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ABSTRACT

The author’s Algebraic Theory of Boundary Value Problems has permitted .
systematizing Treffz method and expanding is scope. The concept of TH-completeness
has played a key role for such developments. A generalized version of Trefftz method,
known as LAM (Localized Adjoint Method), has been quite successful in numerical
applications. Here, the relations between these methods are discussed. Some implications
on collocation procedures and domain decomposition methods, are analyzed. In
particular, a non-standard collocation procedure -TH-collocation-, is described, whose
interpolation properties are shown to be much superior to other numerical methods.

1 Introduction

There are two main approaches to formulating boundary methods; one is
based on boundary integral equations and the other one, on the use of complete
systems of solutions. The latter one is frequently associated with the name of
Trefftz {1,2]. The author has studied extensevily a version of Trefftz method
(Trefftz-Herrera, or simply TH-method), whose peculiarity is that the weighting
functions that are applied, are solutions of the homogeneous differential
equation, or more generally -for non-symmetric operators- of the adjoint
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differential equations [2-8]). When such weighting functions are used, all the
information about the sought solution, contained in approximate solutions, is
concentrated at the boundaries of the domain of the problem. For weighting
functions that are only defined in a subdomain -as in finite elements, or domain
decomposition procedures-, such information is concentrated at the internal
boundaries that limit those subdomains [3-8].

Research by the author, especially his Algebraic Theory of Boundary
Value Problems [3-8], has clarified the theoretical foundations of the TH-
method and has expanded its versatility, making it applicable to any linear
problem which is governed by partial differential equations or systems of such
equations (in [9], a section was devoted to explain the application of the method
to systems of partial differential equations).

Classical boundary methods deal with problems in which boundary
conditions are prescribed at outer boundaries. However, in a more general
version of boundary value problems, additional conditions are prescribed at
interior boundaries. Trefftz method, in its original formulation, dealt with
boundary value problems-of the first class, exclusively [2,3]. However, the
generalized version of Trefftz method -TH-method- has been formulated for
boundary value problems in which jumps are prescribed at interior boundaries
[4,6,8,9]. Generally, the region may be decomposed into many subdomains -or
finite elements-, and in this manner the results of the theory are quite relevant
for numerical methods [4,6,8-11]. Indeed, in this connection they have been
applied to ordinary differential equations [6,10], and elliptic [11-13] and
parabolic [9,14] partial differential equations. The numerical treatment of
advection dominated transport, using this approach, has been very successful

and has received much attention (see [15], for a brief review).
There is a class of applications for which analytical methods may be

used successfully to develop weighting functions that satisfy the differential
equation. Indeed, function theoretic methods supply general results for
developing analitically complete systems of solutions. The work by Vekua [16],
by Bergman [17] and by Gilbert [18], on this subject was followed by many
others. In addition, the author's algebraic theory of boundary problems
permitted applying the results of function theoretic methods to specific
problems; in particular the concept of TH-completeness, first proposed by the
author in [19], has been quite relevant. According to Begehr and Gilbert, in their
recent survey of function theoretic methods ([20], p115):
The function theoretic approach which was pioneered by Bergman, and
Vekua and then further developed by Colton, Gilbert, Kracht-Kreyszig
[21], Lanckau [22] and others, may now be effectively applied because of
results of the formulation by Herrera, as an effective means to solving

boundary value problems.
However, for more general applications, one must resort to numerical
methods for developing such weighting functions (see, for example, [10]).
When this is done, one is led to a kind of numerical discretizations or to domain
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decomposition procedures, depending on the point of view adopted. Using this
approach, TH-domain decompositions were introduced in a previous paper that

appeared in an anniversary volume of Trefftz method [11].
On the other hand, a class of non-standard numerical methods called TH-

collocation was introduced in [11,13]. Standard collocation has been studied by
many authors (for an extensive exposition, see [23]). TH-collocation differs
from standard collocation in many respects and possesses many advantages over
it; for example, standard collocation requires continuity of the function and its
derivative, while TH-collocation only continuity of the function. Also, for
symmetric operators, TH-collocation yields positive definite systems, while

standard collocation does not enjoy this property. In addition to previous
presentations [11,13], a more complete discussion of TH-collocation and TH-

domain decomposition will appear soon {24]. In Section 3 of the present article,
the general ideas of TH-Collocation are briefly explained and, as an example, an
algorithm is introduced, that may thought as the simplest version of TH-
collocation and which yields non-standard nine-point finite difference systems,
positive definite, possessing very convenient interpolation properties, which
other nine-point finite difference schemes do not possess. Numerical
experiments and comparisons are carried out in Section 4.

