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Recently, Herrera presented a general theory of domain decomposition methods (DDM). This article is
part of a line of research devoted to its further development and applications. According to it, DDM are
classified into direct and indirect, which in turn can be subdivided into overlapping and nonoverlapping.
Some articles dealing with general aspects of the theory and with indirect (Trefftz–Herrera) methods have
been published. In the present article, a very general direct-overlapping method, which subsumes Schwarz
methods, is introduced. Also, this direct-overlapping method is quite suitable for parallel implementation.
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I. INTRODUCTION

Domain decomposition methods have received much attention in recent years [1], mainly because
they supply very effective means for parallelizing computational models of continuous systems. In
addition, it is useful to analyze numerical methods for partial differential equations from a domain-
decomposition perspective, since the ideas related to domain decomposition are quite basic for
them. According to J. L. Lions, one must distinguish between a priori domain decomposition and
a posteriori domain decomposition, depending on whether the domain decomposition is applied
before or after discretization, respectively.

Recently, Herrera has developed ‘‘an a priori general theory of domain decomposition’’ (a
preliminary presentation of its ideas may be found in [2]), in which the general strategy consists
in obtaining information about the sought solution in the internal boundary (Σ), which separates
the subdomains from each other, sufficient for defining well-posed problems in each one of the
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subdomains (to be referred as ‘‘local problems’’). In this manner, the solution can be reconstructed
by solving such kind of problems exclusively. There are two general procedures that can be
followed for gathering the information on Σ; they are referred as direct and indirect methods. The
distinguishing feature of indirect methods, as developed by Herrera and coworkers [2–10], is the
use of specialized test functions to obtain such information. On the other hand, methods such as
that first proposed by Trefftz in 1926 [11], and more recently developed by Jirousek and coworkers
[12, 13], consists in piecing together, just as bricks, the local solutions of the differential equations
to build the global solution. These procedures, when seen as a manner of gathering information in
the internal boundary, lead to the formulation of compatibility conditions that have to be satisfied
by the sought solution and from which the required information on Σ can be derived. This is the
strategy followed in the direct methods of Herrera’s theory.

When the procedures described above are put to work, the main difference between direct and
indirect methods is that, when the former are applied, the information on Σ is derived using local
solutions of differential equations formulated in terms of the original differential operators, i.e.,
those occurring in the original formulation of the boundary value problem, while specialized test
functions that fulfill equations formulated in terms of the adjoint differential operators are used in
the latter. Each one of these procedures, in turn, can be applied in overlapping or nonoverlapping
domain decompositions. Thus, four categories of methods are considered in the theory, which are
derived by combining these two classes of domain decompositions with the two procedures for
gathering the information on Σ, which have been described.

The scope of the theory is quite wide, since it is applicable to any partial (or ordinary) differential
equation or system of such equations, which is linear, and possibly with discontinuous coefficients.
It can also be applied to nonlinear problems via Newton’s method, or alike, in the usual manner.
In addition, the generality of Herrera’s theory is considerably enhanced, because it is formulated
in special classes of Sobolev spaces, developed specifically for this kind of application, in which
trial and test functions are fully discontinuous. Even more, the methodologies apply to a general
boundary value problem formulated in this setting, in which jumps of the functions and their
derivatives are prescribed, on the internal boundaries of the domain decompositions.

A line of research is being carried out devoted to develop further the basic theory and the meth-
ods derived from it. The general theory is presented in [2] as well as in a forthcoming publication
[13], and indirect methods are discussed in [7–9]. Research on direct methods is initiated with
the present article, in which the basic ideas of a very general direct overlapping method, which
subsumes Schwarz methods (including multiplicative and additive methods [14–16]), are intro-
duced. In agreement with the general strategy of Herrera’s theory, one of its essential features is
the use that is made of solutions of the original differential equation—to be contrasted with those
of the adjoint differential equation, in the case of indirect methods—to derive compatibility con-
ditions from which the sought information is obtained. Because of this characteristic and because
the domain decomposition is overlapping, it probably would be appropriate to call it a semidirect
overlapping method. Although, as mentioned, the method so obtained contains Schwarz methods,
as particular cases (see Section V), its formulation is more direct and general and turns out to be
quite suitable for parallel processing.

This article is organized as follows: Section II is devoted to explain, through a simple example,
the basic idea that motivates the semidirect overlapping method of this article. The notation that
is used is presented in Section III. The problem formulation with prescribed jumps of Herrera’s
general theory is given in Section IV, while the version corresponding to the most general elliptic
equation of second order in an arbitrary number of independent variables is explained in Section
V. In this latter section, the Schwarz alternating method is derived from the equations of our
method as a possible solution procedure that can only be applied when suitable conditions are
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satisfied by the differential operators. As an illustration of the general semidirect overlapping
method introduced here, in Section VI, it is applied to a one-dimensional version of the boundary
value problem with prescribed jumps of the function and its derivative. Then, in Section VII, the
orthogonal collocation procedure is used to construct the local solutions needed in several steps
of the process of solution. The corresponding error analysis is carried out in Section VIII and the
results of the numerical experiments that were performed are presented in Section IX. Finally, the
conclusions are discussed in Section X.

