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- ABSTRACT

The “traditional’ approach to variable bubble-point problems, using black-oil models, is not
consistent, because it violates the ‘bubble-point conservation law’. Here, a consistent
procedure for dealing with such problems is given. It incorporates shocks, in which the bubble-
point is discontinuous. Three kinds of shocks and a bifurcation mechanism, are required. This
“consistent’ approach is applied to specific examples, and results compared with those of the
“traditional one’. The conclusion is that the “traditonal” approach generally yields large errors
for the production rates and other quantities of interest in the oil industry.

-

1 INTRODUCTION

It has been shown that the traditional black-oil model approach to variable

bubble-point problems [1-4], is inconsistent [5,6], and that in this manner large
errors in the production rates and other quantities of interest in the oil industry,

are generated [7].
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A consistent treatment of variable bubble-point problems has been
presented by the authors. It requires the introduction of shocks in which the
bubble-point -i.e., the solution gas-oil ratio: R,- is discontinuous. The following
classes of shocks have to be modeled [5,6): shocks in which the only
discontinuous variable is saturation -generally, occurring in regions where free-
gas is present or at a receding gas-front-, shocks in which the only
discontinuous variable is R, -occurring in regions where free-gas is absent-, and
shocks in which both the saturation and R, are discontinuous -occurring at an

advancing gas front.
In addition, a bifurcation occurs when an advancing gas-front -which

carries a double discontinuity: discontinuous saturation and discontinuous
bubble-point- changes its sense of motion and starts to recede; then, the two
discontinuities start to move with different velocities and in this manner, they
separate. In such case, the bubble-point discontinuity moves with the oil-
particle velocity, while the saturation discontinuity moves with the gas-particle
velocity. Shocks occurring in regions where free-gas is present behave in a
manner similar to that described by Buckley-Leverett theory [8]. However, the
other kinds of shocks have a very different character; in particular, they may
develop even if capillary pressure is incorporated in the model. A brief
presentation of the above, is given in what follows.

2 INCONSISTENCY OF THE TRADITIONAL APPROACH

We consider a "black-oil" or "beta" model, consisting of two phases, liquid oil
and gas -whose Darcy velocities are denoted by u, and u,, respectively [5,6]-
As usual, no physical diffusion is included.

When dealing with variable bubble-point problems, in general, in which

“free gas may, or may not, coexist with liquid oil, the region of definition of the

problem may be decomposed into three parts [5,6): one in which free-gas is
present (the "gas-region™), another one in which free-gas is absent (the "oil-
region"), and a gas-front which limits these two regions. To be specific, at the
gas-front, the unit normal vector (g) will be taken as pointing towards the gas
region. When considering discontinuities across a surface X, the velocity of X
will be vy, and the unit normal vector will be taken pointing towards the
positive side. In particular, at the gas-front the gas-side will be the positive side
Also, square brackets stand for the "jump" of a function; thus, for example:
[R)=R’, R, .

When applying black-oil models to variable-bubble-point problems, 1t 1S
frequently assumed that the bubble-point pressure may vary inside the -
undersaturated- “oil-region’ [1-4]. However, such assumption is incorrect,
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because it violates the "bubble-point conservation law" [5,6], which states that
in the absence of a gas phase, oil-particles conserve their bubble-point; i.e.,

[5,6]:
R+ Yoograd(R,) = 0 )

In words: "the material oil-particle derivative of R, vanishes". Clearly, this
implies that R; (i.e., the bubble-point), remains constant on liquid oil particles.

The bubble-point conservation law is a very restrictive condition;
physically it means that, when a gas-phase is not present, two oil-particles
cannot exchange dissolved gas, even if they are very close. In particular, this
property leads to preservation of discontinuities of the bubble-point.

