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A precise definition of Trefftz method is proposed and, starting with it, a general theory is briefly explained.
This leads to formulating numerical methods from a domain decomposition perspective. An important
feature of this approach is the systematic use of ‘‘fully discontinuous functions’’ and the treatment of a
general boundary value problem with prescribed jumps. Usually finite element methods are developed
using splines, but a more general point of view is obtained when they are formulated in spaces in which the
functions together with their derivatives may have jump discontinuities and in the general context of boundary
value problems with prescribed jumps. Two broad classes of Trefftz methods are obtained: direct (Trefftz–
Jirousek) and indirect (Trefftz–Herrera) methods. In turn, each one of them can be divided into overlapping
and nonoverlapping. The generality of the resulting theory is remarkable, because it is applicable to any
partial (or ordinary) differential equation or system of such equations, which is linear. The article is dedicated
to Professor Jiroslav Jirousek, who has been a very important driving force in the modern development of
Trefftz method. c© 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 561–580, 2000

I. INTRODUCTION

In 1926 [1], Trefftz introduced an approach to solving partial differential equations that has
received considerable attention in recent years. This method was generalized by several authors.
In particular, Jirousek [2, 3] expanded its applicability by introducing partitions of the region
of interest and using families of analytical solutions in each one of the subregions. The global
solution is then constructed using, as bricks, the solutions defined in different subregions and
fitting them together according to a suitable criterion.

Another related approach was proposed and developed by Herrera [4–23], in which local
solutions of the adjoint differential equations are used to obtain information about the sought
solution at internal boundaries, to define well-posed problems in the subregions. In this manner, it
is possible to reconstruct the solution in the whole region, solving local problems exclusively. Both
of these approaches are generally referred to as Trefftz methods, although the original method of
Trefftz was far more restricted.
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Actually, to our knowledge, Trefftz Methods have not received a precise definition, although
this terminology has had wide acceptance. In this article, a very broad definition of what is meant
by a Trefftz Method is proposed; roughly, this is:

Given a region of an Euclidean space of some partitions of that region, a ‘‘Trefftz Method’’ is
any procedure for solving boundary value problems of partial differential equations or systems of
such equations, on such region, using solutions of that differential equation or its adjoint, defined
in its subregions.

When Trefftz Method is conceptualized in this manner, it includes many of the basic problems
considered in numerical methods for partial differential equations and becomes a fundamental
concept of that subject. One avenue of this approach includes domain decomposition methods, but
many other aspects of numerical methods may be illuminated using a Trefftz Method perspective.

When formulating numerical methods for partial differential equations, it is necessary to de-
compose the domain of the problem into smaller ones, although this process is not always carried
out explicitly. Applying a Trefftz approach, many numerical methods can be derived. A first
division separates them into two broad categories: direct and indirect methods. The first one is
essentially Jirousek’s method, in which the local solutions are used directly as bricks to build the
global solution. But this procedure is far more general, if one is not restricted to use analytical
methods for the production of the local solutions, as Jirousek originally did, but instead resorts to
a greater diversity of procedures, such as numerical methods, to obtain them. The second category
is that of indirect Trefftz method or Trefftz–Herrera method [4–23], in which local solutions of the
adjoint differential equations are used as specialized test functions to concentrate the information
about the sought solution in the internal boundaries associated with the partition.

From another point of view, just as in domain decomposition methods [24–31], these kinds
of numerical methods can be classified into two very broad classes: overlapping and disjoint
(or nonoverlapping) methods. This terminology derives from the corresponding properties of the
partitions. Thus, by combining these classifications, four groups of Trefftz methods are derived:
direct overlapping, direct nonoverlapping, direct overlapping and direct nonoverlapping.

Above, as it was already mentioned in connection with direct Trefftz methods, the procedures
applied to construct the local solutions may be any. When numerical methods are used to obtain
them, one is lead to four different versions of the corresponding numerical procedure and generally
they are nonconventional. If the numerical method chosen is collocation, for example, as Herrera
[32] has done, the four categories of collocation methods that were mentioned before are obtained:
two of them are subclasses of direct collocation, and the other two are subclasses of indirect
collocation (or Trefftz–Herrera collocation [20–22, 32]. Thus far, the research that has been
carried out on these methods has been quite insufficient and must be expanded.

This article is devoted to presenting some basic concepts for a ‘‘General Theory of Trefftz
Method’’ and its scope is indicated. An important feature of the approach here followed is the sys-
tematic use of ‘‘fully discontinuous functions,’’ which possesses many advantages over the more
customary use ‘‘splines,’’ when formulating numerical methods for partial differential equations,
such as finite elements and collocation. Herrera has supplied an extensive fundamental theory
on which the application of fully discontinuous functions will be based. The generality of the
method is also outstanding, since it is applicable to any partial (or ordinary) differential equation
or system of such equations, which is linear.

The case of collocation methods, which are known as efficient and highly accurate numerical
solution procedures for partial differential equations, is quite suitable for illustrating some of the
advantages of Trefftz approach. Indeed, when they are seen from this more general perspective,
the standard formulations of collocation methods using splines turn out to be particular cases,
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which are obtained when some special strategies for solving the final system of equations are
followed and, as it will be shown, they are far from being the most efficient strategies. Also, when
using splines, domain decomposition is accomplished by means of partitions of unity, as Babuska
and Melenk have done, and this introduces complications into the problem, which are avoided
when fully discontinuous functions are applied.

The article is dedicated to Professor Jirousek, who has been a very important driving force in
the modern development of Trefftz method, contributing to its application in many different fields
such as plates and shells theories [2, 3, 32–39], elasticity [40–43], and transient heat analysis [44].
Jirousek and his collaborators have carried out the developments that are necessary for applying
his approach in a reliable and adaptive manner [45–47]. In this respect, an important feature is
the possibility of applying h and p convergence (see [48, 49] for recent surveys).