II. BASIC IDEA

Consider the problem of solving the ordinary differential equation of second-order

Lu ≡ − d

dx

(
a
du

dx

)
+

d

dx
(bu) + cu = 0 (2.1)

in the interval (0, `) of the real line, subjected to Dirichlet boundary conditions. Let, in addition,
{x0 = 0, x1, . . . , xE = `} be a partition of (0, `). Let xi ∈ (xi−1, xi+1), then u(xi) depends
linearly on u(xi−1) and u(xi+1). Indeed, it can be seen that

u(xi) = ϕ−
i (xi)u(xi−1) + ϕ+

i (xi)u(xi+1), (2.2)

where ϕ−
i (x) and ϕ+

i (x) are solutions of two ‘‘local boundary value problems.’’ More specifically,
they satisfy the differential Eq. (2.1), subjected to the boundary conditions:

ϕ−
i (xi−1) = ϕ+

i (xi+1) = 1 and ϕ−
i (xi+1) = ϕ+

i (xi−1) = 0. (2.3)

When i runs from 1 to E-1, Eq. (2.2) constitutes a tridiagonal system of equations from which
the values at the internal nodes u(xi), i = 1, . . . , E − 1 can be obtained. Observe that a slight
modification of this procedure permits the treatment of any other kind of boundary
conditions.

The system of Eqs. (2.2) is exact, but its actual application requires knowing the coefficients
ϕ−

i (xi) and ϕ+
i (xi); these in turn can be obtained by solving, in the interval (xi−1, xi+1),

the boundary value problem defined above. Except for very simple differential equations, this
requires resorting to approximate numerical methods. When this approach is used as a discretiza-
tion method, the numerical procedures to be applied for accomplishing this task are rather simple,
since the interval of definition of such problem is small and generally only a few degrees of
freedom need to be handled. In particular, a suitable method is collocation and, in this man-
ner, a nonstandard version of the method of collocation is obtained for the global problem.
Of course, the numerical method used to solve the local problems does not need to be collo-
cation, and different numerical procedures can be derived in this manner, depending on this
choice.

III. NOTATIONS

In what follows, unless otherwise explicitly stated, Ω is an open, bounded region. The closure of
any set Ω is denoted by Ω̄. The (outer) boundary of Ω is denoted by ∂Ω.
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As usual, a collection Π = {Ω1, . . . ,ΩE} of open subregions Ωi (i = 1, . . . , E) of Ω, is said
to be a partition of Ω, iff

i. Ωi ∩ Ωj = φ, for every i 6= j, and

ii. Ω̄ =
i=E⋃
i=1

Ω̄i.

In addition, the partitions considered throughout this article are assumed to be such that the
subregions Ωi are manifolds with corners, in the sense of Loomis and Sternberg [17] (see also
[18]). The manifold ∪E

i=1∂Ωi is referred to as the ‘‘generalized boundary,’’ while the ‘‘internal
boundary’’ of Ω—to be denoted by Σ—is defined as the closed complement of ∂Ω, considered
as a subset of the generalized boundary. Observe that the internal boundary, and the generalized
boundary as well, are concepts whose definition is relative to both the region Ω and the partition
Π. Thus, when deemed necessary, the notation Σ(Ω,Π), which is more precise, is used.

A partition Π′ = {Ω′
1, . . . ,Ω

′
E′} of Ω, is said to be a subpartition of Π, when for each

given any i = 1, . . . , E′, there is a subset of natural numbers N (i) ⊂ {1, . . . , E}, such
that

Ω̄′
i =

⋃
j∈N (i)

Ω̄j . (3.1)

Given a subpartition Π′ = {Ω′
1, . . . ,Ω

′
E′} of Π, the function µ′ : {1, . . . , E} → {1, . . . , E′} is

defined, for every j = 1, . . . , E, by the equation µ′(j) = i, whenever j ∈ N (i). Two partitions:
Π′ = {Ω′

1, . . . ,Ω
′
E′} and Π′′ = {Ω

′′
1 , . . . ,Ω

′′
E′′}, respectively, are said to be conjugate with

respect to a partition Π, when:

i. They are both subpartitions of Π;
ii. In the measure of the generalized boundary, the sets

Σ′ −

Σ′ ∩


i=E′⋃

i=1

Ω
′′
i





 and Σ′′ −


Σ′′ ∩


i=E′′⋃

i=1

Ω′
i





 (3.2)

have measure zero;
iii. And

Σ′ ∪ Σ′′ = Σ. (3.3)

Here, Σ′ = Σ(Ω,Π′) and Σ′′ = Σ(Ω,Π′′).
When Π′ = {Ω′

1, . . . ,Ω
′
E} and Π′′ = {Ω

′′
1 , . . . ,Ω

′′
E′′} are conjugate partitions, in addition to

the mapping µ′ introduced above, it is necessary to consider a second mapping µ′′, associated
with Π′′, which is defined correspondingly.

