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Abstract This paper belongs to a broad line of research leaded by Herrera, which
encompasses a good number of numerical methods such as Localized Adjoint Method
(LAM), Eulerian-Lagrangian LAM (ELAM) and Trefftz-Herrera Method. The results
presented in this paper are required in order to incorporate Herrera’s general theory
in a Sobolev-space setting. In particular, this article introduces a class of partitions
(or domain decompositions) whose internal boundaries belong to a category of mani-
folds with corners, here also presented. Then a version of Gauss (or divergence) the-
orem, in a wider sense, is established and an explicit integral formula is associated
for any given linear partial differential operator £, its adjoint and concomitant. The
structure of the bilinear concomitant induced by L is first determined. Then the re-
quired formula is given over that class of domain decompositions. Finally, an integral
formula well on the way of the Green—Herrera formula is settled.
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1. Introduction

A usual strategy of solution, when a boundary value problem for a linear partial differen-
tial operator is posed, is first to consider a weak formulation of the problem. In this way,
the modeler may reduce to some extent the differentiability of the spaces of trial and test
functions, design approximation methods and enlarge the scope of physical applications.

A further step is taken when Green formulas are applied, because then powerful
indirect variational principles come into action. The general formulation given by Lions
and Magenes [13] is well known but, in spite its level of abstraction and generality,
presents some limitations in applications to numerical methods (see the Appendix below).
In particular, Herrera [3-5,8] has developed an approach in which, instead of splines,
simultaneous use is made of fully discontinuous trial and test functions, increasing in
this manner theoretical versatility, applicability and algorithmic resources.

However, in that situation some conditions required in Lions and Magenes formula-
tion are violated (see Appendix and [13], pp. 114-115). On the other hand, the kind
of Green formula introduced by Herrera [3,4,6,8,9,11] here referred as Green—Herrera,
overcome this difficulty. Green—Herrera formulas exhibit explicitly the information —
about the sought solution— contained in an approximate one. This yields the following
interpretation of usual finite—element formulations: the test functions used determine the
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information about the sought solution contained in an approximate one, while the base
functions interpolate (or extrapolate) that information. An strategy which is optimal
[7], in some sense, is to obtain enough information to define well posed problems locally
and then use as base functions, local solutions of the differential equation. This leads to
a domain decomposition strategy (see [12]).

Although Herrera’s theory is very appealing, its theoretical foundations had not been
fully developed until recently. In particular, Green-Herrera formulas had not been for-
mulated in a Sobolev-space setting, as it is standard in theoretical numerical analysis.
This weakness, has been overcome in a paper due to appear soon [11], but a part of
the theory presented there, uses results that to our knowledge have not been published
previously, in spite of the fact that they have interest in themselves. Thus, the purpose
of the present paper is two-fold: to give a rigorous proof of them, in order to complete
the theoretical foundations of Herrera’s approach, and to make them available to other
scientists working in this area of research.

In the present work we begin the setting of a general framework, abstract enough to be
sufficiently encompassing but, at the same time, very concrete and algorithmic. It starts
by giving an explicit formula, expressed as a divergence, for the bilinear concomitant of
an arbitrary linear operator. As a by product, the non-uniqueness of the Green formula
offered in [13] is clarified and the common prejudice that “integration by parts is needed”
is erradicated.

The category of manifolds with corners is geometrically attractive, simple to grasp and
suitable for most applications. Therefore, a general definition of a domain decomposition
sitting on this concept is very convenient and has clear advantages when compared with
the smooth and Lipschitz categories of [13] and Marti [15] respectively.

Traces of functions in Sobolev spaces over manifolds with corners are briefly discussed.
Then, a Gauss theorem over domain decompositions is stated. Finally, an integral formula
well on the way of a general Green formula in the sense of the algebraic theory of Herrera
[3-6,8,9,11] is settled.

2. Multi-indices, strings and operators

In any discussion of functions of n variables an ordered n-tuple t = (t1,%2,...,t,) of
nonnegative integers is known as a multi-index of order |t| = t; +t2 +--- + ¢, and is
usually associated with the differential operator

o t1 P 12 b tn
t __ t1 t2___ tn: - _ PR —_—
DP=DiDo e Dn (6m> <6x> (6)

Suppose (Q is open in R® | N a positive integer, f; € C°°(Q) for every multi-index ¢ of
order less or equal N, and at least one f; with |t| = N not identically zero. Then

L= f-D'

[tI<N

is a linear differential operator with smooth coefficients of order V.