II. JIROUSEK METHOD

In 1977 [2, 3], Jirousek started the development of a generalization of Trefftz method [1], in
which nonconforming elements are assumed to fulfill the governing equations a priori and the
inter-element continuity and the boundary conditions are then enforced in some weighted residual
or pointwise sense. As in the case of Trefftz, Jirousek in his early work used variational principles
related to the differential equations considered. However, their use is not essential–-collocation
and least-squares, for example, are also suitable [50]–-and many alternative formulations can be
applied to generate ‘‘Trefftz-type’’ finite elements, which in more recent work have been referred
to as T-elements [48].

This method, Jirousek’s Method, has been quite successful because of its generality and effi-
ciency. Recent states of the art are available [48, 49] from which we draw. Jirousek’s method has
been applied to the biharmonic equation [2, 3], plane elasticity [40], and Kirchhoff plates [34,
40, 51]. Later the approach was further extended to thin shells [39], moderately thick Reissner–
Mindlin plates [35, 36, 51], thick plates [52], general 3-D solid mechanics [53], axisymmetric
solid mechanics [42, 43], Poisson equation [54], and transient heat conduction analysis [45].

Just as in FEM, in Jirousek’s method one hash-convergence andp-convergence. Thus, this leads
to developing the h-version and the p-version of T-elements, as was first suggested by Jirousek
and Teodorescu in 1982 [40], and implemented and studied several years later [37, 38]. According
to Jirousek [48], the superiority of this version over the h-version has been so overwhelming that
most of the new developments refer to the p-version. One of its most important advantages has
been the facility with which a simple a posteriori stress error estimator [41] can be developed
[45] and, using it, derive a procedure for adaptive reliability assurance [45–47].

III. PRELIMINARY NOTIONS AND NOTATIONS

In what follows, a region Ω ⊂ Rn is considered and {Ω1,Ω2, . . . ,ΩE} is a partition (or domain
decomposition) of Ω (Fig. 1); more precisely, this is a pairwise disjoint family of manifolds with
corners [55, 56], such that the union of its closures is the closure of Ω. The inner boundary Σ,
is defined to be the closed complement of ∂Ω in ∪i∂Ωi. In addition, the following notations are
also used in the sequel:

∂iΩ ≡ (∂Ω) ∩ (∂Ωi),Σi ≡ Σ ∩ (∂Ωi) and Σij ≡ Σi ∩ Σj . (3.1)
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FIG. 1. The region Ω.

A unit normal vector n, pointing outwards, is defined almost everywhere in ∂Ω, in the standard
manner. Similarly, a unit normal vector n, is defined almost everywhere on Σij . This is unique,
except for the sense that it is chosen arbitrarily.

Two linear spaces of functions defined in Ω, D1(Ω), and D2(Ω), are considered. For every
i = 1, . . . , E and α = 1, 2, let Dα(Ωi) be the space whose elements are the restrictions to Ωi, of
functions belonging to Dα(Ωi). Then

D̂α(Ω) ≡ Dα(Ω1) ⊕ · · · ⊕ Dα(ΩN );α = 1, 2. (3.2)

In view of this definition, with every function v ∈ D̂α(Ω), α = 1, 2, there is a finite sequence of
functions {v1, v2, . . . , vE} such that, for each i(= 1, 2, . . . , E), vi is defined in Ωi. It is assumed
that, for every v ≡ {v1, . . . , vE} ∈ D̂α(Ω), α = 1, 2, the trace on Σ of vi (i = 1, 2, · · ·E),
is well defined. However, on each Σij ≡ Σi ∩ Σj two traces are defined—one corresponding
to vi and the other one to vj–-and in order to distinguish them, the following notation is here
introduced:

v+ ≡ Trace of (vi), (3.3a)

when Ωi lies on the positive side of Σij , and

v− ≡ Trace of (vi) (3.3b)

otherwise. The jump of u across Σ is defined by

[v] ≡ v+ − v−, (3.4a)

and the average by

v̇ ≡ 1
2 (v+ + v−). (3.4b)

More generally, whenever such a sequence of functions is associated to a function defined in Ω,
it is possible to define two traces on Σ and the notations of Eqs. (3.4) are used in such cases.
Observe that the average, v̇, of a function and the product, [v]n, are not dependent on the sense
chosen for the unit normal vector n.
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IV. BOUNDARY VALUE PROBLEM WITH PRESCRIBED JUMPS

To formulate this problem some additional notation is here introduced. The symbols L and L∗

stand for a linear differential operator and its formal adjoint, respectively. Also, B(v, w) and
C(w, v) are bilinear functions defined pointwise on ∂Ω, for every v ∈ D̂1(Ω) and w ∈ D̂2(Ω).
In a similar fashion, J (w, v) and K(w, v) are bilinear functions defined pointwise, on Σ. When
dealing with bilinear functions and functionals, a star on top is used to denote its transpose; thus,
for example:

C∗(v, w) ≡ C(w, v) and K∗(v, w) ≡ K(w, v). (4.1)

In addition, g∂(·) and jΣ(·) are linear functionals defined pointwise on ∂Ω and Σ, respectively,
whose values at any w ∈ D̂2(Ω) are written as g∂(w) and jΣ(w). Given any function v ∈
D̂1(Ω),B(v, ·) and J (v, ·) denote the linear functionals whose values at any w ∈ D̂2(Ω) are
B(v, w) and J (v, w), respectively.

