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The author's algebraíc theory of boundary value problems has permitted systematizing Trefftz method 
and expanding íts scope. The concept of TH-completeness has played a key role for such developments. 
Thís paper ís devoted to revise the present state of these matters. Startíng from the basic concepts of the 
algebraic theory, Green-Herrera formulas are presented and Localized Adjoint Method (L..UI) derh·ed. 
Then the dassical Trefftz method is shown to be a particular case of LAM. This leads to a natural 
generalization of Trefftz method and a special c1ass of domain decomposition methods: Trefftz-Herrera 
domain decomposítion. 

1.INTRODUCTION 

By a boundary method, it is usually understood a procedure Cor solving partial differential equa
tions andjor systems oC such equations, in which a subregion or the entire regio n , is left out oC 
the numerical treatment, by use oC available analytical solutions (or, more generally. previously 
computed solutións). Boundary methods reduce the dimensions involved in the problems. leading 
to considerable econorny of work and constitute a very eonvenient manner Cor treating adequately 
unbounded regions. Generally, the dimensionality oC the problern is reduced by one, but even when 
part of the region is treated by finite elements, the size oC the diseretized dornain is redueed [1. 2J. 

There are two main approaches to formulating boundary methods; one is based on boundary 
integral equations and the other one, on the use oC complete systems oC solutions. The autbor has 
studied extensively a version of the method based on the use oC complete systems oC solutions. 
known as Trefftz method [3-6J. Although Trefftz's original Cormulation was linked to a variational 
principIe. this is not required. What is peculiar oC Trefftz method, is that soIutions oC the homoge
nous differentíal equation - more generalIy, adjoint differential equation - are used as weighting 
functíons. • 

The rnethod has been used in many fields. For example, applieations to Laplace's equation are 
given by ~Iikhlín [7], to the biharmonic equation by Rektorys [8] and to elasticity by Kupradze [9]. 
Also. many scattered contributions to the rnethod can be found in the literature. Special mention is 
rnade here of work by Arnerio, Fichera, Kupradze, Picone and Vekua [W... 14]. Colton has eonstructed 
families of solutions which are complete Cor paraholic equations [15]. 

Some years ago. the author started a systematic research oC Trefftz method oriented to: clarify 
the theo¡erical foundatiolls required Cor using complete systems oC solutions in a reliable manner. 
and expand the versatility of the method! making it applieable to any problem which is governed 
by partía! differential equations andjor systerns oC sueh equations which are linear. 

For symmetric systems, the results obtained were presented in several reports [5,6,16-2.( and 
later integrated in book form [4]. They include: a) a eriterium oC completeness {introdueed in [16} 
aud caBed Trefftz-Herrera, or TH-completeness); b) approximating proeedures and conditions for 
their convergence [5.6,18]; e) formulation oC variational principIes [19,20, 24J; and d) de\'elopment 
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Here. an overview of Trefftz-Herrera ~\'Iethod is presented. Sections 2 and 3, are de\'oted to the 
formulation of domain decomposition. which supplies the framework for this very general 

v<:rsion of TH -Method, applicable to any linear partia! differential equation, or system of such 
f'quatiollS see :5-'*). 

In Sections 4 to 7, applications to general differential equations of second order and elliptic type. 
are devdoped in greater detail. For the symmetric and positive definite case, the matrices of the 
rC5ulting domain decomposition algorithms are also symmetric and positive definite. This property 
allows a direet application of efficient iteratiolls schemes. sllch as the conjugate gradient methon 
..\150. an alternative formulation of collocation procedures. "TH-collocation·'. which enjoys more 
rela.xed eontinuity conditions than "standard collocation [75]. 

2. ABSTRACT FORMULATION OF DOMAIN DECO~IPOSITION 

In this section sorne of the most basic concepts and results of the author's algebraic theory of 
boundary value problems, are prcsented. Generally. proofs are not included. Sorne of these con
cepts and results were introduced in [45-48]. They also imply a kind of operator extensions whose 
conneetion with the theory of distributions was discussed in [76J. 

The discussions refer to linear operators of the type P : DI ---t Di, whose domain is a the 
linear space DI, and whose values are linear functionals on Dz (Le.; elements oC Di: the algebraic 
dual of the linear space D2), as well as to operators whose domain is D2 and with values in Di In 
particular, the transpose oC P : DI ---t Di is P' : D2 ---t Di. 

