 1. Partition of the region £2 and piecewise constant test function.
The bilinear function K(w,u) is associated with the values of » and its first-order
derivative on 2., and can be written as

Z(w,u)=Z°(w,u) + X' (w,u).

A partition {x1, X3, Xsn,....Xe-12,Xet into E subintervals of the interval 0, 9 is
introduced, for which x; = 0 and xz = ¢ The points



X = (xi—lIZ +xu|/2)/2’ i=2, E-

will be referred to as the “cell centers.” Notice that x; and xz are boundary
points of (0,4 and they are not midpoints of any of the subintervals.

Furthermore, using the fact that Vy = V, one obtains Z°(w,u) = 0, so that

Z(w,u)zX”'(w,u):i(l+V’)—mD%y- on _,,,-
x

For any a = 2,..., E-1,  does not intersect the lateral boundary x = ¢, because
it has been assumed that V > 0 and V= = V. If in addition, Q* does not intersect
the boundary x = 0, then @w,u) vanishes everywhere, except at the interval of
On+1 Q (i€, t = ty11), Where X., < X < X.... There @w,u) = -u. Taking all this into
account, the variational principle (Eq. 2) becomes

.+ 'nol a ‘ad a x; .
Ix V2 u" e +J' (D—-ﬁ) di _I (D—'i) di = J‘ ‘ " W dx.
X . 12 " ox T ‘. ox *

@ - 12
.2 Ea

The integrals from t* to t**' will be approximated in a fully implicit manner, by a
one-step backward Euler approximation. The firsts integral in space is
approximated by a central difference approximation, and the second integral in
space is approximated integrating the Taylor expansion of #" around the
midpoint of the interval [x,_,,x..,]. However, since such point is not a cell

center, #" is not known there and an interpolation must be used to evaluate it.
Using three-point formulas, #" and its second-order derivative can be evaluated
to orders there and one, respectively.

The numerical approximations presented thus for apply only when the
subregion Q% < Q does not intersect the lateral boundaries 3,2 U 0, Q, of the
region £2. When this is not the case, boundary conditions must be included. For
Dirichlet conditions, we use E-2 test functions, namely, those associated with
subregions Q.. Q%' In particular, no test function is applied on the first
subregion (') or on the last one (QF). For inflow boundary, conditions are
incorporated in the numerical equations in two manners: directly, through the
boundary terms and indirectly, imposing the condition that, in the numerical
approximations, some of the variables take the prescribed boundary values. For
outflow boundary, observe that the last test function to be applied is w*'. The
support of this test function is QF', which does not intersect the lateral
boundary x = ¢ Thus, none of the boundary terms involving the outflow
boundary occur in the numerical equations and the prescribed boundary values
are incorporated in the numerical equations in an indirect manner exclusively,

n+l

imposing the condition «;"" in approximations.



4.- Discussion and conclusions

In this paper, localized adjoint method has been applied in space-time to
problems of advective-diffusive transport. The approach is based on space-time
discretizations in which the test functions are piecewise constant, and are
advected with the transport velocity of the problem. The resulting method is
referred to as the ELLAM cells, and whose basic ingredients consist of (a)
identifying the information about the sought solution contained in the
approximate one; and (b) using this insight to choose the interpolation
procedure.  This approach, in addition to providing a unification of
Characteristic Methods (CM), supplies a systematic framework for
incorporation of boundary conditions in CM approximations. Any type of
boundary conditions can be accommodated in a mass conservative manner.

Two test problems were treated to demonstrate the performance of the new
method: the propagation of an initial step discontinuity and of a Gauss hill. The
results and the efficiency of the procedure were compared with other methods,
testing the effect of changing several parameters such as 6 (in time), element
Peclet number, as well as Courant number. The drawn conclusion was that
solutions obtained with this method are as least as good as those from the best
available interior methods (Celia', Herrera®’). _

However, we need a more extensive study of both the theory and
implementation of ELLAM techniques for vanable coefficients particularly in
multidimensional applications. Implementation of boundary conditions for
variable-coefficients problems in multiple dimensions is also an important
problem. Even in the one-dimensional case and in spite of the important
progress that has already been made (Celia', Herrera’), several points remain
open in this respect. In addition, the treatment of nonlinear problems deserves
further study. Since the unknown varnables appear in multilinear coefficients of
the problem that are usually evaluated in the interior at mesh blocks via
numerical quadrature, greater attention must be placed on the full
approximation theoretic properties of the trial functions in these applications.
The potential at local refinement in both space and time holds enormous
potential for ELLAM an is the object of ongoing research.

Finally we want to emphasize that LAM forms a general and powerful
framework for investigating and comparing a wide variety of numerical
methods. The framework motivates different properties of the unknowns or
even different unknowns, such as fluxes. The general theory is expanding to
provide more insight. In addition, the ELLAM methods appear to have
enormous flexibility and potential for treating general advection-diffusion-
reaction problems.
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