2 TH-Domain Decomposition

To illustrate TH procedures, attention will be restricted to symmetric
elliptic operators of second order:

Zu = - Ve(aeVu) + cu 2.1)

-
-

where a is positive definite and c<0. A domain Q is cqnsideré.d, which will be
decomposed into a system of subdomains €, (i=l,...,E). The union of the

common boundaries between the subdomains will be X.
The boundary value problem -with prescribed jumps- is defined by

2u=f_.in Q (2.2)

subjected to Dirichlet boundary conditions:

u=u,; on oQ (2.3)

On X, it will be required that u and its derivative be continuous -i.e., that the
jumps be zero-: [u] = [8u/Jn] =0, on X. Here, the square brackets stand for the
"jump" of the functions inside them. The spaces of trial and test functions will
be D, and D, , respectively. For simplicity, functions beloging to these spaces
will be required to be continuous -with, possibly, discontinuous derivative. In
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addition, test functions w € D,, satisfy:

2w = fw=0,in Q 2.4)

and va}nish on the boundary.
Using the author’s Algebraic Theory of Boundary Value Problems, it
cap be shown that the values on £, of any solution u € D, of this problem, are

characterized by the following variational principle [11,13]:
—f,ua [ow/Onlen dx= [, Wladx— [qu,a,dw/dndx Vwe W (2.5)
where Wc D, , is any TH-complete system [11,19]. More precisely:
Given a solution u € D, of the boundary value problem -with prescribed
Jjumps- and any function ; eD, , then n= u, on T, if and only if, the

variational equation:

e

~Zua[ow/on)endx = Lwl, dx—Znu,a,dw/ondx VweW (2.6)

is satisfied.
In addition, the bilinear form on the left-hand side of (2.5), is symmetric

and positive definite on D, < D,, because [11]
~Js va,[6w/énlen dx =[, (VveaeVw + cvw)dx (2.7)

whenever veD, and w eD, . Therefore, there is a minimum principle
associated with the variational principle of Eq.(2.6). This was discussed in

[11,13].
Observe that the left-hand side of Eq.(2.5) involves the values of u, on

=, exclusively and can be applied using any trial function ue D,; i.e., functions

u that do not belong to D, , can be used. In view of the identity (2.7), this
variational principle can be modified, as follows:

Given a solution u € D, of the boundary value problem, with prescribed

Jjumps, and any function, ue D, then 2= u, on ¥, if and only if:
IO(V;\IOQOVW +c':|w) dx = fn wfndg—-f‘n u,a,dow/ondxvwe W (2.8)

However, this last form of the variational principle requires ue D, .Recalling
the definiton of D,, which only involves the homogeneous differential
equation, an important observation is that when the variational principles of Eq.
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(2.8) or (2.6), are applied, a particular solution of the inhomogeneous equation
is not required in order to obtain the values of the solutionon Z.

3 TH-Collocation: a Nine-Points Finite Differences Scheme

General and sytematic procedures for developing TH-domain
decompositions are presented in [11,13,24]. Also, TH-collocation in general.
Here, to be specific, the region Q will be the unit square [0,1]X[0,1] and the
partition {Q, €, } of it, will be made of squares, with "h’ as side-length. In
this case the total number of subregions is E=1/h? .Referring to Fig. 1a, with
each interior node (x,,y,), we associate weighting functions w,e D, -possibly
many-, such that they satisfy 2w, =0, at the four elemental squares that

(x;, )’1)

e e
KFig 1at 1

surround the node (x,,y;), and vanish identically outside of them. Since such
functions are required to be continuous, they satisfy the condition of being zero
at the outer boundary of the four squares. In addition, the internal boundaries
associated -with-node (x,,y;), are numbered as indicated in Fig. 1b. Then five

groups of weighting functions are constructed: - ‘

-

Fig 1b: Numbering of internal boundaries at each interior node.