The general boundary value problem with prescribed jumps (BVPJ) to be considered is defined
by

Lui = f i
Ω ≡ Lui

Ω; in Ωi, i = 1, . . . , E, (4.2a)

B(u, ·) = g∂(·) ≡ B(u∂ , ·); in ∂Ω, (4.2b)

and

J (u, ·) = jΣ(·) ≡ J (uΣ, ·); in Σ, (4.2c)

where f i
Ω (i = 1, . . . , E), and the linear functionals g∂(·) and jΣ(·) are given. They constitute the

data of the problem and may be defined by means of some auxiliary functions: uΩ ∈ D̂1(Ω), u∂ ∈
D̂1(Ω), uΣ ∈ D̂1(Ω). An important property is that, in applications, such functions can be
constructed solving local problems, if necessary. For simplicity, in what follows it is assumed
that the BVPJ possess a unique solution fulfilling Eqs. (4.2), and the notation u ∈ D̂1(Ω) is
reserved for it.

As an illustration, consider the general elliptic equation of second order. It is assumed that the
coefficients of the differential operator may have jump discontinuities across the internal boundary
Σ. Then, the boundary value problem with prescribed jumps to be considered is

Lui ≡ −∇ · (a · ∇ui) + ∇ · (bui) + cui = f i
Ω, in Ωi, i = 1, . . . , E, (4.3a)

subjected to Dirichlet boundary conditions

u = u∂ , on ∂Ω (4.3b)

and jump conditions

[u] = [uΣ] and [an · ∇u] = [an · ∇uΣ], on Σ. (4.3c)

Here an ≡ a ·n. When the coefficients of the differential operator are continuous, it may be seen
that the conditions of Eq. (4.3c), are equivalent to prescribing the jump of the function and its
normal derivative. Define the bilinear functions

B(u, w) ≡ u(an · ∇w + bnw) and J (u, w) ≡ ẇ[an · ∇u] − [u]( ˙an · ∇w + bnw), (4.4)

and the linear functions g(·) and j(·) by g(·) ≡ B(u∂ , ·) together with j(·) ≡ J (uΣ, ·). Then,
the BVPJ of Eqs. (4.3) take the form given by Eqs. (4.2).
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V. GENERAL VARIATIONAL FORMULATIONS

By the definition of formal adjoint, a vector valued-bilinear functionD(u, w) exists, which satisfies

wLu − uL∗w ≡ ∇ · D(u, w). (5.1)

It will also be assumed that

D(u, w) · n = B(u, w) − C(w, u), on ∂Ω (5.2a)

−[D(u, w)] · n = J (u, w) − K(w, u), on Σ. (5.2b)

Applying the generalized divergence theorem [55, 56], this implies the following Green–
Herrera formula [13, 20, 57, 58]:∫

Ω
wLu dx −

∫
∂Ω

B(u, w) dx −
∫

Σ
J (u, w) dx

=
∫

Ω
uL∗w dx −

∫
∂Ω

C∗(u, w) dx −
∫

Σ
K∗(u, w) dx.

A weak formulation of the BVPJ is∫
Ω

wLu dx −
∫

∂Ω
B(u, w) dx −

∫
Σ

J (u, w) dx

=
∫

Ω
wLuΩ dx −

∫
∂Ω

B(u∂ , w) dx −
∫

Σ
J (uΣ, w) dx,∀w ∈ D̂2(Ω),

which, in view of Eq. (5.3), is equivalent to∫
Ω

uL∗w dx −
∫

∂Ω
C∗(u, w) dx −

∫
Σ

K∗(u, w) dx

=
∫

Ω
wLuΩ dx −

∫
∂Ω

B(u∂ , w) dx −
∫

Σ
J (uΣ, w) dx,∀w ∈ D̂2(Ω).

Eqs. (5.4) supply two alternative and equivalent variational formulations of the BVPJ. The first
one is referred as the ‘‘variational formulation in terms of the data of the problem,’’ while the
second one is referred as the ‘‘variational formulation in terms of the sought information.’’

Introduce the following notation:

〈Pu, w〉 =
∫

Ω
wLu dx; 〈Q∗u, w〉 =

∫
Ω

uL∗w dx (5.5a)

〈Bu, w〉 =
∫

∂Ω
B(u, w) dx; 〈C∗u, w〉 =

∫
∂Ω

C∗(u, w) dx (5.5b)

〈Ju, w〉 =
∫

Σ
J (u, w) dx; 〈K∗u, w〉 =

∫
Σ

K∗(u, w) dx. (5.5c)

With these definitions, each one of P, B, J, Q∗, C∗, and K∗ are real-valued bilinear functionals
defined on D̂1(Ω)XD̂2(Ω), and a more brief expression for Eq. (5.3) is the identity

P − B − J ≡ Q∗ − C∗ − K∗. (5.6)
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When the definitions

f ≡ PuΩ; · · · g ≡ Bu∂ ; · · · j ≡ JuΣ (5.7)

are adopted, Eqs. (5.4) can also be written as equalities between linear functionals:

(P − B − J)u = f − g − j; (5.8a)

and

(Q − C − K)∗u = f − g − j. (5.8b)

Notice that Eqs. (5.8) may be written as

〈(P − B − J)u, w〉 = 〈f − g − j;w〉; · · · ∀w ∈ D2 (5.9a)

and

〈(Q − C − K)∗u, w〉 = 〈f − g − j;w〉; · · · ∀w ∈ D2, (5.9b)

respectively. These equations exhibit more clearly their variational character.
Generally, the definitions of B, C,J , and K depend on the kind of boundary conditions and

the ‘‘smoothness criterion’’ of the specific problem. However, for the case when the coefficients
of the differential operators are continuous, Herrera [18, 20, 57] has given very general formulas
for J and K. They are

J (u, w) ≡ −D([u], ẇ) · n, and K(w, u) ≡ D(u̇, [w]) · n. (5.10)

The fact that they fulfill Eq. (5.2b) is easy to verify, when use is made of the algebraic identity:

[D(u, w)] ≡ D([u], ẇ) + D(u̇, [w]). (5.11)