The formulation and treatment of boundary problems with prescribed jumps requires the in-
troduction of a special class of Sobolev spaces in which some of their functions are fully discon-
tinuous. In general, the definition of such spaces depends on the differential operator considered;
in the case of the elliptic problems to be discussed in Section V, such spaces are defined by
Ĥs(Ω,Π) ≡ Hs(Ω1) ⊕ · · · ⊕ Hs(ΩE), with s ≥ 0. Elements û ≡ {u1, . . . , uE} ∈ Ĥs(Ω,Π)
are sequences of functions such that ui ∈ Hs(Ωi), i = 1, . . . , E. For s ≥ 0, ui ∈ H0(Ωi), i =
1, . . . , E, Hs(Ωi) ⊂ H0(Ωi) and the sequence {u1, . . . , uE} defines a unique function u ∈
H0(Ω) with the property that u|Ωi

= ui, i = 1, . . . , E. The mapping Ĥs(Ω,Π) → H0(Ω), so
defined, is referred as the natural immersion of Ĥs(Ω,Π) into H0(Ω).
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When vi ∈ Hs(Ωi) and s > 1
2 , then the trace of vi belongs to Hs−1/2(∂Ωi) [18]. Let be

Σij ≡ ∂Ωi ∩ ∂Ωj , then the traces on Σij of each pair vi and vj are well defined, and using this
pair of traces, the following notation is introduced:

v+ ≡ Trace of (vi), (3.4a)

when Ωi lies on the positive side of Σij and

v− ≡ Trace of (vi) (3.4b)

otherwise. The jump of u across Σij is defined by

[v] ≡ v+ − v−, (3.5a)

and the average by

v̇ ≡ 1
2

(v+ + v−). (3.5b)

Observe that under the natural immersion H0(Ω) ⊃ Ĥs(Ω,Π) ⊃ Hs(Ω), and it can be shown
(see [10]) that, when s is an integer, an element û ∈ Ĥs(Ω,Π) belongs to Hs(Ω) if and only if
the jump of the normal derivatives up to order s − 1 vanishes on Σ.

IV. GENERAL PROBLEM WITH PRESCRIBED JUMPS

The idea explained in Section II can be generalized to obtain a procedure of general applicability
capable of solving a very general class of boundary value problems for which jumps are prescribed
in the internal boundaries. Given Ω, the region of definition of the problem, and a partition of
Ω (or domain-decomposition) Π ≡ {Ω1, . . . ,ΩE}, let Σ ≡ Σ(Ω,Π) be the internal boundary.
Then, using a notation similar to that presented in [19], the general form of such a boundary value
problem with prescribed jumps (BVPJ) is

Lu = LuΩ ≡ fΩ; in Ωi, i = 1, . . . , E (4.1a)

Bju = Bju∂ ≡ gj ; in ∂Ω (4.1b)

and

[Jku] = [JkuΣ] ≡ jk; in Σ, (4.1c)

where the Bj’s and Jk’s are certain differential operators (the j’s and k’s run over suitable finite
ranges of natural numbers) and uΩ ≡ (u1

Ω, . . . , uE
Ω), together with u∂ and uΣ are given functions

of the space of trial functions. In addition, fΩ, gj and jk may be defined by Eq. (4.1).
It must be emphasized that the scope of the methodology presented in this and the following

articles of this series is quite wide, since in principle it is applicable to any partial differential
equation or system of such equations that is linear, independently of its type. Although every kind
of equation has its own peculiarities, which require special developments that have to be treated
separately, among the equations that can be included, we would like to mention explicitly the
following:
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Single Equation

1. Elliptic

i) Second-Order
ii) Higher-Order

• Biharmonic.

2. Parabolic

i) Heat Equation
ii) Diffusive Transport (ELLAM).

3. Hyperbolic.

Systems of Equations

i) Stokes Problems
ii) Mixed Methods (Raviart-Thomas)

iii) Elasticity.

V. ELLIPTIC EQUATION OF SECOND ORDER

In this section, we describe the overlapping direct method under investigation, for the second-order
differential equation of elliptic type, when the problem is defined in a space of arbitrary dimension.
For definiteness, only boundary conditions of Dirichlet type are presented, but the procedure is
applicable to any kind of boundary conditions for which the problem is well posed, as was done
in [7]. With the notation introduced in Section III, a region Ω and a partition Π ≡ {Ω1, . . . ,ΩE}
of Ω, are considered. The solution to the boundary value problem with prescribed jumps in this
case, is sought in a Sobolev space of the kind introduced in that section. More precisely, a function
u ∈ Ĥ2(Ω) ≡ H2(Ω1) ⊕ · · · ⊕ H2(ΩE) is sought, such that

Lu ≡ −∇ · (a · ∇u) + ∇ · (bu) + cu = fΩ; in Ωi,i=1,...,E , (5.1)

subjected to the boundary conditions

u = u∂ ; in ∂Ω (5.2)

and jump conditions

[u] = j0 = [uΣ]; on Σ (5.3)

[a · ∇u] · n = j1 = [a · ∇uΣ] · n; on Σ. (5.4)

The above formulation and the methodology that follows applies even if the coefficients of the
differential operator are discontinuous. In the particular case when the coefficients are continuous,
the jump condition of Eq. (5.4), in the presence of (5.3), is equivalent to[

∂u

∂n

]
=

[
∂uΣ

∂n

]
; on Σ. (5.5)

In what follows, it is assumed that this problem possesses one and only one solution. Conditions
under which this assumption is fulfilled are discussed elsewhere.
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In the Theorem that follows, two conjugate partitions Π′ = {Ω′
1, . . . ,Ω

′
E′} and Π′′ =

{Ω
′′
1 , . . . ,Ω

′′
E′′}, as well as the mappings µ′ and µ′′ associated to them in the manner explained in

Section III are considered. Also, the notations Σ′ ≡ Σ(Ω,Π′) and Σ′′ ≡ Σ(Ω,Π′′) are adopted.