The notation < Pu, v > is used to denote the value of the funetional Pu at v E D2. Clearly. 
< Pu. v > is bilinear and this defines a one-to-one correspondence between operators P : DI ---t Di 
and bilinear forms < Pu, v > on DI E9 D2. 

Definition 1 Boundary Operators. 

B is a boundary operator for P, iff 

< Pu., v > == O , Vv E NB" => Pu == O. (1) 

Definition 2 Formal Adjoints. 

Two operators P : DI ---t Di and Q : D2 ---t Di are formal adjoints when S == P Q* is a 
boundary operator for P, while 5* == p. - Q is a bounadry operator for Q. 

Definition 3 The subspaces Ip and IQ. 

Let P : Dl ---t Di and Q : D2 ---t Di be formal adjoints, then the subspace 1p e DI is defined 
by 

Ip .vp +Ns (2a) 

and the subspace IQ e D2 by 

IQ .VQ + Ns" (2b) 

Here. as befare, S == P - Q*. 

Definition 4 TH-compleleness. 

A subset vVc IQ e D2, is said to be TH-complete when for any V E DI one has 

< S~', 1L' > == O . Vw E W =? V E 1p (3a) 

Similarly, a subset Wc Ip e DI. is said to be TH-complete when for any R' E D2 one has 

< W. v > == O. Vv E W :::} W E lQ, (3b) 
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Definit ion 5 Disjoint Operators. 

A pair of operators {R l. R2 } of t he same kind is said to be disjoint when Rl is a boundary operator 
for R2. while R2 is a boundary operator for R¡. 

A system of operators {R¡. R 2 ... . ,R,,} of the same kind is said to be disjoint wIlen each pair 
{R,. R)}. with í:j: j. is disjoint. 

Definition 6 Completely disjoint. 

A pair of operators {R¡, R2 } of the same kind are said to be completely {or fully} disjoint when. 
in addition to being disjoint. the pair {Ri, Ri} is also disjoint. 

A system of operators {R¡. R2, •.. , Rn} of the same kind is said to be fuIly disjoint when each 
pair {R t , R]lo with i :j: j, is fuIly disjoint. 

Definition 1 Decomposition {R¡,R2 } of R. 

A pair of operators {R¡, R2 } is said to be a decomposition of R~ when they are completely disjoint 
and 

(4) 

A system of operators {R¡. R2, •.. ,Rn} is said to be a decomposition oC R. when they are fully 
disjoint and 

R = R¡ + ... + RN. (5) 

Proposition 1 Assume the pair {R¡,R2 } decomposes R, then 

NR = NR¡ nNR2' (6) 

Remark 1 Jf {R ¡, Rd decomposes R, then {Ri, R2} decomposes R*. 

Definition 8 Creen-Herrera formula. 

The equation 

P - E = Q* - e· (7) 

is said to be a Green-Herrera formula for the pair {P, Q}, when P and Q are formal adjoints and 
the pair {E, -e'} decomposes S = P - Q*, whiJe {B*, -e} decomposes S* = p. - Q. 

Theorem 1 Assume Eq. 5 js satisfied and jt js a Creen-Herrera lormula lor the pajr {P, Q}. Let 
{E¡. B2} and {el, e2}, be decompositions ol E and e, respectively. Then, the equation 

(P - B¡) B2 = (Q - e¡)* - e2 (8) 

is a Creen-Herrera formula for the pajr {(P - B¡), (Q - e¡)}. 

Definition 9 The (abstract) ooundary value problems. 

Let B be a boundary operator for P. Given U E DI and V E DI, the abstract boundary problem 
consists in finding u E DI such that 

Pu = f and Bu = g. (9a) 

where f PU E Di and 9 = BV E Di· 
Similarly, given W E D2 and Y E D2, the adjoint boundary value problem consists in finding 

U' E D2. such 

Qw = QH" and e11.7 =el' . (9b) 



Tn,m z 	Herrera ~ll't hod 373 

Theorem 2 \'ariatiollal formulatiol1 in tcrms of the data. 

11 :;: DI. is -"olutioIl of che b0l111dary problem. ¡ff 

(P E) u = 1 g. ( 10) 

Theorem 3 Variational fOJ'mulatioll Ín tcuns of the sOllg}¡t in forma UOIl. 

H"}¡cn P B = Q* - C· is a Creen s formula. u E DI. is solution of the boundary probJem. iff 

(Q* - C') u = 1 - g. (11 ) 

Definition 10 The kernel 01 the B. V.P .. and ¡,n¡q1J,eness. 