Let K be a positive integer and let @ = oy o az ¢+ o ax = (a1,as,...,ak) be a
K-tuple of positive integers not exceeding n. Call a a string of length A\(a) = K (in the
alphabet {1,2,...,n}).

If 1 < 8 < mnis an integer, define a o 3 to be a1 cazo---oak ¢ 3. Let the empty set
() be a string; actually the only with length equal to nought, and define § o 3 = 3.

As with multi-indices, for every string a there is a differential operator associated
with it, namely
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Ly =

Id = identity if a =0,
D, D, - Dy, otherwise

Recursively, we are saying that Ly = Id and Loop = LoDg .

As an illustration, consider the string @ = 20304039202 and the corresponding
multi-index ¢ = (0, 3,2,1). Now note that they produce the same operator (here n = 4).
Obviously, any permutation of @ does not change the corresponding operator (nor the
associated multi-index). That is, a represents not only an operator, but also a determined
order in which partial derivatives ought to be computed. This remark will prove to be
of consequence in Corollary 10. In what follows, it will be important to distinguish well
strings from multi-indices.

3. Definitions

Let D(Q2) be the space of all compactly supported functions in C*° () endowed with the
(real) scalar product < u,w > = [, u-wdx and let £ be a linear differential operator on
Q as before. By restricting its action, £ may be thought as an operator of D(Q) in itself.
Since D(Q) is not a Hilbert space and £ is not continuous under the scalar product norm
(unless £ = 0) , it is not obvious that there should exist a linear transformation £* on
D(Q) such that < Lu,w > = < u, L*w > VY u,w € D(Q). Nevertheless, it is a simple
and well known fact that £* always exists and that it is actually a differential operator.
Of crucial importance for us here is also the correspondence

(u,w) — wlu — ul*w YV u,w e D(Q)

which defines a bilinear differential operator §[£] = § : D(Q) xD(2) — D(Q) sometimes
refered to as the bilinear concomitant of L.

The following paragraphs exhibit the structure of § and, as a by-product, the existence
and structure of the so-called formal adjoint L* as well.

It is important to keep in mind that much of the power and flexibility of the theory,
not to say its ability to circumvent difficulties, relies on the multiple domains over which
L can effectively act. By way of example, we just saw how D(2) proved to be an effective
choice in order to make the concepts of formal adjoint and concomitant meaningful.

4. Lemma

Let £ be a differential operator with formal adjoint £* and concomitant F[£] so

wlu = ul*w + F[L](u,w) YV u,w € D(N) (a)
Then, for any nonnegative integer 3,

[LDg]* = —DgL*
and

$1£Dg)(u, w) = F[L]|(Dp u,w) + Dp(ul*w) (b)
Proof. By Leibniz’s rule we can write

wLlDg u = (Dg uw)L*w + F[L](Dg u,w)
= —uDgL*w + Dg(ul*w) + F[L](Ds u,w)
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5. Remark

The rules (£*)* = L, (Lf)* = fL* (where [£f](v) means L(fu)), (fL£)* = L*f,
(L1 + L2)* = L1% + L27, and (L1 0 L2)* = L3¥ o L1 (operator composition) are easily
derived (via formula (4.a)) and are the basis of a simple calculus of formal adjoints.
Actually, the first part of the previous lemma is an elementary instance of the operator
composition rule.

There is also a formal calculus of concomitants: namely, F[L*](u,w) = —F[L](w, uv),
B[/ L) (u, w) = F[L](u, fw), F[Lr+L2] = F[L1]+8[La]; F[Lr0Lo](u, w) = F[L1](Lou, w)+
(L) (u, Liw) (cf. (4.b)).

6. Examples

a) If L= Ly =1Id, then L* =L and F = 0.

b) If £L = Lg = Dg, then £L* = —L and §(u,w) = Dg(uw). This follows from Lemma
4 applied to the example above.

¢) By Lemma 4, if a = a; 9 ap and £ = L4 = L4, Dg,, then £* = (1)L = £ and
&(U, ’U)) = Dal[(£a2u)U)] - Daz [u‘calw]'

d) An induction, over the order of a multi-index ¢ and using example (b) as induction
basis, shows that, if £ = D¢ then £* = (=1)/YID?.

e) Finally, let £ = th\< ~ ft - Dt. The calculus sketched in Remark 5 in addition to
example (d) imply -

Lf = Z (ft _Dt)* — Z (Dt)* 'ft — Z (_1)|t\Dt 'ft

[tI<N [t]<N [t]<N

Now, in order to phrase a general result on the structure of §[£], we need to define
what is meant for initial and final segments of a given string.