Theorem. Let Π′ = {Ω′
1, . . . ,Ω

′
E′} and Π′′ = {Ω

′′
1 , . . . ,Ω

′′
E′′} be two partitions of Ω that

are conjugate with respect to Π, and let { 1, . . . , E′} and {ŭ1, . . . , ŭE′′} be two families of
functions, such that

1) For every i = 1, . . . , E′, the function i ∈ Ĥ2(Ω′
i,Π

′) fulfills Eqs. (5.1)–(5.3) and satisfies
Eq. (5.4) in Σ′;

2) For every j = 1, . . . , E′′, the function ŭj ∈ Ĥ2(Ω
′′
j ,Π′′) fulfills Eqs. (5.1)–(5.3) and

satisfies Eq. (5.4) in Σ′′.

Then, define u′ = (u′1, . . . , u′E) ∈ Ĥ2(Ω,Π) and u′′ = (u′′1, . . . , u′′E) ∈ Ĥ2(Ω,Π), by

u′i = µ′(i)|Ωi ; i = 1, . . . , E (5.6a)

and

u′′j = µ′′(j)|Ωj
; i = 1, . . . , E. (5.6b)

Under these assumptions the following statements are equivalent:

i. u′ and u′′ are solutions of the BVPJ in Ω;
ii.

u′ ≡ u′′; (5.7)

iii.

u̇′(x) = u̇′′(x), a.e. on Σ = Σ′ ∪ Σ′′. (5.8)

Proof. That (i) implies (ii) is immediate, because of the assumption of uniqueness of solution
for the BVPJ. That (ii) implies (iii) follows from the jump condition of Eq. (5.3) and the definition
of the average across Σ. Equation (5.8) in the presence of Eq. (5.3) in turn imply

u′(x+) = u̇′(x) +
1
2
[u′] = u̇′(x) +

1
2
j0 = u̇′′(x) +

1
2
j0 = u̇′′(x) +

1
2

[u′′] = u′′(x+). (5.9)

Recalling that Σ = Σ′ ∪ Σ′′ and that Σ ∪ ∂Ω = ∪E
i=1∂Ωi, it is seen that the boundary values of

u′ and u′′ coincide on each side of Σ. This, together with the assumed uniqueness of solution of
the boundary value problem at each one of the subregions of the partition, imply u′ ≡ u′′.

It is timely to point out the connections between the method discussed in this article and the
Schwarz alternating methods. Indeed, this latter approach can be derived from Eqs. (5.1)–(5.3)
and (5.8), when an iterative procedure is adopted for fulfilling Eq. (5.8). To show this, let u2n

(n = 0, 1, · · ·) and u2n+1 (n = 0, 1, · · ·) satisfy Eqs. (5.1)–(5.3), together with

•︷ ︸︸ ︷
u2n+1 =

•︷︸︸︷
u2n , on Σ′, (n = 0, 1, · · ·) (5.10a)

and
•︷ ︸︸ ︷

u2n+2 =

•︷ ︸︸ ︷
u2n+1, on Σ′′, (n = 0, 1, · · ·). (5.10b)



502 HERRERA AND YATES

Then, if the sequence u2n (n = 0, 1, · · ·) converges to , while the sequence u2n+1 (n = 0, 1, · · ·)
converges to ŭ, one has = ŭ = u, and this function fulfills Eqs. (5.1)–(5.3), together with Eq.
(5.8). In the cases when a variational principle can be applied, the projection interpretation is
possible and the Schwarz alternating procedure can be derived (see, for example, [14–16]).

VI. ONE-DIMENSIONAL PROBLEM

The one dimensional version of the problem described in Section V corresponds to the two-point
boundary value problem of the general differential equation of second order. Let be Ω ≡ (0, l)
and Π ≡ {(0, x1), (x1, x2), . . . , (xE−1, xE = l)}. Then

Lu ≡ − d

dx

(
a
du

dx

)
+

d

dx
(bu) + cu = fΩ, in (xi−1, xi), i = 1, . . . , E. (6.1)

Assume that the boundary and jump conditions are:

u(0) = g∂0, u(`) = g∂` (6.2a)

and

[u] = j0
i ≡ [uΣ] and

[
du

dx

]
= j1

i ≡
[
duΣ

dx

]
; i = 1, . . . , E − 1, (6.2b)

respectively. In addition, it is assumed that the Dirichlet problem is well posed in each one of the
subintervals and that u(x) ∈ H2(Ω) is the unique solution of this BVPJ, in Ω.