Due to the "bubble-point conservation law", the paths that an oil-
particle can describe on the R; -p, plane, consist of fragments of the saturation
curve or of horizontal segments, only (Fig. 1a). The first ones take place in
periods spent by the particle in regions where the gas-phase is present, while
the latter ones correspond to periods spent by the particle in undersaturated
regions, where the gas-phase is absent. Thus, if a particle starts at state "n"
(Fig. la), so that it is undersaturated initially, and it is then depressurized, it
moves along a horizontal line towards the left, until it reaches the saturation
curve. If depressurization of the particle continues, it bubbles and liberates gas.
At such point, the state of the oil-particle lies on the saturation curve. If it is
represurized, at first it will move along the saturation curve, until all the free-
gas is removed, and at such point it will start to move along a horizontal line,
towards the right, leaving the saturation curve, until it finally reaches a state
such as "n+1" (Fig. 1a). This path is reversible: we could start at state "n+1"
and by successive depressurization and repressunzatxon, reach state "n". The
point at which the saturation.-curve is left by the oil-particle, under
repressurization, depends on the amount of free-gas available. In actual
reservoirs, this amount of gas is supplied by the gas-phase, and it is determined
by the relative motion of the oil-phase with respect to the gas-phase.

On the other hand, on the R, -p, plane, the states of an oil-particle

cannot follow a path such as the one joining states "n" and "n+1" (Fig. 1b),
since this would imply that R, changes without reaching the bl_xbblg-mmt That

PRIV BAAAD VY W weale aalaps

is, R, would changc when the gas-phase is absent and the bubble-point
conservation law would be violated. However, in the traditional” approach to
variable bubble-point reservoirs, such paths on the R-p, plane are admitted [1].
This is the inconsistency of the traditional approach, we refer to.
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3 A CONSISTENT APPROACH

At first glance, the previous discussion suggests that in a black-oil model the
only way in which an undersaturated oil-particle may become saturated, is by
depressurization to the bubble-point. This, however, is not correct, because in a
black-oil model an oil-particle may become saturated, in another manner: it
may follow a discontinuous path on the R,-p, plane, such as SH-SH’, in Fig. 1c.
This corresponds to an oil-particle which is initially undersaturated (point "n"),
so that the gas-phase is absent. At some point the oil-particle is reached by a

—
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gas-front (point SH) and becomes suddenly saturated (point SH'); under further
pressurization R; moves along the saturation curve. Such a path has the
discontinuity SH-SH', and therefore [R; ]#0, there. In actual reservoir models,
this corresponds to a discontinuity of R, , at the gas-front. The physical
implication is that the gas transference, at the gas-front, from the gas-phase into
the liquid-oil-phase, is so intense, that it gives rise to a discontinuity in R, .
Thus, a consistent formulation of black-oil models requires the
incorporation of shocks in which not only the saturation, but also the dissolved
gas-oil ratio R,, may be discontinuous. The remaining of this Section is
devoted to present an exhaustive description of the schoks needed (for a more
complete presentation, see [5,6]). In particular, the kind of shocks that occur in
each one of the three parts in which the region of study has been divided, will

be discussed.
AT A GAS-FRONT

Two situations must be distinguished.

At an advancing gas front

According to the previous discussion when oil particles carrying values
of R, below the saturation value reach the gas-front -where R, necessarily
equals the saturation value-, a discontinuity will be produced (segment SH-
SH’, of Fig.1c).In general at such a shock there are two discontinuous

variables: [R]#0 and [S ]+ 0.

At a receding gas front

” -

At a front that is receding, on the contrary, R, is necessarily continuous,
because the gas phase leaves saturated oil behind it, as it goes away. In this
case, the only discontinuous variable is the saturation.

IN THE OIL-REGION

In that region no free-gas is present and the oil saturation equals to one,
necessarily. Thus, the only possible discontinuous variable is R, .In contrast
to the "gas-region", where oil is necessarily saturated and R, is uniquely
determined by pressure, when the gas-phase is absent the liquid oil will usually
be undersaturated and R, can take any value below the saturation curve (Fig.
la). Thus, a discontinuity in R, can be introduced through the initial or

boundary conditions.
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AT THE GAS-REGION

In this region, R, is a continuous function of position. Thus, the only
possible discontinuous variable is saturation. Such shocks were originally
described by Buckley and Leverett, and further discussed by many authors. A

recent account, from a present-day perspective, is given in [8]
Note that, as it is generally recognized, such shocks are developed only

when capillary pressure is neglected. However, the other kinds of
discontinuities, that have been discussed above, may occur even if capillary

pressure is incorporated in the model.