The case when D̂1(Ω) = D̂2(Ω) ≡ D̂(Ω), the differential operator L is formally symmetric
and, in addition, B = C and J = K are referred to as the symmetric case. Since L∗ = L and,
therefore, P = Q, it is seen that the bilinear functional P -B-J is symmetric; i.e., P − B − J ≡
(P − B − J)∗, and P − B − J ≡ Q − C − K by virtue of Eq. (5.6). Using these facts, it is clear
that in the symmetric case the variational principles of Eqs. (5.9) are derivable from the potential

X(û) ≡ 〈 1
2 (P − B − J)û − (f − g − j), û〉 ≡ 〈1

2 (Q − C − K)û − (f − g − j), û〉, (5.12)

where û is any function belonging to D̂(Ω). More precisely, Eqs. (5.9) can be written as

〈X ′(u), w〉 = 0;∀w ∈ D2(Ω), (5.13)

where X ′(u) is the derivative of the functional X(u), or more briefly, as X ′(u) = 0. In particular,
when P − B − J ≡ Q − C − K is positive definite, in a subspace N ⊂ D̂(Ω) such that u ∈ N ,
then the functional X(û) yields a minimum principle for the BVPJ; i.e., X(û) attains a minimum
at û ∈ N ⊂ D̂(Ω) if and only if û = u.

In the case of the general elliptic equation of second order, in which the differential operator
L is given by Eq. (4.3a), one has

L∗w ≡ −∇ · (a · ∇w) − b · ∇w + cw, (5.14)

for the formal adjoint, and Eq. (5.1) is fulfilled with

D(u, w) ≡ a · (u∇w − w∇u) + buw, (5.15)
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and, therefore, Eq. (5.10) yields

J (u, w) ≡ ẇ[an · ∇u] − [u]( ˙an · ∇w + bnw),

K(w, u) ≡ u̇[an · ∇u] − [w]( ˙an · ∇u − bnu). (5.16)

Using these functions, one can apply the previous definitions and obtain the two equivalent
weak formulations of Eqs. (5.9). In particular, when b ≡ 0 a symmetric case is obtained, because
the differential operator L is formally symmetric and, in addition, B = C and J = K. Even
more, let N ⊂ D̂(Ω) be the subset of functions that satisfy v ≡ 0, on ∂Ω, and [v] ≡ 0, on Σ,
then it can be shown that P − B − J ≡ Q − C − K is positive definite in N ⊂ D̂(Ω). Thus, a
minimum principle is applicable when the sought solution is continuous across Σ and vanishes
on ∂Ω.

VI. SCOPE

The generality of the methodologies presented in this article is great, because they are applicable
to any partial differential equation or system of such equations, which are linear, independently of
its type. The coefficients of the operators can also be discontinuous across the internal boundary
Σ. To illustrate the wide applicability of theory, the following cases are next presented: the general
elliptic equation of second order, the biharmonic equation, the Stokes problem, and the equations
of equilibrium of linear elasticity.

A. Second-Order Elliptic Operators

The formulas here presented are applicable when the coefficients of the differential operators are
discontinuous across the internal boundary Σ:

a) Lu ≡ −∇ · (a · ∇u) + ∇ · (bu) + cu, while L∗w ≡ −∇ · (a · ∇w) − b · ∇w + cw.

b) D1(Ω) ≡ D2(Ω) ≡ D(Ω) ≡ H2(Ω),
c) D̂1 ≡ D̂2 ≡ D̂ ≡ H2(Ω1) ⊕ H2(Ω2) ⊕ · · · ⊕ H2(ΩE);
d) D(u, w) ≡ a · (u∇w − w∇u) + buw

e) B(u, w) ≡ u(an ·∇w+bnw) and C(u, w) ≡ wan ·∇u, where an = a ·n and bn = b ·n.

f) J (u, w) ≡ ẇ[an · ∇u] − [u]( ˙an · ∇w + bnw), and K(w, u) ≡ u̇[an · ∇w + bnw] −
[w]( ˙an · ∇u),

g) Boundary conditions u = u∂

h) Jump conditions [u] = [uΣ] and [an · ∇u] = [an · ∇uΣ]
i) Data on the external boundary: u = u∂

j) Data on the internal boundary: [uΣ] and [an · ∇uΣ]
k) Sought information on the external boundary: an · ∇u

l) Sought information on the internal boundary: u̇ and ( ˙an · ∇u).

B. Biharmonic Equation

a) Lu ≡ ∆2u and L∗w ≡ ∆2w

b) D1(Ω) ≡ D2(Ω) ≡ D(Ω) ≡ H4(Ω),
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c) D̂1 ≡ D̂2 ≡ D̂ ≡ H4(Ω1) ⊕ H4(Ω2) ⊕ · · · ⊕ H4(ΩE);
d) D(u, w) ≡ w∇∆u − u∇∆w + ∆w∇u − ∆u∇w

e) B(u, w) ≡ ∆w
∂u

∂n
− u

∂∆w

∂n

f) C(w, u) ≡ ∆u
∂w

∂n
− w

∂∆u

∂n

g) J (u, w) ≡ [u]
˙∂∆w

∂n
− ẇ

[
∂∆u

∂n
|ec + [∆u]

˙∂w

∂n
− ∆̇w

[
∂u

∂n
|ec ,

h) K(w, u) ≡ [w]
˙∂∆u

∂n
− u̇

[
∂∆w

∂n
|ec + [∆w]

∂̇u

∂n
− ∆̇u

[
∂w

∂n
|ec ,

i) Data on the external boundary: u, ∂u/∂nu

j) Data on the internal boundary: [u], [∂u/∂n], [∆u] and [∂∆u/∂n]
k) Sought information on the external boundary: ∆u and ∂∆u/∂n

l) Sought information on the internal boundary: ˙̄u,
˙

∂u/∂n, ∆̇u and ˙
∂∆u/∂n.

