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The author’s Algebraic Theory of Boundary Value Problems [1, 2] has permitted systematizing Trefftz
Method and expanding its scope. The concept of TH-completness has played a key roll for such devel-
opments [3]. A generahzed version of Trefftz Method, known as LAM (Locahzed Adjoint Method), has
been quite successful in numerical apphcatlons [4, 5]. Here, this theory is used to present a formulation
of domain decomposition methods possessing great generality [6, 7]. The resulting formulation includes
any partial differential equation which is linear, or system of such equations. In particular, equations
with discontinuous coefficients are included.

Boundary value problems, with prescribed jumps at internal boundaries, are formulated variationaly,
in terms of the data of the problem, in the form

(P—B-Jyu=f—g—j

When use is made of Green-Herrera formula (P — B — J = @* — C* — K*), this becomes the variational
formulation in terms of the sought information:

(@—-C"-KYu=f—-9g-j

Here P,B,J,Q,C and K are bilinear functionals while f, g,j are linear functionals, whose explicit ex-
pressions are given in the theory. In particular, KX is related to Poincaré-Steklov operators. The above
variational formulatlons imply a kind of operator extensions whose relation with the theory of distribu-
tions was explained in [8].

For functions w satisfying Quw = 0 and Cw = 0, this equation becomes

—(K*u,w) = (f —g— j,w)

This is the general domain decomposition formulation, we are referring to. In addition the bilinear
functional (K*u,w) is shown to be positive definite when the differential operators are positive definite.
Specific apphcatlons to elliptic equations of second order, mixed methods and ellasticity, are presented
Application of conjugate gradient for the resulting system is explained and also a very general version of
Quarteroni method is derived.
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