7. Definitions

Let @ = a3 9@z ¢--- o ak be a string of length K, and let k € {1,2,...,K}. Define

0 ifk=1,

A(k’):A(Q;k):{aloa2o...oak1 ifk>1

2(k) = Z(a, ) = { et O kaz o RS

8. Proposition

Let o be a string of length K. Then

L= (-1)%c, (cf. Example (6.d))
K

Falu,w) =D (=) Do, {(Lzk) W)(Lagy w)}
k=1

Proof. The proof is by induction and its basis is contained in Example (6.b). So let
us suppose the result is true for every string of length K and let a o ax1 be a typical
string of length K + 1.
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Since Laoax,s = LaDag,, and due to Lemma 4, the induction hypothesis and the
commutativity of partial derivation, we have that

E;WIKH = (‘CQDQK-H)* = _DaK-H‘E;
= _DaK+1(_1)K£g = (_1)K+1[’gDaK+1
= (=D)L
and
&QO(JK—H (U/, U)) = SQ(DQK_HU,'UJ) + Dax+1 (UE;’IU)
K
= Z (_1)k+1Dak{(ﬁZ(g,k)DaK+1 u)(EA(g,k) U))} +
k=1
+ (~1)"* Doy s (ulo w)
K
= Z (_1)k+1Dak{(£Z(Q°aK+1,k) UJ(LA(Q“U{HJ“) w)} +
k=1
+ (=15 Dok 11{(£ z(a0ar s,k +1) W) (LA(aoars,K+1) W)}
K+1
= (_1)k+1Dak {(‘CZ(QOQK+1J€) U) (‘CA(goakn,k) 'U))}
k=1
9. Example

Let a=i0jokol. Then
Sg(u,w) = D,»((DjDleu)w) — D]((Dleu)D,w) +
+ Dk ((Dlu)DzD]w) — Dl (UDzDJDkU})

This clearly shows that the actual expression for §, depends, in most cases, on the
order in which partial derivatives are to be computed.
The next corollary exhibits a non-trivial consequence of this seemingly formal trifle.

10. Corollary
Given a string « in the alphabet {1,2,...,n}, there exists a uniquely determined vector
field, say
D, (u,w) = (Dg,1(t,w), Do 2(u, W), ..., Do n(u,w)),
such that
Ba(u,w) = VeDd,(u,w)

Proof. Define, for each 1 < j < n, a7!(j) = {1 < k < K | ay = j}. Then, the subsets
a~!(j) are a disjoint collection whose union is {1,2,..., K'}. Therefore,

Il

Sa(ww)= 3 3 (D"'Di{(Lr@p W(Lam w)}

kea=1(j)

= 2.0 Y (D"H{(Lrap w)(Laer w)}

kea=1(j)
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Hence the result follows by putting
Do j(w,w) = > (=D {(Lzar) w)(Lagr w)}
kea='(j)

forall j =1,2,...,n, where D, ; =0 if a }(j) = 0.

11. Example

If 3 is a permutation of a string a then it is true that §, = § as operators but, in most
cases, D, and D turn out to be different fields. For example, let « = 3010304 and

n = 4. Then

Dy (u,w) = (= (D3D4u)D3w,0, (D1 D3 Dyu)w + (Dsu)D3Dyw, —uD3 Dy D3w)
If3=4030301, then

Dp(u,w) = (—uD4D3D3w,0,(D1u)DyDsw — (D3Dyu)Dyw, (D3 D3 Dyu)w)

12. Theorem

Let £ =}y (a)<i fa " La be a differential operator. Here, the summation runs over a
subset of strings (not multi-indices as is customary) whose length does not exceed K.
Then we have the explicit formula

wlu —ul*w =V e D(u,w) YV u,w e C®(NQ)
where

L* = Z (—DMDL, fa (cf. Example (6.e))

a

and

Du,w) = 3D, (u, fa w)

Observe that, if £ = A is the Laplacian, the theorem gives Green’s second identity
before integration.

13. Manifolds with corners

In order to state a divergence theorem and other integral formulas in the wider sense,
it is necessary to go through the construction of traces and jumps in Sobolev spaces
over manifolds with corners. So let us start our discussion with this particular class of
manifolds.