C. Stokes Problems

The system of equations to be considered is

−∆u + ∇p = 0;∇ · u = 0 :

a) Let D1(Ω) ≡ D2(Ω) ≡ D(Ω) ≡ H2(Ω) ⊕ H1(Ω), and adopt the notation ũ ≡ (u, p)
whenever ũ ∈ D(Ω).

b) Define the vector valued differential operator L by L · ũ ≡ (−∆u + ∇p, −∇ · u).
c) Then L is self-adjoint and, writing w̃ ≡ (w, q), one has w̃ · L · ũ − ũ · L · w̃ ≡ ∇ · (u ·

∇w − w · ∇u + pw − qu).
d) Thus: D(ũ, w̃) ≡ u · (∇w − qI) − w · (∇u − pI)

e) B(ũ, w̃) ≡ u ·
(

∂w

∂n
− qn

)

f) C(w̃, ũ) ≡ w ·
(

∂u

∂n
− pn

)

g) J (ũ, w̃) ≡ ẇ ·
[
∂u

∂n
− pn|ec − [u] ·

˙∂w

∂n
− qn

h) K(w̃, ũ) ≡ u̇ ·
[

∂w
∂n − qn|ec − [w] ·

(
˙∂u

∂n − pn

)
.

i) Data on the external boundary: u

j) Data on the internal boundary: [u] and

[
∂u

∂n
− pn|ec

k) Sought information at the external boundary:
∂u

∂n
− pn

l) Sought information at the internal boundary: u̇ and
˙∂u

∂n − pn.

D. Equations of Elasticity

Let D1(Ω) ≡ D2(Ω) ≡ D(Ω) ≡ H2(Ω) ⊕ H2(Ω) ⊕ H2(Ω), and define for every u ≡
(u1, u2, u3) ∈ D(Ω): tij(u) ≡ Cijpq

∂up

∂xq
, where as usual it is assumed that the elastic tensor

possesses the following symmetries: Cijpq = Cjipq = Cijqp.
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a) Define the vector valued differential operator L by L · u ≡ −∇ · t(u), whose adjoint
is L∗ · w ≡ −∇ · t(w)

b) D(u, w) ≡ u · t(w) − w · t(u)
c) B(u, w) ≡ u · t(w) · n

d) C(u, w) ≡ w · t(u) · n

e) J (u, w) ≡ ẇ · [t(u)] · n − [u] · ˙
t(w) · n

f) K(w, u) ≡ u̇ · [t(w)] · n − [w] · ˙
t(u) · n

m) Data on the external boundary: u

n) Data on the internal boundary: [u] and [t(u)] · n

o) Sought information at the external boundary: t(u) · n

p) Sought information at the internal boundary: u̇ and ˙
t(u) · n.

VII. TREFFTZ METHODS

As mentioned in the Introduction, the method proposed originally by Trefftz, in 1926 [1], has
been generalized, and to be precise the following definition is proposed.

Definition 7.1. Let Π = {Ω1, . . . ,ΩE} be a partition and for every i = 1, . . . , E, let Hi be
defined by the condition that ui

H ∈ Hi if and only if ui
H ∈ D̂(Ωi) and Lui

H = 0, in Ωi. In
addition, let H ≡ H1 ⊕· · ·⊕HE . Then the problem of finding ui

H ∈ Hi, i = 1, . . . , E, such that

u =
E∑

i=1

ui
Ω +

E∑
i=1

ui
H = uΩ + uH (7.1)

is the solution of the Boundary Value Problem with Prescribed Jumps, is referred as the Trefftz
Problem.

Observe that the solution of Trefftz problem, uH ≡ ∑E
i=1 ui

H , is unique necessarily, because
uH = u−uΩ and, by assumption the solution u ∈ D̂(Ω) is unique, while uΩ ∈ D̂(Ω) is a datum.
The notation uH ∈ H, is reserved for it. Notice, however, that the definition of uH ∈ H, changes
if the function uΩ, used to specify the right-hand side of the differential equation, is modified.

Two approaches for constructing the solution of the Trefftz problem are considered; methods
derived from one or the other are referred as direct (Trefftz–Jirousek) and indirect methods (Trefftz–
Herrera), respectively. In the direct approach, the local solutions are put together in such a way
that the boundary conditions and prescribed jumps on Σ are fulfilled, and the search for uH is
guided by such requirements. In the Trefftz–Herrera method, on the other hand, special test or
weighting functions are applied to obtain enough information on the internal boundary Σ to define
well-posed problems in each one of the subregions Ωi, i = 1, . . . , E. This condition assures that
the solution can be reconstructed locally from the information available.

A second point of view for classifying Trefftz methods, which is independent of the first one,
yields two other wide groups: overlapping and nonoverlapping methods; i.e., the same classes
that are considered when studying domain decomposition methods [24–31]. Because these two
points of view are independent of each other, they may be combined to give four types of methods:
direct nonoverlapping, direct overlapping, indirect nonoverlapping, and indirect overlapping.

For numerical applications, it is relevant to observe that the number of degrees of freedom is
minimal when superfluous information is eliminated; i.e., when only information that is essential
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for defining local well-posed problems is retained. Generally, to eliminate superfluous information
and handle essential information only in both Trefftz–Jirousek and Trefftz–Herrera methods, it is
necessary to resort to overlapping methods, as shown in the following sections.

VIII. VARIATIONAL FORMULATIONS OF TREFFTZ METHODS

In what follows, ûH stands for any function belonging to H ≡ NP ⊂ D̂1(Ω). For direct methods,
a basic variational formulation derived from Eq. (5.9a) is that a function ûH ∈ NP is a solution
of the Trefftz problem if and only if

−〈(B + J)ûH , w〉 = 〈(B + J)uΩ, w〉 − 〈g + j;w〉; · · · ∀w ∈ D2. (8.1)

The condition ∀w ∈ D̂2(Ω) may be relaxed. Indeed, generally it is enough to require that Eq.
(8.1) be satisfied for ∀w ∈ NQ ⊂ D̂2(Ω).