The set .V e DI, defined by 

N Np n Na (12 ) 

is the kernel of the B.V.P. When N = {O}, the B.\'.P. is said to satisfy uniqueness. 

Definition 11 

Given C : D2 ----t Di and a set Wc Dz, the set eH;' e Di is said to span the range of e, when 
for an)' v E D¡ ~ one has 

< C'v, w > = O. 'fw E W::::} C·v = O. ( 13) 

Theorem 4 Let P - B = Q" - C" be a Creen's formula and W e NQ e D2 be a set spanníng 
C. A.ssume a soJution ti. E DI of the b. 'I.r.p. exists. and let ti E DI be any element of D¡. Then. the 
folIowing assertions are equivalent: 

1. < C· w > = - < 1 g. w >, 'fw E W. 	 (14) 

11. 	 < C·u.w >=< C·u.w >, 'fw E W. (15) 

i i i. 	 C'u = C·u, (16) 

IV, 	 J[ eE DI satifies PU = 1, then 

<C'u,w>=«C'U-B[r+g),w>. VwEW. (17) 

Remark 2 In particular. when C·U = O, then Eq. (16) becomes 

<C·u.w>=-«BU-g),w>, VwE}V. (18) 

Proof: Observe that when w E Wc NQ. one has 

-<c·u.w> <l-g.w>=«P-B)u.u:> «Q'-C·)u,w>=-<C·u,w>. (19) 

Hence (14) implies (15). which in turn implies (16). by virtue of Definition 11. From Eq. (19). it 

f01l0V,'5 t hat when p[¡ = 1 and Eq. (16) holds. one has 

< C'u.w > < FU - g. W > < (Q" - C' +- B)f./, w > - < g, w > 

= < (-C' + B) U, w > - < g, W > (20) 

and Eg. (17) is clear. Using Eq. (20). one can derive (14) from (18). 
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3. INITIAL-BOUNDARY VALUE PROBLEMS WITH PRESCRIBED JUMPS 

Consider a region n and a partition {nb ... , nN } oC n into subregions ni,'" ,n.v. The linear 
spaces DI and D2 of tríal and test Cunctions respectively, defined in n, whose elements may have 
jurnp discontinuities across sorne internal boundaries whose union will be denoted by ~ (Fig. l). 
For exarnple, in applications oC the theory to finíte element methods. the set E could be the union 
of all the interelernent boundaries. 

Fig. 1 The region O. its boundary ao and internaJ boundaries I: 

In this settíng the general boundary value problem to be considered is one with prescribed 
jumps, across ~. The differential equation is 

[,1.1. Jn in n, (21) 

where n may be a purely spatial region or, more generally, a space-time region. Certain bound
ary and jump conditions are specified on the boundary an and on the interna! boundaries ~, 
respectívely. When n is a space-time region, such conditions generally ¡nelude initial conditions. 
In the literature on mathematical modeling oC macroscopic physical systems, there is a large c1ass 
oC problems that can be formulated as initial-boundary value problems with prescribed jumps or 
boundary value problems, when steady states are considered. For example, problems oC elastic wave 
diffraction can be formulated as such, [17]. The jump conditions to be satisfied across ~ by the 
sought solution, depend on the specific application and on the differential operator considered. For 
elliptíc problems oC second order, the jump oC the Cunction and its normal derivative are usually 
prescribed. Frequently, continuity oC the sought solution and its normal derivative, is required 
this corresponds to prescribing zero jumps Cor the solution and its first derivatives. When the partíal 
differentíal equatíons mimic continuous systems, the jump conditions can be derived systematically, 
from the balance equations oC continuum mechanics [77]. 

The definition oC Cormal adjoint requires that a differential operator [, and its Cormal adjoint [,*, 

satisfy the condition that w[,1.1. - u[,*w be a divergence; Le.: 

w[,1.1. - 1.1.c'*w = yo. {V (u. w)} (22) 

Cor a suitable vector-valued bilinear Cunction V (1.1., w), and a general Green-Herrera Cormula is 

In w.cu d..c - Ion B (u. w) dx - 1r..J (1.1., w) dx 

= { 1.1.c'*wdx- ( C(w,u) dx- { K(w,u} dx. (23)
Jn Jan J'L. 