In every subinterval (xi−1, xi+1), i = 1, . . . , E − 1, define the function ui(x) to be the
restriction of u(x) to Ωi. Then, for every i = 1, . . . , E − 1, ui(x), is the unique solution of a
boundary value problem with prescribed jumps defined in the subinterval (xi−1, xi+1), which is
derived from the following conditions:

Lui = fΩ, in (xi−1, xi+1); i = 1, . . . , E − 1, (6.3a)

[ui]i = j0
i ;

[
dui

dx

]
i

= j1
i ; i = 1, . . . , E − 1, (6.3b)

ui(xi−1+) = u(xi−1+) = u̇(xi−1) +
1
2
j0
i−1; i = 2, . . . , E − 1, (6.3c)

ui(xi+1−) = u(xi+1−) = u̇(xi+1) − 1
2
j0
i+1; i = 1, . . . , E − 2, (6.3d)

u1(0) = u(0) = g∂0, (6.3e)

and

uE−1(`) = u(`) = g∂`. (6.3f)

Let the functions ui
H(x) and ui

P (x) be defined in (xi−1, xi+1) by the following conditions:

Lui
H = 0, in (xi−1, xi+1); i = 1, . . . , E (6.4a)
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[ui
H ]i =

[
dui

H

dx

]
i

= 0; i = 1, . . . , E − 1 (6.4b)

ui
H(xi−1+) = u(xi−1+) = u̇(xi−1) +

1
2
j0
i−1; i = 2, . . . , E − 1 (6.4c)

ui
H(xi+1−) = u(xi+1−) = u̇(xi+1) − 1

2
j0
i+1; i = 1, . . . , E − 2 (6.4d)

u1
H(x0) = u(0) = g∂0; (6.4e)

and

uE−1
H (xE) = u(`) = g∂`; (6.4f)

together with

Lui
P = fΩ, in (xi−1, xi) and (xi, xi+1), separately, for i = 1, . . . , E − 1 (6.5a)

ui
P (xi−1+) = ui

P (xi+1−) = 0, for i = 1, . . . , E − 1 (6.5b)

[ui
P ]i = j0

i and

[
dui

P

dx

]
i

= j1
i ; i = 1, . . . , E − 1. (6.5c)

Then, it can be verified that

ui(x) = ui
H(x) + ui

P (x); i = 1, . . . , E − 1. (6.6)

Even more:

ui
H(x) = ui

H(xi−1−)φi
−(x) + ui

H(xi+1+)φi
+(x), (6.7)

when φi
−(x) and φi

+(x) are defined by the conditions:

Lφi
+ = 0; φi

+(xi−1) = 0, φi
+(xi+1) = 1 (6.8a)

Lφi
− = 0; φi

−(xi−1) = 1, φi
−(xi+1) = 0 (6.8b)

together with

[φi
+]i = [φi

−]i =
[
dφi

+

dx

]
i

=
[
dφi

−
dx

]
i

= 0. (6.8c)

From Eqs. (6.6), (6.7), and (6.4c,d), it follows that

u̇(xi) − u̇i
P (xi) = u̇i

H(xi) = {u̇(xi−1) +
1
2
j0
i−1}φi

−(xi) + {u̇(xi+1) − 1
2
j0
i+1}φi

+(xi). (6.9)

Hence,

−ρi
−u̇i−1 + u̇i − ρi

+u̇i+1 = µi; i = 2, . . . , E − 2 (6.10a)

u̇i − ρi
+u̇i+1 = µi; i = 1 (6.10b)



504 HERRERA AND YATES

and

−ρi
−u̇i−1 + u̇i = µi; i = E − 1, (6.10c)

where

ρi
− = φi

−(xi), ρi
+ = φi

+(xi); i = 1, . . . , E − 1 (6.11a)

µi =
ρi

−
2

j0
i−1 + u̇i

P (xi) − ρi
+

2
j0
i+1; i = 2, . . . , E − 2 (6.11b)

µi = ρi
−g∂0 + u̇i

P (xi) − ρi
+

2
j0
i+1, i = 1 (6.11c)

and

µi =
ρi

−
2

j0
i−1 + u̇i

P (xi) + ρi
+g∂`; i = E − 1. (6.11d)

Equations (6.10) constitute an E − 1 tridiagonal system of equations, which can be solved for u̇i

(i = 1, . . . , E − 1).
Once the averages u̇i (i = 1, . . . , E − 1) are known, it is possible to derive the information

that is required to define well-posed problems in each one of the subintervals of the partition.
Indeed, all that is required is to apply the identities

u(xi+) ≡ u̇i +
1
2

[u]i = u̇i +
1
2
j0
i and u(xi−) ≡ u̇i − 1

2
[u]i = u̇i − 1

2
j0
i . (6.12)

When these values are complemented with the prescribed boundary values of Eq. (6.2a), well-
posed boundary value problems in each one of the subintervals of the partition can be defined.
In this manner, all that is required to reconstruct the exact solution of the BVPJ is to solve such
‘‘local problems’’ in each one of the subintervals. Using the previous developments, one can apply
Eqs. (6.6) and (6.7), to obtain u(x) in the interior of the subintervals of the partition.

