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Abstract. Domain decomposition methods have been extensively studied, specially during the
last decade, as a very effective tool for parallelizing models of continuous (macroscopic)
systems. In general, there are two approaches to develop domain decomposition methods:
One starts with the discretized version of the model and the other one with the partial
differential equations, before they are discretized. In this paper a very general formulation of
this latter approach, which is applicable to any partial differential equation or system of such
equations -symmetric or non-symmetric with coefficients that may be discontinuous-, is
presented. The basis for the analysis are theories previously developed by the author -
specially Trefftz-Herrera method.



1 INTRODUCTION

In recent years domain decomposition methods have received much attention, as a tool for
solving partial differential equations. This is mainly due to the development of parallel
machines, since such methods are efficient for parallelizing numerical algorithms. In
addition, they can be used to design adaptive algorithms which capture steep fronts that
appear in many problems, such as modeling of transport. Domain decomposition methods
are also used to simplify problems with complicated geometries or .match regions with
different physical parameters or different types of differential eciuations. A wealth of
literature on the subject has appeared in recent years (see for example .

The author’s generalized version of Trefftz method in which discontinuous trial and test
functions are admitted, leads in a direct manner to domain decomposition procedures. Such
methodology was advanced in previous publicationsw'm, although only recently research on
the procedure, as an approach to domain decomposition methods, was initiated®™'".

In this paper a very brief exposition of Trefftz-Herrera general formulation of domain
decomposition is presented. More details may be found in some of the material already
publishedg‘g'”.

The theory is presented in a relatively abstract manner in Sections 2-4 and its application is
illustrated through specific examples in Section 5.

2. GENERAL FORMULATION OF BOUNDARY VALUE PROBLEMS

Let Q be a region (Fig. 1) and {2, ..., Qy} a ‘domain decomposition’ (i.e., a partition of
). The union of the internal boundaries separating the elements of the domain
decomposition will be denoted by X (see Fig. 1).

z
02

~ 1 | | _ -

Figurc 1: The region €2
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In what follows two linear spaces of functions defined in Q will be considered. D, and D,
the spaces of trial and test (or weighting) functions, respectively. Let £ be a differential
operator, then the definition of formal adjoint £*, of £, requires that



wlu-uld*w =V {D(u,w)};YVueD &webD, 2.0

for a suitable vector-valued bilinear function 2 (u, w).

The general boundary value problem to be considered is one with prescribed jumps. Thus,
it will be assumed that functions belonging to the spaces D, and D,, may have jump
discontinuities across X and the solution of the boundary value problem will be required to
satisfy some jump conditions on £ . Then the general expression of such problem is:

Lu =1, in Q (2.2)

B(u,)=gs(), on 0Q (2.3)
and

Ju)=jz(), on X (2.4)

Here & (u.) and ¢ (u,-) are suitable bilinear functionals defined point-wise, on 0Q and Z,
respectively.  Similarly, g,(-) and jy(-) are linear functionals delined on o and Z,
respectively. If, u, and ug are functions satisfying the boundary conditions and jump
conditions, respectively, they can be defined by

go(w) =B (uy, W) and jy(w) = ﬁ (uz, w) (2.5)
The linear functionals f € D, g € D, and je D, are defined by
(£, w)= Iuw f, dx ; (g,w) = Iau gy (W) dx (), w) = IL Jz (w) dx; (2.0)
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In previous articles'”'’, Green-Herrera formulas have been introduced. The general form

of such formulas is:

fow L udx—[,, E(u,w)dx— [z 7 (u, w)dx =

foud*wdx— [ C*(u, w)dx - [ X *(u, w) dx 2.7)

Here, & (w, u) and % (w, u) are suitable bilinear functionals, while £* and % * denote their
transposes. Fundamental properties of these bilinear functionals are that & *(u, -)
characterizes the “complementary boundary values, while % * (u, -) characterizes the
“generalized averages”. In the case when the differential operator £ possesses continuous

coefficients, explicit expressions for 4 and X are:
Ju,w)=-2(ul, W) -n (2.8a)
and

X*(u,w)=2(u,[w])-n (2.8b)



The square brackets stand for the “jump” of the function contained inside.and the dot on top
refers to the ‘average’ across X; i.e.:

ul =u,-u_; u= 12, +u) 2.9

The unit normal vector n, on £, is chosen arbitrarily and, by definition, it points toward the
positive side of X.
Introducing the bilinear functionals

Pu, w) = fow L udx;{(Q*u, w) = [,u L *w dx (2.10a)
Bu, w) = f,, T, w)dx;(C*u,w)=[,, &* (u,Aw) dx (2.10b)
Ju, wy = f5. Z(u, w) dx; (K*u, w) = [ T *(u, w) dx (2.10¢)

In terms of such functionals the Green-Herrera formula of Eq. (2.6) becomes
P-B-J=Q*-C*-K* 2.11)

3 VARIATIONAL FORMULATIONS

Boundary value problems of the kind considered in Section 2, admit two variational
formulations, one in terms of the data of the problem and the other one in terms of the sought
information. The first one is:

(P-B-Du w)y=<{(-g-j,w); VwebD, 3.1
and the second one is
(Q*-C*-KMu,wy=(f-g-j,w); Vweb, (3.2)
More briefly, they are
P-B-DHu=f-g-j (3.3)
and
(Q*-C*-K9u=f-g-] (3.4)
respectively.