4 SHOCK VELOCITIES

In this Section, a summary of the velocities for each, of the shocks just
described, that were derived in [5,6], is given.

prd

~ AT A GAS-FRONT

According to [5,6], the relative velocity of the front, with respect to the

oil, is given by:
(¥z -¥'o)on=e(¥e-¥", )on, 2

where the ‘retardation factor’ € is:

£= - = 3)
P oS
1+[R, }——.—— e
PsSs

Observe that the 0<e<l, and therefore € can indeed be interpreted as a
retardation factor, -of the shock motion with respect to the gas. When the gas-

front is advancing into the oil region, | R,]= R, - R, >0, so that <1, and the
retardation effect, of the motion of the shock respect to the gas, is present. On

the contrary, if the front is receding, [R;]=0, €=1 the retardation effect is absent,
and the shock moves with the gas velocity.

IN THE OIL-REGION

In this case the only possible discontinuous variable is R;, since S,=1, at
both sides of the shock, and it has been shown [5,6] that:

Yr.0=Y,*n, onZX. )
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AT THE GAS-REGION
In this region
{ug)en
¢[S,]

Of course, a special case of this equation is the immiscible and incompressible
case considered by the classical Buckley-Leverett theory, for which [8]):

(f;)

Yyen=¢' ————ujen 6)
(Sl

)

Yren =

where ur is the total Darcy velocity.

5 A SHOCK BIFURCATION

At a point where a gas-front, advancing into a region of undersaturated gas,
changes its sense of motion, thus becoming a receding one, the double
discontinuity ([R,]#0 & [S, ]#0) of the front “bifurcates'[5,6], giving rise to two
shocks: one in which the only discontinuous variable is the saturation -moving
with the gas velocity- and the other one in which the only discontinuous
variable is the bubble-point -moving with the oil velocity.

6 A NUMERICAL EXAMPLE

The purpose of this example is to illustrate the magnitude of numerical errors
introduced by the application of a “traditional’ black-oil models [6-9], which
have been shown to be inconsistent, to variable bubble-point problems. Thus,
the example will be treated by two methods: one in which shocks are explicitly
incorporated using the authors’ theory, and the other one will be a “traditional’
formulation [1-4], in which shocks are not incorporated. Then, comparisons of
the results of these methods will be made.

In this example the saturation R; -p curve of Fig. 2, for which R; is
pressure dependent everywhere, will be used. The initial conditions for this
one-dimensional problem, consist of a left-region of undersaturated oil and a
right-region containing a gas-phase, where the oil is saturated. These two
regions are separated by a gas-front. Production is obtamed from the left-
boundary at a constant pressure, while gas is injected on the'right-boundary, at

a variable rate: v, =10(t-30).
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.- Fig. 2 Curve of gas-in solution.

Therefore, at the gas-front (xgsp), When it is advancing into the region of
undersaturated oil, two discontinuities coexist -one of saturation (S, ) and other
one of the solution gas:oil ratio (R, ). Initially, the gas-front moves towards the
left with variable velocity, which is not given by a simple closed expession (see
Fig. 3), because the retardation factor €, as given by Eq. (3), is fully dependent
on the detailed shape of the R -p curve, illustrated in Fig. 2. At t=tg =30 days,
the sense of motion changes and the shock bifurcates, since the discontinuities
start to recede with different velocities. The velocity of the front is non-
constant and it is not possible to give a simple, closed expression for it. The
velocity vggs, of the advancing gas-front, and the retardation factor €, are
shown in Fig. 4. Both are strongly influenced by the detailed shape of the

saturation R -p, curve.
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In order to establish the significance of using a “consistent’ black-oil
model when treating variable bubble-point problems, the example that has just
been described, was also treated using the ‘traditional numerical formulation' »
[1-4]. When a “traditional formulation’, in which no discontinuity in R, is
incorporated, the saturation front advances towards the undersaturated region,
much faster than it should, as illustrated in Fig. 5. Thus, in about three days the
saturation front reaches the left-boundary; this is about one tenth of the
bifurcation time tg of our “consistent” black-oil model, in which the gas-front
begins to recede without reaching the left-boundary and, therefore, it never
reaches this boundary. Obvious consequences of this drastic difference in the
front velocities, when the inconsistent “traditional’ black-oil model is applied,
are big inaccuracies in the evaluation of gas production at the boundary and

other quantities of interest for the oil industry.
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7 DISCUSSION AND CONCLUSIONS

In usual formulations of black-oil models neither molecular difusion nor
mechanical dispersion is included. A consequence of such omission is the
“bubble-point conservation law” [5,6], according to which when a gas-phase is
not present, oil-particles conserve their gas content (bubble-point). However,
when applying black-oil models to variable bubble-point problems, it is
customary to assume that the bubble-point pressure may vary inside the
undersaturated region [1-4], and this is an inconsistency of the ‘traditional’
approach to variable bubble-point problems.