For the symmetric case, discussed in Section V, one can define the functional

Y (ûH) ≡ − 1
2 〈(B + J)ûH , ûH〉 + 〈g + j − (B + J)uΩ, ûH〉, (8.2)

where ûH is any function belonging to NP ≡ NQ ⊂ D̂(Ω). Then, ûH ≡ ∑E
i=1 ûi

H is a solution
of the Trefftz problem if and only if Y ′(ûH) = 0. When the bilinear functional −(B + J) is
positive definite in NP ≡ NQ ⊂ D̂(Ω), the functional Y (ûH) yields a minimum principle.
Observe that a sufficient condition for −(B + J) to be positive definite in NP ≡ NQ ⊂ D̂(Ω)
is that P -B-J be positive definite in D̂(Ω). More generally, when N ⊂ NP ≡ NQ ⊂ D̂(Ω) is a
subspace in which −(B + J) is positive definite and uH ∈ N , then Y (ûH) attains a minimum at
ûH ∈ N if and only if ûH = uH .

IX. TREFFTZ–JIROUSEK METHODS

The application of direct methods to one-dimensional problems is relatively straight-forward [59].
However, their application in several dimensions is considerably more complicated. The search
for the solution of Trefftz problem, uH ∈ H, can be done in several ways. In his pioneering work,
Jirousek [2, 3] applied variational principles that were specific for the differential equations con-
sidered; they are particular cases of the general variational principles of Section VIII. However,
other procedures can be, and have been used, for example, collocation in the internal bound-
aries [50]. The application of least-squares also possesses great generality and has the additional
advantage of yielding symmetric and positive definite matrices [48, 49].

In the case of direct overlapping methods, it is possible to apply two different approaches; one
that is more direct and the other one that is less direct. In the latter one, the base functions are used
to impose a compatibility condition from which the global system of equations is derived [59].
In addition, in this manner information about the sought solution is obtained, which is enough to
formulate well-posed local problems. This procedure handles only essential information, so that
the number of degrees of freedom is minimal.

In the first and more direct of the overlapping methods, the reduction in the number of degrees
of freedom is achieved using base functions, which fulfill some of the jump conditions, such as
continuity conditions, from the start. These kinds of weighting functions are easy to construct, if
numerical methods are used to build them. But this is not feasible, in most cases, when systems of
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analytical solutions are applied. The construction of TH-complete systems of weighting functions
is discussed and illustrated in Section XI.

Consider, as an example, the BVPJ for the general elliptic equation of second order, defined
by Eqs. (4.3). When a direct method is applied, one can use the variational principle in terms of
the data of the problem of Eq. (5.4a), with the help of Eqs. (4.4). Another possibility is to apply
least squares to the quantities [û − u∂ ], on ∂Ω, together with [û − uΣ] and [an · ∇û − an · ∇uΣ],
on Σ, where û ∈ D is any trial function. When the coefficients of the differential operator are
continuous, it is simpler to replace this latter quantity by [∂û/∂n − ∂uΣ/∂n]. In addition, the
following observation must be made: when the numerical method that is applied to solve the
local problems is collocation [60], the boundary condition û = u∂ , on ∂Ω, can be fulfilled by
the trial functions from the start, so that the least squares on [û − u∂ ] need not be applied. Also,
when overlapping methods are used, it is easy to construct trial functions that fulfill the condition
[û − uΣ], on Σ (see Section XII), and this reduces the number of degrees of freedom of the
matrices of the global system of equations. As has already been mentioned, this is not possible
when analytical solutions are applied.

To illustrate the alternative overlapping procedure [59], which in some sense is only semi-direct,
consider the equation Lu = 0 in an interval of the real line, where L is a second-order differential
operator. Let xi ∈ (xi−1, xi+1), then u(xi) depends linearly on u(xi−1) and u(xi+1). Indeed,
u(xi) = ϕ−

i (xi)u(xi−1)+ϕ+
i (xi)u(xi+1), and this equation constitutes a three-diagonal system

of equations, whose coefficients can be obtained solving locally, by collocation, a pair of boundary
value problems in the interval (xi−1, xi+1): Lϕ−

i = Lϕ+
i = 0, subjected to ϕ−

i (xi−1) =
ϕ+

i (xi+1) = 1 and ϕ−
i (xi+1) = ϕ+

i (xi−1) = 0.
The generalization of this method to more complicated problems and to several dimensions is

presented in [59]. In particular, it is shown that this is the basic procedure behind the well-known
Schwarz alternating method [61].

X. TREFFTZ–HERRERA METHODS

The indirect Trefftz methods have been introduced and developed by Herrera and his collaborators
[4–23]. They stem from the following observation [13]: when the method of weighted residuals is
applied–-and this includes the Finite Element Method (FEM)–-the information about the sought
solution contained in an approximate one is determined by the system of weighting functions that
are applied, and it is independent of the base functions that are used. A convenient strategy is
to apply test functions of a special kind, specialized test functions, with the property of yielding
information in the boundaries ∂Ω and Σ, exclusively. To solve the Trefftz problem, i.e., to recover
ui

H , i = 1, . . . , E, it is necessary to have enough information on Σ for defining well-posed
problems in each one of the subregions Ωi (i = 1, . . . , E), because this determines the functions
ui

H . In addition, Herrera’s algebraic theory of boundary value problems supplies a very effective
framework for guiding the construction of such test functions [19].

The point of view just mentioned yields the following interpretation of FEM formulations:
the system of test functions that are applied determine the information about the sought solution
contained in an approximate one, while the base functions interpolate (or extrapolate) such in-
formation. A strategy, which in some sense is optimal [62], is to obtain enough information to
define well-posed problems locally and then use the solutions of these local problems, instead of
base functions, to extending the information that is available, because this is the most efficient
way of performing this function. Sometimes the specialized test functions have been referred as
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Optimal Test Functions [5], and the extension of the information by means of the solution of the
local boundary value problems, as Optimal Interpolation [62].