Here, integrals over the region n, are understood as sums oC integrals over the individual regions 
ni, Thus, by definitíon: 

N 
{ w[,u dx = L { w[,1.1. dx (24)

Jn i Jn. 
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and :"uch intcgrals are well defincd in spite of the fact that the differential operator is not defined 
un 2:. In addition, 

.J (u, u') ::::: ([u]. tú)'!l, (25a) 

K' (u, w) ::::: K (w,u) = D (ú. [w])· n, (25b) 

whcre 

r •
[uJ = u+ -tL, Ú (u+ +u_)/2 (26) 

and B (u, w) and C (w, u) == C* (u, w) are two bilinear functions with the property tbat 

D (u. w) . n == B (u, w) - C· (u, w) , (27) 

the definition of B (u, w) depend on the type of boundary and initial conditions to be prescribed. 
A basic property required of B (u, w) is that for any u that satisfies the prescribed boundary and 
initial conditions, B (u, w) is a well defined linear function of w, independent of tbe particular choice 
of u. 

In order to relate these developments to the general framework of Section 2, define 

<Pu,w>= kwC,udx-hnB(u,W)dX; <Bu,w>= h.J(u,w)dx, (28) 

<Qw.u>= kuC,*wdx-hnC(w,u)dx; <Cw,u>= hK(w,u)dx (29) 

and the linear functionals 1, 9é:Di by means of: 

<f.w>= rwln dx - r B(ul,w)dx; VwED2, (30a)
Jn Jan 

(30b)< 9. w > = [.J (u"w) dx; w E D2! 

where u' . Ull E DI, are two auxiliary functions used to prescribe the boundary and jump condi
tions. respectively. Tben, a formulation suitable for initial-boundary value problems with prescribed 
jumps. ís given by Definition 9: i.e.: 

(31 )Pu == 1: Bu = 9· 

4. ELLIPTIC EQUATIONS 

The devclopments thus far presented. are applicable not only to differential equations, but also 
to systems of such equations [5-1]. However, in what fo11ows attention will be restricted to the 
differential equation associated with tbe most general elliptic operator of second order wbich will 
be written as: 

(32a)LU::::: - V· (~. vu) + V· (Qu) + cu == In, 

for which 

(32b)eu' ::::: - V· (~. Y'w) - Q' VW + cw 

and 

(33)D (n. u') = g' (uY'w - wY'u) + Quw. 
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To be specific. only Dirichlet type boundary conditions will be considered, and then one can 
define: 

B(u.u:) (!l' ~. vw + bnw) u and C· (u,w) = w (n'~' yu) , (34) 

where bn = º . 11- In so me applications, the complementary boundary "l/alues n' ª . Yu. can be 
interpreted &'5 diffussi\'e flux, but other interpretations are feasible. In previous artkles~ fully dis
continuous trial and test functions have been consídered, but for simpJicity, here only continuous 
trial and test functíons - with possibly discontinuous first derivatives - will be treated. Then: 

J(u.w)=w[!l'~'Yu] and K:(u,w)=[n·~·Yw]u. (35) 

When e is the elliptic operator of Eqs. (30), and the boundary and jump conditions are 

u = Ua, on an; [~. vu] .!! = j on E, (36) 

where ua and j are prescríbed functions defined 00 an and on E, respectively. As mentioned 
previously, a physical interpretation of j is the jump oC diffusive flux. 

The boundary value problem with prescribed jumps can be formulated variationaIly, point-wise 
on an and on E, by 

B(u,w)=B(ua,w} and J(u,w)=J(j,w)¡ "twED2, (37) 

respectively¡ or, more explicitly: 

(!l' ~. \7w) u = (!l' ~. yw) ua and w [n' ~. yuJ = wj. (38) 

The variational formulations of previous sections can be applied to this probIem, introducing 
the linear functionals 1 and gED2, defined by means of: 

<1,w>= hw1ndx knU8(n.~.Yw) dx; <j,w>= kjWdX. (39) 

However, to simplify the presentation, in what folIows j == O will be assumed; i.e., for the sought 
solution, the diffusive flux wi11 be required to be continuous across E. 

5. VARIATIONAL FORMULATION FOR ELLIPTIC EQUATIONS 

The approach to domain decomposition methods based on the use of specialized weighting functions 
which concentrate the information, contained in approximate soJutions, on the internal boundaries 
of the subdomains in which the original domain has been decomposed functions possessing this 
property are those belonging to the set NQ, considered in Section 2 - can beformulated appIying 
the variational principIes of Theorem 4 (Section 2). In this section, TH-Domain Decomposition 
Methods for the elliptíc differential equation of Section 4, are discussed. 