Group 0).- This group is made of only one function, which is linear in
each one of the four interior boundaries between the squares of Fig.1b, and such
that w, (x,,yj)=l.

Group 1).- The restriction to interval "1", of Fig.1b, is a polynomial of
degree "G", at most, which vanishes at the end points of interval "1".
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Group 2).- The restriction to interval "2", of Fig.1b, is a polynomial of
degree "G", at most, which vanishes at the end points of interval "2".

Group 3).- The restriction to interval "3", of Fig.1b, is a polynomial of
degree "G", at most, which vanishes at the end points of interval "3".
degree "G", at most, which vanishes at the end points of interval "4".
The support of functions of Group "0", is the whole square of Fig.la, while
those associated with Groups "1 to "4", have as support rectangles which can be

obtained from each other by rotation [11,24].
In what follows we restrict attention to the simplest, but important,

example for which the groups 1) to 4) are void. In this case a nine point,

positive definite, finite difference scheme is obtained. Notice that only one

weighting function is associated with each interior node. The approximation of

the sought solution is written as

u(x,y) = .§ vy + }.‘;_“.Uﬁwij ’ (3.1)

where y, is continuous, vanishes outside €2, satisfies the boundary condition
(2.3), in Q, NQ2, and 2y , = f,, in Q. Here, it is understood that the second
summ ranges over pairs (i,j) corresponding to interior nodes. Then, when the
variational principle of Eq. (2.8) is applied, the system of equations

M,, U, = Fy G.2)

where the summation convention is understood -repeated indexes are summed
. over their ranges (interior nodes). The resulting matrix M is nine-diagonal and
symmetric, when the nodes are numbered using a natural ordering.

In the numerical applications, the weighting function have been
approximated by polynomials, using Gaussian collocation [11,13,24]. For the
particular case here considered, in which, only linear boundary values were

A
prescribed on X, the approximate weighting function wy is taken as a linear

combination of the functions &n, Enxy, Enx’y, Enxy?, and &Enx?y?. Here, the
function £ is linear in x, and equals 1 at x=x, , while n is linear in y, and equals
1, at y=y , . The last four functions constitute a kernel -which is used to satisfy

four collocation conditions, at the Gaussian points-, in the sense that all of them
vanish on the internal boundaries £, while the first one is used to satisfy the

internal boundary condition.

4 Numerical Experiments

The results of Section 3 were applied to Laplace equation; i.e., Eq.2.1
when a is the identity matrix and ¢ =0. The discretized system of Eq.(3.2)
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corresponds to a nine-point finite difference with weights 8/3 at the central node
and -1/3 at the remaining eight nodes. This was compared with the performance
of a ‘standard”

9-point scheme, given by Collatz [25], with weights 1 at the central node, -1/20
at the corners, and -1/5 at the remaining nodes.

The boundary conditions on the unit square were taken so that the exact
solution is u=x?—y*. The side-lengths for the squares of the partition, were
taken successively as: .2, .1, .05, .025, .02, .01, .005, .0025, and .002. The
resulting systems of equations were solved by iteration, using the same
conjugate gradient algorithm for both discretization procedures.

It was found that the number of iterations required to achieve a given

level of accuracy at the nodes, do not differ much for the 'standard’' and the TH
scheme (Fig. 2). However, the interpolation properties of the TH-nine-point

finite differences, are clearly superior. For the TH-finite-difference scheme, the
interpolation was carried out by means

800
L. —&— TH-Collocation /+
600 —— 9 points Finits Differences N
500
Number of 400 /
300 > /V
200 /
100
0® + 1 4
38 121 441 1681 2601 10201 40401 160801 251001
Number of Nodes

Fig. 2 Number of iterations to achieve a desired order of accuracy

of Eq.(3.1), while for the standard 9-point scheme, bi-cubic splines (SURFER
FOR WINDOWS), were used. The results are compared in Fig.3. It is seen that
the errors, for the standard procedure, are many orders of magnitude larger than

those for TH-Collocation.
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Fig. 3 Comparison of errors-for different mesh sizes
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