Up to now, all the developments have been exact. However, application of the system of Eqs.
(6.10), as well as that of Eqs. (6.6) and (6.7), requires having available the functions φi

−, φi
+, and

ui
P , (i = 1, . . . , E − 1). In general applications it is necessary to resort to numerical approxima-

tions for the construction of such functions and the system of equations so obtained is not exact
any longer. Instead, its precision depends on the error introduced by the numerical procedure that
is applied for solving the problems defined by Eqs. (6.4) and (6.5). A similar comment can be
made with respect to the construction of the solution of the local boundary value problem whose
solution is given by Eqs. (6.6) and (6.7).

VII. COLLOCATION PROCEDURE

The numerical procedure chosen in this article for the construction of the functions φi
−, φi

+, and
ui

P (i = 1, . . . , E − 1), is orthogonal collocation, because of its precision and easiness to apply.
First, in Subsection VIIA, it is used with two collocation points, using cubic polynomials, and
later, in Subsection VIIB, the procedure is extended to an arbitrary number ‘‘n’’ of collocation
points, in each subinterval of the partition, with polynomials of degree G ≡ n + 1.
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A. Method with Two Collocation Points in Each Subinterval

Define

Hi = {H1
i−1, H

0
i , H1

i , H1
i+1} (7.1a)

LHi = {LH1
i−1,LH0

i ,LH1
i ,LH1

i+1}, (7.1b)

where H0
i and H1

i , i = 0, . . . , E, are the cubic Hermite polynomials for which the function or its
derivative takes the value one at xi, respectively. In addition,

Xi
− ≡ {φi1

−(xi−1)φi
−(xi), φi1

−(xi), φi1
−(xi+1)} (7.2a)

and

Xi
+ ≡ {φi1

+ (xi−1), φi
+(xi), φi1

+ (xi), φi1
+ (xi+1)}. (7.2b)

Then, in view of the boundary conditions for φi
− and φi

+, these functions can be written as

φi
− ≡ H0

i−1 + Hi ∗ Xi
− (7.3a)

and

φi
+ ≡ H0

i+1 + Hi ∗ Xi
+, (7.3b)

or more explicitly

φi
−(x) = H0

i−1(x) + φi1
−(xi−1)H1

i−1(x) + φi
−(xi)H0

i (x)
+ φi1

−(xi)H1
i (x) + φi1

−(xi+1)H1
i+1(x); xi−1 < x < xi+1 (7.4a)

and

φi
+(x) = H0

i+1(x) + φi1
+ (xi−1)H1

i−1(x) + φi
+(xi)H0

i (x) + φi1
+ (xi)H1

i (x)
+ φi1

+ (xi+1)H1
i+1(x); xi−1 < x < xi+1. (7.4b)

The collocation equations are

Lφi
−(x) = 0; x = x∗

i , x
∗∗
i , x∗

i+1x
∗∗
i+1 (7.5a)

and

Lφi
+(x) = 0; x = x∗

i , x
∗∗
i , x∗

i+1, x
∗∗
i+1, (7.5b)

where x∗
i and x∗∗

i , for i = 1, . . . , E, are the Gaussian points of the subinterval (xi−1, xi). These
systems of equations can be written as

LHi(x) ∗ Xi
− = −LH0

i−1(x); x = x∗
i , x

∗∗
i , x∗

i+1, x
∗∗
i+1 (7.6a)

and

LHi(x) ∗ Xi
+ = −LH0

i+1(x); x = x∗
i , x

∗∗
i , x∗

i+1, x
∗∗
i+1, (7.6b)

respectively. Observe that


LH1
i−1(x

∗
i ) LH0

i (x∗
i ) LH1

i (x∗
i ) 0

LH1
i−1(x

∗∗
i ) LH0

i (x∗∗
i ) LH1

i (x∗∗
i ) 0

0 LH0
i (x∗

i+1) LH1
i (x∗

i+1) LH1
i+1(x

∗
i+1)

0 LH0
i (x∗∗

i+1) LH1
i (x∗∗

i+1) LH1
i+1(x

∗∗
i+1)


 (7.7)
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is the matrix for both systems of equations.
For constructing the functions ui

P define Y i ≡ (Y i
1 , Y i

2 , Y i
3 , Y i

4 ) and j
i
≡ (0, j0

i , j1
i , 0) with

Y i
1 ≡ ui1

P (xi−1), Y i
2 ≡ u̇i

P (xi), Y i
3 ≡ u̇i1

P (xi) and Y j
4 ≡ ui1

P (xi+1). (7.8)

Then

ui
P (x) = Y i ∗ Hi(x) − 1

2
j

i
∗ Hi(x), xi−1 ≤ x < xi (7.9a)

and

ui
P (x) = Y i ∗ Hi(x) +

1
2
j

i
∗ Hi(x), xi < x ≤ xi+1. (7.9b)

The collocation equations are

Lui
P (x) = fΩ(x), at x = x∗

i , x
∗∗
i , x∗

i+1, x
∗∗
i+1, (7.10)

and can be written as

Y i ∗ LHi(x) = fΩ(x) +
1
2
j

i
∗ LHi(x), at x = x∗

i , x
∗∗
i (7.11a)

together with

Y i ∗ LHi(x) = fΩ(x) − 1
2
j

i
∗ LHi(x), at x = x∗

i+1, x
∗∗
i+1. (7.11b)

Therefore, the matrix of the system is again given by Eq. (7.7).