Let €2 be an open set in R”. We say that Q is a manifold with corners or a domain
with almost regular boundary (see L. Loomis and S. Sternberg [14]) if, for every x € R”,
there is an open set U containing x and a diffeomorphism (called a chart or coordinate
system) ¢ : U — @o(U) C R™ such that one of the following possibilities holds:

a)UnNQ =40,
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b) U C Q,
) eUNQ)=pU)N{y €R" | yr > 0,yp41 > 0,...,yn > 0} for some 1 <k <n
depending on x.

Fig. 1

The definition does not cover all cases that can arise. Neither the plane cusp of Figure
(2.a) nor the quadrilateral of Figure (2.b) qualify as manifolds with corners. However,
the quadrilateral can be expressed as the union of two triangles for which the definition
is valid (consider linear coordinate systems ¢ that convert a typical angle < 7 into a
right one).

(a) No ¢ can open up (b) No ¢ can convert this angle
this tangential cusp > 7 into a right angle

Fig. 2

Denote the boundary of 2 by 92 and let 9Q be the set of boundary points for which
condition (c) holds with & = n. These are called the regular boundary points of 2. It is
easy to see that 9 is a smooth manifold of dimension n — 1 which is dense in 99 and
of complement of null (n — 1)-dimensional measure. Let ) = Q U 92 be the topological

closure of Q in R™.
The manifolds

By = {yeR" |yp >0,4811>0,...,4n >0}  (1<k<n)
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are the standard models for corners and, from them, all other manifolds with corners are
locally modeled.
If j is such that k£ < j < n then

3J]E"={YGEZ|ZUIO}

is called the j-th face of the k-th standard corner.

Fig. 3 OE; is shaded.

14. Sobolev Spaces for nonnegative integers

Let m be a nonnegative integer and G an arbitrary open subset in R™. Let the Sobolev
norm be given by

1/2

1l ={ 3 / | D[P dx vf € C=(G)

lt|l<m

(the sum running over multi-indices.)
The Sobolev space H™(G) is then the completion of the pre-Hilbert space

{fec=@ | lflln < =}

For m = 0, H°(G) is (isomorphic to) L?(G), the space of square integrable functions.

In what follows, every result not proven here is standard, and can be found in at least
one of R. Adams [1], J.L. Lions and E. Magenes [13], J.T. Marti [15], M. Reed and B.
Simon [17], or W.Rudin [18]. The chosen construccions specified below make the sequel
of assertions straightforward to prove.

Let £: V3 — V5 be a bounded linear transformation between normed spaces. Then
L can be uniquely extended to a bounded linear transformation with the same bound,
from the completion of V; to the completion of V2. The same symbol £ is used for the
extension.
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15. Fourier Transforms

Let s be an arbitrary real number and let C§°(R"™) be the space of smooth functions with
compact support. Define the norm

1/2
e = | [ Q+ P IF@P ay| v pecr@)
where

Fiw) = @0 [ eapl-ixey)fix Yy e
is the Fourier transform of the compactly supported function f. The completion of
C°(R™) under ||f||r,s is H°(R™). When s is equal to a nonnegative integer m the
norm just defined is equivalent to the Sobolev norm defined in (14) and the resulting
spaces are isomorphic. Hence there is no ambiguity in using the same notation for both
constructions.

It is desirable, when possible, to exhibit “concrete” realizations of this abstract process
of completion. In the present situation, first observe that, for sg < s;, we have the
(continuous) inclusion H'(R®) — H* (R™). Hence, for s > 0, H*(R") is realized as
a “concrete” subspace of (square integrable) functions. On the other hand, for s < 0,
it is necessary to go into the realm of the theory of distributions to exhibit a definite
description of HF (R™) as a subspace of tempered distributions.

From now on, we shall restrict ourselves to the case of a nonnegative, but otherwise
arbitrary, parameter s. The resulting theory is somewhat simpler and sufficient to our
purposes.

16. Sobolev spaces for a nonnegative real

Let s > 0 and let G be an arbitrary open set in R”. Define H¥(G) as the space of
restrictions of the functions in H?f (R") to G, and let

1£lls = Inf {|flles | Flo = £, Fem @)}

This norm amounts to providing Hf (G) with the norm of the quotient of H? (R™) by
the closed subspace of functions vanishing almost everywhere on G. Therefore Hf (G) is
already complete.