A consistent black-oil model formulation, of variable bubble-point
problems, requires incorporating shocks in which the solution gas:oil ratio R, is
discontinuous. Generally, three kinds of shocks and a bifurcations mechanism,
are needed [5,6]. Such shocks can be classified according to whether they occur
at: 1) a gas-front, 2) a region occupied by undersaturated oil, and 3) a gas-
region. Simple expressions are given for the velocities of each one of them. For
shocks of type 3), only the “saturation can jump and they are essentially
described by Buckely-Leverett theory. In case 2), only the bubble-point (i.e.,
the solution oil:gas ratio (R,)) can jump. In case 1), at an advancing gas-front,
both S, and R, are discontinuous, but if the gas-front is receding, then only the
saturation can jump. Except for shocks of type 3), all others may occur even if
capillary forces are present [5,6]). In addition, when an advancing gas-front
changes its sense of motion and starts to recede, the shock bifurcates, giving
rise to two shocks, one moving with the oil velocity, where only R, is
discontinuous, and the other one with the velocity of the gas, where only S,
jumps. In addition, it has been shown that numerical predictions made using
the “traditional” -inconsistent- approach [1-4], in which no discontinuities in R,
are incorporated, may differ drastically from those made using a ‘consistent
approach’, here explained [5,7].

The “bubble-point conservation law”, is a very severe restriction to the
manners in which the solution gas: oil ratio of an oil-particle can vary.
Physically, it means that, when a gas-phase is not present, two oil particles
cannot exchange dissolved gas, even if they are very close. This property, leads
to preservation of discontinuities (shocks) of the bubble-point and explains
why shocks of types 1) and 2), occur even if capillary forces are included in the
model. Although capillary forces are frequently perceived as diffusive -and in
some instances such perception is justified-, the “bubble-point conservation
law” holds even in the presence of such forces. On the other hand, when either
molecular diffusion, mechanical dispersion, or both, are included in the

models, the “bubble-point conservation law” ceases to be valid.
Of course in the physical reality, diffusion mechanisms are always

present, even if in some cases they may be rather weak. On the other hand,

mathematical models are approximations, in which always not all the

complexity of the physical reality is incorporated. For a ‘modeler’, a wise
7~
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strategy is to incorporate only those processes which are relevant, at the level
of accuracy required. If in some application, diffusion is not significant it is
correct to neglect it and apply the black-oil model, in a consistent manner -
incorporating shocks-, as it has been explained here and in previous papers
[5.6]. However, if on the contrary, diffusion processes are relevant, the model

mechanical dispersion, or both- must be incorporated explicitly. What must not
be done, however, is to apply an incosistent model, because numerical results
obtained using incsistent models, are unwarranted. Indeed, for example, the
velocity of an advancing gas-front predicted by the inconsistent traditional
approach, is the same as the velocity of the gas-phase. However, such velocity
when it is predicted by a consistent approach, differs considerably from that of
the gas-phase. '

One may expect that the consistent approach to non-diffusive black-oil
modeling be the limit, as diffusion goes to zero, of diffusive modeling. And, in.
this respect, it would be important to establish the range where diffusion
mechanisms can be neglected. Work oriented to elucidate such matters is

underway.

INDEX.
Black-Oil Variable Bubble-Point
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FIGURE CAPTIONS

FIGURE 1.-Paths in R,-p, plane
FIGURE 2.-Curve of gas in solution.
FIGURE 3.-Front Position for Example, with bifurcation time

FIGURE 4.-Front velocity and Retardation Factor (t<tg)
FIGURE 5.-Comparison of front position, with and without jump