When Q : DI ---+ Di, is defined by Eq. (29), while e and e are those of Section 4 Eqs. (32b) 
and (34), respectively functíons w E NQ, are characterized by: 

.cw == -\7. (~ .V'w) - .Q. \7w +cw = O in n (40) 

together with 

w = O on an. (41 ) 

\\'hen use is made of Eqs. (34) and (35), the variationaI Eq. (14) ofSection 2, can be written as: 

-h[:!·~·V'w]udx= hw1ndx- knU8(!l.~.\7w) dx, "twENQ. (42) 

http:knU8(n.~.Yw
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Introdllcing the notatíon an ~'g?l and awlan fm thc normal derivative, this equation reduces to: 

- [an ¡awlan) udx ( 43) 

W!WII Ec¡. (-!l) and the cominuity of test fu¡¡ctions are taken into account. 
The bílínear fUllctional of the left-hano sioc in Eq. (-43). has special propertiCl:> when the díffer

f'!ltial úpN::ttor L. of Eq. (32a) is syml1letric (í.t>.. .c e) ano positive definite. This corresponds to 
t aking Di = D 2 = D. ª positive dcfiuite. º== O. C ~ O. In this case. given any two functions fi H 

and w E NQ = Np (Le.:which satisfy Eqs. (-40) and (·11)). we have 

ha" ~owlanJ Uf{ dI == In {(g' VIL') . '\;UH ~ C1L'U¡¡ } dx (-4-4) 

which exhíbits the bilinear functioual of the left-haud side in Eq. (43), as symmetric and positive 
oefinite when restricted to functions belonging to SQ = Np. Eq. (44), supplies two expressions for 
this futlctional and its quadratic formo 

Since the quadratic form is positive definite, it is possible to associate a mínimum principie for 
the boundary solutions of the problem we have been consídering. Because of the identity (44). it 
has two alternatíve formulations; the corresponding functionals are 

~l (UH) == - huHar¡ [auHlan]· nd,r 

-2 {In UHJnd;z:.  Ion ua (ar¡auH Ion) d,r} (45a) 

and 

In {V'fiH . g' VUH + cfi~ } d;¡:: 

-2 {In UH Jo. d;z:. - loo. ua JanaUH lan) . ?l d;z:.} (45b) 

under the assumption that: 

Gín'.J1 any element uE D. t}¡ere is an element UH ,E Nq = Np, such that 

(46) 

The minimum principIe states that: 

Let u E D. be the solution aE the boundary ....alue prablem. Then either one of these Eunc
tionals attains its minimum on NQ, iE and only i{ UH = u on L:. 

Proaj: It follows from the fact that 

,)1 (UH) == ~ UHan [aUH/an]· Ud:!: + 2 huar¡ [auHlon]. rrd! 

by virtue of t}¡e variational equation (43). Take UH E Sq such that UH = ti on L:. Then 

,)1 (UH) == - J(UH - UH) a n la (UH - UH) ¡,an] . rrd,r - hUHan [aUf{/an]' rrd;¡;:. (47) 

Clearly 

J! (fi H) ~ - huHan [Bu H / an1 . !1 2: o 

and the equality sign holds. if and only if Uf{ == UH· on :S. 
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6. THE TEST AND TRIAL FUNCTIONS 

For simplicity, consider a rectangular region decomposed into rectangles (Fig. 2a). With each node 
~Xí: y)) - i ==,0,,1, .. ,. Ex. and j == 0,1, ... , Ey - a subregion (nij ) is associated. When the node 
15 mterna!, thlS 15 the union oC the Cour rectangles that surround the node. When the node Hes 
on the boundary an, it is the union oC those rectangles inside the region. onIy. Observe that the 
total nUl~ber oC subregions is E = (Er + 1) x (Ey + 1) and that the system oC subregions {Ol)} is 
overlappll1g . 

. The boundary oC Oíj is aoíj , and that part of E laying in the interior oC ni) will be denoted by Eí . 
(Flg, 2b). In the case oC interior nodes, Elj is constituted by four segments and it is cross-shapel 
Those Cour segments will be numbered as indicated in Fig. 2b. 