17. Sobolev spaces for boundaries

Let € be a relatively compact manifold with corners. Before proceeding into the intended
definition, we want to make two observations:
(a) As with any arbitrary open set, the space

Ro(Q) = {f Q>R ‘ f is the restriction f | of a function f € CSO(R")}

is dense in H? ().
(b) Let

{ (i, Us) ‘ pi Ui = R* O By }i:1
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be a finite number of charts (of type (13.c)) covering 0Q and add
(po =1d, Uy =) as a valid chart to complete a covering of ().

Fig. 4
Let
#

=0

{A,-:U,-—>[0,1]}

be a partition of unity subordinated to {Ui}gzo- Then f € H*(Q) if and only if (A\;f) o
p;t € B (BR,)) Yi=1,2,...4.

These observations suggest the following construction: Let Ro(9€) be the set of
elements of C§°(R™) restricted to Q. Define, for s > 0,

1/2
2\ Y

ol = (3 3

=1 j=k(3)

v g c Ro(aﬂ)

‘ (Xig) o™t

95 ]E:(“ s

Define H* (09) as the completion of Ro(0f) under this norm.

It is not difficult to convince oneself that this metric is independent, up to equivalence
of Banach spaces, of the chosen covering {Ui}gzl and of the partition of unity.

Finally, for any not necessarily relatively compact manifold €2, define the following
important restriction mapping or trace operator

T : Ry(Q) — Ro(0N)
such that, for every f € Ro(2) and any smooth extension f of f,
Tf(x)=f(x) VxedQ

18. Lemma

Let E! be the n-th dimensional standard n-th corner, so JE! is just R"=1 and let
s > 1/2. Then, there is a constant K > 0 such that

ITflls—1/2 < Kllflls YV f € Ro(E7)
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19. Theorem

Let Q be a relatively compact manifold with corners. Then, the trace operator T can be
extended continuously to

T : H (Q) — H~1/2(69)

Proof. By Lemma 18, T : Ry(2) — Ro(9N) is continuous locally for each face. Then
the discussion in (17) makes it clear that T is continuous globally. By density, it then
follows that T can be extended meaningfully to the desired Sobolev spaces.

20. A generalized Gauss theorem over domain
decompositions

Let § be a smooth vector field defined on Q. Then the divergence theorem, valid for
compact manifolds with corners, asserts that

/Vogdx: TE en dS
Q 1)
where, of course, n is only defined over Q. Now, by the process of completion and
extension sketched in (14) and Theorem 19, the above relation remains valid for all
vector fields § € H! ()",

Let {Q1,Qs,...,Qr} be a domain decomposition of Q; that is, a pairwise disjoint
family of manifolds with corners such that the union of its closures is 2 U 9f2.

Fig. 5

Define the inner boundary ¥ to be the closed complement of 9 in |J; 09;.
Define the inner reqular boundary to be Y= <Uz;aé j 5\{_2/, N 5?2/]) and observe that each

of its points belong to exactly two of the 55,-’5. By compactness, ¥ consists of a finite
number of connected components, all manifolds of dimension n—1, which are to be called
the inner faces (of the domain decomposition). The set of inner faces is denoted by |X].

Similarly, the set of regular points in 99 not in ¥ is an (n—1)-dimensional submanifold

of 0N with finitely many connected components. The set of these components is denoted
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by |0 and may be called the collection of regular outer faces. Note that, in general,
an outer face may be partitioned by several regular outer faces (see Figure 5).

A smooth choice of a unit normal vector field on f], denoted again by n, makes precise
the idea of the positive and the negative sides for inner faces in much the same way that
the unit normal vector over 92 captures the idea of inside and outside.

With these preliminaries and the aid of the trace operator, now it is possible to define
as well the “field of jumps [-] of & over ¥” in order to get the relation

/Vogdx = TFen dS —/[S]Onds
Q a0 b

valid for all § = @;F; € D" = @, H' (;)", where D = H' () @ H' () & --- @ H' (Qp)
(cf. Herrera [2]).

The following discussion makes precise the analytic and algebraic details behind the
above formula.

21. Some calculations

Let § € D™. Then § may be thought as a family @;§; of vector fields. This means
that there is one vector field, say §; = (Fi1,8i,2, -, 8i,n) defined on Q; for each i =
1,2,...,E. Solet VeF =,V eF;. Since there is a natural inclusion @, L*(;) <
L%(Q) such that @;9; — Y, Xo,9i, where Xq, denotes the characteristic function of
Q; in Q, then @,V o §; belongs to L*(2). Now let TF; = (TFi1,TFiz2, . TFin) €
H'/2 (89;)™.