4 TREFFTZ-HERRERA FORMULATION OF DOMAIN DECOMPOSITION

In the formulation that will be presented in this Section, the concept of “internal boundary

solution” (IBS) will be required.
Definition 4.1. A function G € D is said to be an “internal boundary solution” when there
exists a solution of the boundary value problem with prescribed jumps, such that

K*a=K*u “.1)



Let £ < D, be a system of functions such that

Z*w=0, in Q, and E(W,) =0, on L (4.2)

whenever w € £ Eq. (4.1) implies
Qw=0 & Cw=0 (4.3)

so that £ « Ng m N¢ < D,. Here N and Nc¢ denote the null subspaces of Q and C,
respectively.
When £ N, n N¢ < Dy, Eq. (3.2), implies
-(K*u w)y={f-g-j,w), Vwe & (4.4)

Thus, Eq. (4.4) can be taken as a necessary condition for a function being an internal
boundary solution. However, it is not sufficient, uniess £ < N, m» N¢ satisfies some
additional conditions and the following concept of completeness, which was first introduced
by the author'® in a more limited context, will be useful.

Definition 4.2. A system of functions £ < N M N is said to be TH-complete when for
every i € Dy, one has

-(K*G, wy=({-g-j,w),Vwe E = iisanlIBS 4.5)

Using this concept, the following characterization of internal boundary solutions is clear.
Theorem 4.1. Let £ © Ny m N¢, be TH-complete. Then, any G € Dy, is an IBS, if and
only if
-(K*qG, wy={f-g-j,w), VweZE (4.6)
A useful alternative form of Eq. (4.6) can be given. Let uy & D, be such that Juy = j.
Assume further that up € Dy is such that
Pup=f;Bup=gand K¥up=0 4.7
In many applications the boundary value problem defined by Eq. (4.7) is well posed. Then,
the characterization of internal boundary solutions of Eq. (4.6), becomes:

-K*a, wy=dJ(u,-ug), w), VweE (4.8)

An important feature of Eq. (4.8), is that it only involves functions defined on 2.
In the examples that follow, it will be seen that Eq. (4.8) implies a domain decomposition

formulation.

S. EXAMPLES

A - Elliptic Equations
Consider the most general elliptic equation of second order:

Lu=-V-(a-Vu+ V.(bu)tcu={, (5.1



Let D, = D, be continuous across Z, with first derivatives possibly discontinuous. For
definiteness take Dirichlet boundary conditions:

u=us ; on 0 (5.2)
and jump conditions
ou| | dug |,
BHEE AR )

where uy is a given function.
Then functions we N, m N satisfy

L*w E-V-(Q-VW)—Q-Vw+cw=O; in QQ (5.4a)
and
w=0,; on 0Q (5.4b)

In addition, such functions are continuous across .
In this case, Eq. (4.8) is:

o(u_ —u )
~ | ow 2% p

—fcagu|—1] dx=[. a, w| ————— dx: Vweg& 55
.f}_, n I:an:l IZ n i: on } (5.5)
where a, =n -a - n. The procedure is a domain decomposition method because the weighting

functions we N, m N, may be constructed locally. For example, consider the rectangle of
Fig. 2, divided into

oQ2
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Figure 2: Domain decomposition of the example
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four subregions. If the value of w is prescribed on Z, we have well posed problems defined
on each one of the subregions I to 1V, because Egs. (5.4) must be satisfied. Thus, w can Le

constructed in each one of the subregions separately.

Another example, is the system of equations of mixed methods. The single equation:

- A U = f(l
is equivalent to the system
-p+ Vu=0
and
V.p fo
Introduce the four dimensional vectors:
u=(p,u)

and
fo= (0, fp)

Define a vector valued differential operator by:

Then, the system of Eqs. (5.7) can be written as
£ -u=fg

In this case < is self-adjoint (i.e, £* =Z£). Thus

D w=uq-wp

is a three dimensional vector. Here, the notation w = (q, w) is assumed.

Then

L u={-p+t Vu-V-

R*(u,w)=u[q]l-n-{w] p-n; onX

The information on ¥ refers to the average u and to the flux p- n .

concentrate the information on the flux, the additional condition

[q] - n=0; on %

(5.0)

(5.7a)

(5.7b)

(5.8a)

(5.8b)

(5.9)

(5.10)

.1

(5.12)

If it is desired to

(5.13)

on the weighting functions w = (¢, W), must be imposed. Observe that this condition is

continuity of flux. Then Eq. (4.8) 1s:



v, Iw]lp-ndx=f [ugz—up] q-ndx (5.14)
This is a mixed-method formulation because the information has been concentrated on the
flux p - n, exclusively. Observe that Eq. (5.14) is quite similar to Eq. (5.5), except that now

the spaces of functions are discontinuous while the fluxes are required to be continuous.
Here, Eq. (4.7) definingu, = (pp,u,,), are

—BP+Vul,:Q (5.15a)
and
Vep, =f, (5.15b)
subject to the boundary condition:
up =u,; on o0 (5.16)
and an internal condition: _
p-n=0; on X (5.17)

Referring to Fig. 2, this is a well posed problem for each one of the subregions I to IV.
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