B. Extension to Arbitrary Order

The extension of the second-order procedure just presented into an arbitrary order method is
straightforward. Indeed, it is only required to modify Eqs. (5.3) to be

φi
− ≡ H0

i−1 + Hi ∗ Xi
− + Qi

− (7.12a)

and

φi
+ ≡ H0

i+1 + Hi ∗ Xi
+ + Qi

+, (7.12b)

where Qi
− and Qi

+ are piecewise polynomials of degree G. Let

pi(x) ≡ (x − xi−1)2(x − xi)2, (7.13)

then Qi
−(x) ≡ pi(x)qi

−(x), in (xi−1, xi) and Qi
−(x) ≡ pi+1(x)qi

−(x), in (xi, xi + 1), where
qi
− is a piecewise polynomial in (xi−1, xi+1), which in turn is a polynomial of degree G-4 in

each one of the subintervals (xi−1, xi) and (xi, xi+1) separately. The function Qi
+ is defined

correspondingly. The definition of ui
P , given Eqs. (7.9), has to be modified similarly. This was

done adding on the right-hand member of Eqs. (7.9), a piecewise polynomial Qi
P of degree G,

which vanishes, together with its first-order derivative, at xi−1, xi, and xi+1. The expression for
Qi

P that was used is

Qi
P (x) ≡ pi(x)qi

P (x), in (xi−1, xi) (7.14a)

and

Qi
P (x) ≡ pi+1(x)qi

P (x), in (xi, xi+1), (7.14b)
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where qi
P is a polynomial of degree G-4, in each one of the subintervals (xi−1, xi) and (xi, xi+1),

separately.
For i = 1, . . . , E, let xα

i (α = 1, . . . , G − 1) be the Gaussian points of the subinterval
(xi−1, xi). Then the system of equations to be fulfilled for the construction of φi

− and φi
+ are

LHi(x) ∗ Xi
− + LQi

− = −LH0
i−1(x); x = xα

i , xα
i+1, α = 1, . . . , G − 1 (7.15a)

and

LHi(x) ∗ Xi
+ + LQi

+ = −LH0
i+1(x); x = xα

i , xα
i+1, α = 1, . . . , G − 1. (7.15b)

In addition, the system of equations for ui
P is

Y i ∗ LHi(x) + LQi
P = fΩ(x) +

1
2
j

i
∗ LHi(x), at x = xα

i , α = 1, . . . , G − 1 (7.16a)

together with

Y i ∗ LHi(x) + LQi
P = fΩ(x) − 1

2
j

i
∗ LHi(x), at x = xα

i+1, α = 1, . . . , G − 1. (7.16b)

C. Approximate Solution

Theorem 7.1. Let φ̂i
+, φ̂i

−, and ûi
P be the approximations of the functions φi

+, φi
−, and ui

P ,

respectively, obtained by the method of collocation of this section. Assume that ˙̂ui (i = 1, . . . , E−
1) are the solutions of the system of Eqs. (6.10), with the coefficients given by Eqs. (6.11), when the
functions φi

+, φi
−, and ui

P are replaced by φ̂i
+, φ̂i

−, and ûi
P , respectively. Define in (xi−1, xi+1),

for (i = 1, . . . , E − 1), the functions

ûi(x) = ûi
H(x) + ûi

P (x) (7.17)

with

ûi
H(x) = ( ˙̂ui−1 +

1
2
j0
i−1)φ̂

i
−(x) + ( ˙̂ui+1 − 1

2
j0
i+1)φ̂

i
+(x) (7.18)

and, in (0, l), let be:

û(x) = ûi(x), in (xi−1, xi+1), for (i = 1, . . . , E − 1). (7.19)

Then:

i) The definition of Eq. (7.19) is consistent.
ii) The jump conditions are fulfilled:

[û]i = j0
i and

[
dû

dx

]
i

= j1
i ; for i = 1, . . . , E − 1. (7.20)

iii) The boundary conditions are fulfilled:

û(0) = g∂0 and û(l) = g∂l. (7.21)

iv) The collocation differential equation is satisfied at the n(≡ G−1) Gaussian points of each
subinterval (xi−1, xi), for (i = 1, . . . , E) :

Lû ≡ − d

dx

(
a
dû

dx

)
+

d

dx
(bû) + cû = fΩ. (7.22)



508 HERRERA AND YATES

Proof. To prove condition (i), observe that for each i = 1, . . . , E − 2 the intersection of the
subintervals (xi−1, xi+1) and (xi, xi+2), is the open subinterval (xi, xi+1). In addition,

ûi+1(xi+) = ˙̂ui +
1
2
j0
i = ˙̂u

i
(xi) +

1
2
j0
i−1 = ui(xi+), (7.23a)

and similarly,

ûi(xi+1−) = ˙̂ui+1 − 1
2
j0
i+1 = ˙̂u

i+1
(xi+1) − 1

2
j0
i+1 = ui+1(xi+1−). (7.23b)

Therefore, the functions ûi(x) and ûi+1(x) satisfy the same boundary conditions at the end points
of the subinterval (xi, xi+1); they are polynomials of degree G and fulfill the differential Eq. (6.1)
at the n(≡ G − 1) Gaussian points of that subinterval; thus, they are identical. Having proved
condition (i), conditions (ii)–(iv) become obvious, because, for each i = 1, . . . , E − 2, they are
mere repetitions of the conditions imposed either on the function ûi(x) or ûi+1(x).