Define the following combinatorial mappings:

1109 — {1,2,...,E} with
t(F) = index i such that F' is a regular outer face of §2;

i |Z] — {1,2,...,E} with
t+(F) = index i such that €; lies on the positive side of F'

i |2] — {1,2,...,E} with
t_(F) = index i such that €2; lies on the negative side of F
Define the boundary traces,
TF € L?(0Q)" such that
T3 =T F e |89
S Surm| . V F € |09]

and analogous traces for the inner boundary,

T,.§, T_F € L*(Z)" such that
T ‘ = T3, ‘
+8 . S, (F) .

T_&‘ = T&L_(F)| VFe I_iJ
F F
Finally, define the field of jumps as

3] = T4 - T_F
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With these notions, now the relation at the end of (20) is easy to prove.

22. An integral formula for £

Let { fo }o C Ro(f2) be the coefficients of a linear differential operator £ (recall that
the a's are in a subset of strings of length less or equal K). Applying the above result
to the formula of Theorem 12 we arrive to the expression

/ {wlu —ul*w} dx = TO(u,w) en dS — / [D(u,w)] en dS
Q ) b

valid for all (u,v) € D x D, where D = H* () @ H* (22) & - -- @ H° (Qg) and s is any
real not less than the order of the operator.
The following transitional definitions are necesary: Let 3 be a string, s > A(3) and
Lg the elementary operator defined in paragraph (2). Define
Tp = TolLg: H(Q;) — L*(0)

where the dependence on the index i or, more conceptually the element ;, is omitted.
Let { fa }a C Ro(£2) be the coefficients of the operator £ (recall that the a's are in
a subset of strings of length less or equal K). Define

TD;(uiwi) =Y Y. (D" {(Tz@p) wi)(Ta@apr fowi)}
a kea~(j)

where u;, w; € H* (£;) (cf. Corollary 10 and Theorem 12) .
The vectorial version of the above traces over a given domain decomposition element
is given by

T (ui, wi) = (TD1(usw;), TD2(us,wi), . .., TDp(us,w;))
Let the boundary traces, inner boundary traces and field of jumps be given by,
TD : Dx D — LY0Q)"
TQ(u,w)‘F = T@(ub(p),wt(p))‘p V F e |09]

T,®, T_D:DxD— LY()"
T+Q(u;w)‘F = TQ(UH(F);UJH(F))‘F

T-D(uw,w)| = TR, v, )| VFelS

@] = T2 - T D

23. Appendix

Let £ denote a linear differential operator, of order 2m > 0, with infinitely differentiable
coefficients and elliptic on (0, where (2 is a bounded region with a smooth boundary I' =
00. Let a system of boundary operators (of order at most 2m-1) be a collection {Gj};.n:_ol
of infinitely differentiable operators defined only on I, each of order not exceeding 2m —1.
If u is a function defined on Q2 and G is a boundary operator, then Gu is to be understood
as GTu, where T is the trace operator.
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The theorem on Green’s formula, as stated by J. L. Lions and E. Magenes in [13,
pp. 114-115], starts by assuming that an elliptic operator £ and a normal system of

boundary operators {B,-};':OI are given (the condition of normality is of no relevance
for the present discussion). The first conclusion is that it is always possible to choose,
non-uniquely, another system of normal boundary operators {S 4 }:1:—01 such that the joint
system of B’s and S’s is Dirichlet in a technical sense. Having made this choice, then
a second conclusion is the unique existence of another two boundary systems {C b };nzol

and {T; };n::)l, such that the following Green formula holds:

m—1 m—1
/wﬁu dx —/uﬁ*w dx = Z/Sju Cjwdo — Z/Bju T;w do
Q Q = /r = /r

A natural restriction for this formula to make sense is that u € H* (Q) and w € H (Q2)
with s+¢ > 4m—1. This is because the right hand side of the above relation is meaningful
when (s —1/2) —(2m—1) + (t—1/2) — (2m —1) > 0. The left hand side is well defined
also under this condition. A suitable simple choice is just s = t = 2m.

To override this limitation and establish formulas valid for general discontinuous
functions belonging to spaces naturally embedded in H(Q), say u € @, H*(;) and
w € P, H (Q;) with s, ¢ nonnegative and s + ¢t > 2m, such as the Green-Herrera formu-
las, a process of extension of the distributional operators must be first developed. This
is done in a paper to appear soon ([11], see also [3,4,6,8,9]).
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