2
(XI,yu 

1 

3 

a) b) 

Fig. 2. a) Rectangular domain decomposition oC ni b) Numbering oC interna! boundaries 

Given any subregion nij , consider Cunctions w E NQ whose support is contained in the closure 
oC Oíj. Such Cunctions satisCy Cw = O, locally and vanish on aníj - hence, on ano It will be 
assumed, Curther. that any Cunction Culfilling these conditions is determined by its trace on Eíj. 
With each subregion Oij, a system oC weighting Cunctions {wij; a = 1, ...}, belonging to Nq, and 
satisCying the aboye properties, wilI be associated. lt will be assumed that the restrictions to E, oC 
the Cunctions w~, span L2 (E), when a = 1, ... , i =0,1, ... ,E:r, and j = O, ... , Ey. A convenient 
way oC constructing a system with this property is expIained next. . 

..JUsing the numbering oC internal boundaries oC Fig. 2b, associated with each node (Xi, Yj) five 
groups oC weighting Cunctions will be constructed: 

Group O - This group is made of only one Cunction, which is linear in each one oC the Cour interior 
boundaries between the squares oC Fig. lb, and such that Wij (Xi, Yj) = 1. 

Group 1 The restridon to interval·"r', oC Fig. lb, is a polynomial in X, which vanishes at the 
end points oC interval "1". There is one such polynomial Cor each degree. 

Group 2 - The restricion to interval "2", oC Fig. lb, is a polynomial in y, which vanishes at the 
end points oC interval "2". There is one such polynomial Cor each degree. 

Group 3 - The restricion to interval "3", oC Fig. lb, is a polynomial in X, which vanishes at the 
end points oC interval "3". There is one such polynomial Cor each degree. 

Group 4 - The restricion to interval "4", oC Fig. lb, is él. polynomial in y, which vanishes at the 
end pvints oC interval "4". There is one such polynomial Cor each degree. 
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The support of the fUllction of Group "O", is the whole square, while those associated with 
Groups "1 to "4", have as support rectangles which can be obtained from each other by rotation, 
as shown in Fig. 3. 

Group O Group 1 Group 2 

Group 3 Group 4 

Fig. 3. The five groups oC weighting Cunctions. according to their supports 

It must be observed that the aboye constructíon does not lead directly to a system of linearly 
índependent functions. This is due to the fact that each couple of neighboring nodes, such as tbose 
límiting interval "1", share the polynomials defined on interval joining them. Thus, for example. 
what is what ínterval "1" for the node on the left, is ínterval "3", for the no de on the right, and the 
corresponding polynomials are counted twice. Such repetition can be avoided if only polynomials of 
even degree are incorporated and, for each degree. the one associated with the left-node is linearly 
independent of that associated with the right-node. Even more, these two polynomials must be 
selected so that sorne linear combinations of them yield polynomials one degree lower. 

Optimal trial functions 4> E Di, must satisfy the equation C4> = 0, and in actual implementations 
this is approximately fulfilled only, in most cases. Theír construction 1S quite similar to that of the 
test functions. Actually, when the differential operator is symmetric, C = C", and trial and test / 
functiolls can be chosen to be the same, at least for the Dirichlet boundary conditions here discussed. 

7. DISCRETIZATION 

In actual applications the equations must be discretized. To achieve this it is necessary to restrict 
the degree of the polynomiaIs, aboye, to be less or equal than certain number "0". When this is 
done. and the variationaI principie of Eq. (43) is applied. a system of equations is obtained. For 2-D 
problems. the structure of the matrix is block nine-diagonal. the blocks being (2G - 1) x (2G - 1). 

In general. the test functions at each subregion are not known and must be constructed. A 
simple and convenient numerical procedure is by collocation. When this is applied, this leads to 
collocation method which is not standard. Numerícal procedures based on the formulation he re 
presenterf. require evaluation on the function only and the derivatives of the sought solution need 
nO{ be evaluated. This i5 an advantage of TH-Collocation over "standard collocation" [75], for 
which ít is necessary to sol ve for both. the function and its derivatives. 

In the case when the differential operator is symmetric and positive definite, the matrix of the 
re:;ultíng ~.\'stem of equations, also enjoys this property, alld direct application of conjugate gradient 
mt-thod is feasible. 

The representation of the approximate solution is: 



I 
¡ 
j 

I 

I 
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2G-l 

u(x. y) = Up (x, y) + L L L utj</Jij (x, y) , 
i 	 j a 

~he.re tip (x, y) sa~isfie.:, in an approximate :nanner, the inhomogeneous equation Cup = In. If 
tip lS chosen fulfillmg tip == O, on E, then the system of equations obtained when the variational 
equation (43), is applied, does not involve up; Le., the construction ofup is not required to derive the 
system of equations of the domain decomposion procedure, This faet, is useful in sorne aplications. 
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