By inspection of Eqs. (5.5), it can be recognized that the information about the solution u ∈ D
is given by Q∗u, in the interior of the subregions Ωi (i = 1, . . . , E); it is given by C∗u, in the outer
boundary ∂Ω; and it is given by K∗u, in the internal boundary Σ. Jirousek [48] refers to Σ ∪ ∂Ω
as the ‘‘generalized boundary.’’ A first step to derive Trefftz–Herrera procedures is to manipulate
the variational formulation in terms of the sought information of Eq. (5.9b) in such a way as to
leave information in the generalized boundary, exclusively. This requires eliminating Q∗u in that
equation, and can be achieved by taking special weighting functions such that Qw = 0. This
yields

−〈(C + K)∗u, w〉 = 〈f − g − j;w〉; · · · ∀w ∈ NQ ⊂ D̂2(Ω). (10.1)

Generally, one is interested only in part of the information contained in (C + K)∗u; so it is
useful to introduce a decomposition of the bilinear functional C + K and write

C + K ≡ S + R, (10.2)

where S is chosen so that S∗u is precisely ‘‘the sought information.’’

Definition 10.1. Given R and S, which fulfill Eq. (10.2), let ũ ∈ D̂1(Ω) be such that there
exists a solution, u ∈ D̂1(Ω), of the BVPJ with the property that S∗ũ is the sought information;
i.e.,

S∗ũ = S∗u. (10.3)

Then ũ ∈ D̂1(Ω) is said to contain ‘‘the sought information.’’
In what follows, the symbol ũ ∈ D is reserved for functions that contain the sought information.

Let NQ ⊂ D̂2(Ω) and NR ⊂ D̂2(Ω) be the null subspaces of Q and R, respectively. To formulate
a necessary and sufficient condition for a function for û ∈ D1 to contain the sought information,
it is necessary to define a concept of completeness, similar to that introduced by the author in
1980 [12] and which has been very effective in the study of complete families [63].

Definition 10.2. A subset of weighting functions, E ⊂ NQ ∩ NR, is said to be TH-complete
for S∗ when, for any û ∈ D̂1(Ω), one has

〈S∗û, w〉 = 0,∀w ∈ E ⇒ S∗û = 0. (10.4)

Clearly, a necessary and sufficient condition for the existence of TH-complete systems is that
NQ ∩ NR be itself a TH-complete system.

Theorem 10.1. Let E ⊂ NQ ∩ NR be a system of weighting functions, TH-complete for S∗,
and assume that there exists u ∈ D̂1(Ω), a solution of the BVPJ. Then a necessary and sufficient
condition for û ∈ D1 to contain the sought information is that

−〈S∗û, w〉 = 〈f − g − j, w〉, · · · ∀w ∈ E . (10.5)

Proof. The necessity of this condition can be derived using Eqs. (10.1) and (10.2). To prove
the sufficiency, observe that the necessary condition just mentioned implies that for the solution
u ∈ D̂1(Ω), whose existence is assumed, one has

−〈S∗u, w〉 = 〈f − g − j, w〉, · · · ∀w ∈ E . (10.6)
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Therefore, if û ∈ D1 fulfills Eq. (10.5), then Eqs. (10.6) and (10.5) together, imply

〈S∗û, w〉 = 〈S∗u, w〉, · · · ∀w ∈ E . (10.7)

Hence, Eq. (10.3) is TH-complete, because E ⊂ NQ ∩ NR.
In numerical applications of indirect methods, Theorem 10.1 yields the basic system of equa-

tions whose solution is sought. To obtain a formulation that is suitable for both elliptic and
time-dependent problems, it is necessary, in addition, to introduce decompositions of the bilinear
functionals C and K. These are

C = CS + CC and K ≡ KS + KC . (10.8)

When time-dependent problems are considered, Ω is a space-time region and the final state
of the system that is modeled by the partial differential equation lies in the outer boundary, ∂Ω.
Thus, a suitable choice of CS permits handling this situation. In applications to elliptic problems,
on the other hand, it is frequently convenient to define S ≡ KS , so that R ≡ C + KC . In
this case, the information on the external boundary is eliminated and the sought information
S∗u ≡ KS∗

u contains information in the internal boundary, exclusively. The choice KC = 0
leads to nonoverlapping indirect methods, while KC 6= 0 corresponds to overlapping indirect
methods.

A corollary of Theorem 10.1 is that, when uP ∈ D̂1(Ω) is such that PuP = f and BuP = g,
then Eq. (9.5) can be replaced by

−〈KS∗
û, w〉 = −〈KS∗

uP , w〉 + 〈J(uP − uΣ), w〉;∀w ∈ E (10.9)

in that theorem. In applications, this result may be used to replace an expression involving integrals
in the interior of the subregions Ωi, (i = 1, . . . , E), by one that involves integrals over the internal
boundary only. In our discussions, it has been assumed that uP ∈ D̂1(Ω) is a datum. Generally,
when this is not available from the start, its construction requires solving local boundary value
problems in each one of the subregions Ωi, (i = 1, . . . , E), exclusively.

When −KS∗
is symmetric in N ≡ NQ ∩ NR, the variational principles of Eqs. (10.5) and

(10.9) can be derived from the potentials

Z(û) = −1
2
〈KS û, û〉 − 〈f − g − j, ûH〉 (10.10)

and

Z̃(û) ≡ −1
2
〈KS û, û〉 + 〈KS∗

uP , w〉 − 〈J(uP − uΣ), w〉, (10.11)

respectively. When it is positive definite on N ≡ NQ ∩ NR, then a minimum principle holds, in
addition.

As in Section V, let us illustrate the TH-method by applying it to the elliptic BVPJ of second-
order of Eqs. (4.3). Since in the case of elliptic problems a convenient strategy is to concentrate all
the sought information on Σ, a first possibility is to set S ≡ K; i.e., KC ≡ 0 and R ≡ C, so that
the test functions are required to fulfill L∗w = 0, in each one of the subregions separately, together
with w = 0, on ∂Ω. Observe that no matching condition between the subregions is imposed. Thus,

in this case the method is nonoverlapping. The sought information is u̇ and ˙
∂u/∂n on Σ. This

information is excessive, in the sense that when it is used to define local boundary value problems
they turn out to be over-determined.

Indeed, it would be enough, for example, to prescribe u̇ on Σ to have a well-posed problem,
if that information is complemented with the data on ∂Ω (see Fig. 1). Thus, one strategy that
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permits handling essential information only is to concentrate all the information in u̇ on Σ. This
is achieved, if one sets

〈KCw, u〉 = −
∫

Σ
[w]( ˙an · ∇u − bnu) dx (10.12)

in Eq. (10.8), together with CS ≡ 0 (and CC ≡ C). In this case, the requirement w ∈ NR

implies the condition [w] = 0 on Σ, in addition to the previous conditions. Thus, such functions
must be continuous across Σ. The construction, by collocation, of test functions fulfilling these
conditions is not difficult, but requires putting together several subregions. Thus, diminishing the
information that has to be handled, and so the degrees of freedom, leads to an overlapping method.
In Sections XI and XII TH-complete systems of functions and procedures for their construction
are presented.

XI. TH-COMPLETE SYSTEMS

The application of Trefftz methods requires having available systems of functions that are complete
for the space H ≡ H1 ⊕ · · · ⊕ HE . A criterion of completeness that has permitted applying the
function theoretic approach as an effective means to solving boundary value problems [63] is
due to Herrera [12] and an extension of that concept was given in Section X: it is referred to as
TH-completeness (Trefftz–Herrera completeness; it has also been referred as C-completeness or T-
completeness). This section is devoted to discuss briefly the methods available for developing such
systems of functions, which can be grouped into two broad categories: analytical and numerical.

The classical approach is based on analytical methods and a thorough account may be found
in a book by Begehr and Gilbert [63]. The function theoretic method was pioneered by Bergman
[64] and Vekua [65], and further developed by Colton [66–68], Gilbert [69–70], Kracht–Kreyszig
[71], Lanckau [72], and others. The author has supplied such systems for Stokes problem [73],
Helmholtz equation (in [23] it is shown that a system of plane waves possess that property) and
the biharmonic equation [74]. Other means of constructing them use fundamental solutions and
spectral methods, among others (see [63]).

The most general procedures for constructing TH-complete systems are, by far, numerical
methods. Any such method can be applied, but collocation is quite suitable [60]. One has to
construct families of solutions that span suitable spaces of boundary conditions, as illustrated in
the next section, in the case of the general elliptic equation of second order.

XII. CONSTRUCTION OF TH-COMPLETE SYSTEMS BY COLLOCATION

Consider again the BVPJ for the general elliptic equation of second order. For simplicity, a
rectangular region is considered and the subregions of the partition are rectangles [Fig. 2(a)].

For a system of functions to be TH-complete, for each subregion Ωi, the traces of its members
must span H0(∂Ωi). When collocation methods are used in the construction of TH-complete
systems, one may choose a system of functions that spans H0(∂Ωi) and then solve a family of
boundary value problems, taking as boundary conditions each one of the members of this system.
A convenient choice for the system of functions that spans H0(∂Ωi) is a system of piecewise
polynomials. A linear basis of such a system of polynomials may be obtained by taking the
four bilinear polynomials that have the property of assuming the value 1 at one corner of each
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FIG. 2. (a) Rectangular domain decomposition of Ω; (b) numbering of internal boundaries.

given quadrilateral and vanishing at all the other three corners, together with all the piecewise
polynomials defined on ∂Ωi, which vanish identically at three sides of the quadrilateral.

For constructing a TH-complete system, fulfilling a continuity condition, collocation methods
are also quite suitable. With each internal node (xi, yj) a region Ωij , which is the union of the
four rectangles of the original partition that surround that node, is associated. Then, the system
of subregions {Ωij} is overlapping. The boundary of Ωij is ∂Ωij , while that part of Σ laying in
the interior of Ωij is denoted by

∑
ij [Fig. 2(b)]; it is constituted by four segments, which are

numbered as indicated in Fig. 2(b) and form a cross. Given any subregion Ωij , a system of functions
that fulfill L∗w = 0 in its interior and vanish on ∂Ωij is developed. Using the numbering already
introduced with each interior node (xi, yj), five groups of weighting functions are constructed,
which are identified by the conditions satisfied on

∑
ij :

Group 0—This group is made of only one function, which is linear in each one of the four
segments of

∑
ij and wij(xi, yj) = 1.

For N = 1, . . . , 4, they are defined by:
Group N—The restriction to interval ‘‘N’’ of Fig. 1(b) is a polynomial in x, which vanishes at
the end points of interval ‘‘N.’’ For each degree ≥ 2, there is only one, linearly independent, such
polynomial.

The support of the test function of Group 0, is the whole square, while those weighting functions
associated with Groups 1–4 have as support rectangles that can be obtained from each other by
rotation, as shown in Fig. 3.

Of course, when developing numerical algorithms for the solution of boundary value problems,
only a few terms of these TH-complete systems are taken; it could be only one (see [4]). Generally,
the order of precision of the resulting scheme depends on the number of terms taken.

XIII. CONCLUSIONS

A large class of numerical methods has been formulated, whose research thus far has been quite
incomplete. The conclusion is drawn that a lot of work should be done on them, because they have
great potential in the theory and practice of numerical methods for partial differential equations.
The framework presented here would be valuable for this purpose. In particular, collocation
methods could be greatly improved along these lines [32].
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FIG. 3. The five groups of weighting functions, according to their supports.
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