VIII. ERROR ANALYSIS

Let the error be defined by e(x) ≡ û(x)−u(x), where u(x) is the exact solution of the problem of
Section VI, and û(x) its approximate solution, obtained by the collocation method of Section VII.

Using the results presented in Theorem 7.1, it is seen that e(x) satisfies the following

i) Jump conditions:

[e]i = 0 and

[
de

dx

]
i

= 0; for i = 1, . . . , E − 1; (8.1)

ii) Boundary conditions:

e(0) = 0 and e(l) = 0; (8.2)

iii) Differential equation

Le ≡ − d

dx

(
a

de

dx

)
+

d

dx
(be) + ce = 0 (8.3)

is satisfied at the n(≡ G−1). Gaussian points of each subinterval (xi−1, xi), for (i = 1, . . . , E).
Therefore, the error estimates usual for orthogonal collocation are applicable (see [20]). In par-
ticular, if the coefficients a, b, and c are sufficiently smooth (piecewise)—with discontinuities
possibly occurring on Σ—and fΩ is piecewise Cn, again with discontinuities possibly occurring
on Σ, then

|e|∞ ≤ βh2n, (8.4)

where β is a constant independent of E.

IX. NUMERICAL EXPERIMENTS

The numerical experiments that were performed consist in solving Eq. (6.1) subject to Dirichlet
boundary conditions. Four examples were chosen to compare p-convergence (higher-order poly-
nomial degree convergence) with h-convergence (mesh size), as well as to verify the solution
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TABLE I. Definitions of the examples treated.

Example a b c fΩ

1 1 2px/q −
{

4p(1+p)
q2 + 2p2

q
+ p2

}
0

2 −1 −α 0 0
3 −1 0 −1 0
4 −1; 0 ≤ x ≤ 1 0 1 0

−4; 1 < x ≤ 2

p =
√

40π; q = 1 + p(1 + x2).

behavior in the cases of prescribed jumps and discontinuous coefficients. Table I gives the coef-
ficients used for each of the examples for which the analytical solutions are known (Table II). In
each case, a graph of the solution is given along with the graph of the error, measured using the
‖ ‖∞ norm.

The error analysis for the method studied in this article is presented in Section VIII, where a
bound for the error ‖e‖∞ is established, which behaves as h2n ≡ h2(G−1). Here, n ≡ G − 1
is the number of collocation points at each subinterval of the partition, G is the degree of the
polynomial approximations and h ≡ max |xi − xi−1| is the norm of the mesh size. For larger
values of n, hyper-convergence is obtained, producing great savings in the required number
of elements to achieve a desired accuracy. In the first two examples, with C1 coefficients, the
error is seen to follow the predicted theoretical behavior fairly well for smaller values of n, but
differ slightly for larger ones. In all cases, the convergence improves rapidly when n is increased
and the deviations from the predicted bound are not important. There is a definite trade-off
between the use of higher-order polynomials and a reduced number of mesh points. While no
specific computer-time results are given, it should be mentioned that the method entails first the
establishment and then the solution of 2(E−1) matrix equations, each one n×n. The global matrix
equation derived in this manner is an (E − 1) tridiagonal system. This gives a linear time (based
upon the total number of numerical operations performed) in the parameter E and cubic in n,
which is usually much smaller than E. Although the number of required computations is similar
to the standard Hermite collocation method, and the convergence properties are also similar,
several advantages are apparent from our approach. First, the method handles discontinuous

TABLE II. Solution for each one of the examples.

Example Exact Solution

1 sin(px) + x cos(px);

2 eαx−eα

1−eα ; α = 20,100;

3 ex; 0 ≤ x < 1
2

1
4 + e1/2; x = 1

2(
1 − 1

2
e−3/2

e−1

)
ex + 1

2
e3/2

e−1 e−x; 1
2 < x ≤ 1;

4 A sin x; 0 ≤ x ≤ 1
C sin x

2 + D cos x
2 ; 1 < x ≤ 2;

where A, C, and D are defined by[
sin(1) − sin( 1

2 ) − cos( 1
2 )

cos(1) −2 cos( 1
2 ) 2 sin( 1

2 )
0 sin( 1

2 ) cos(1)

][
A
B
C

]
=

[
0
0
1

]
.
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coefficients as well as prescribed jumps of the function and its derivative. Second, in our method
the matrix of the global system of equations is always tridiagonal regardless of the number
of collocation points used—i.e., independently of the precision of the algorithm that is being
developed—while the bandwidth obtained in the standard Hermite collocation method is three
times the number of collocation points (3n ≡ 3(G − 1)). Third, the n × n systems of equations
occurring in the local problems can be easily computed in parallel. Finally, the procedure is readily
extended to higher dimensions, where the advantages mentioned above become increasingly more
significant.

Although the numerical results here presented are only for one-dimensional problems, work
is underway towards higher-dimensional implementations, which looks promising. It must be
stressed that the local solutions required for the construction of the global matrix equation as
well as the computation of the final solution are independent of each other and, therefore, their
computation can be easily performed using parallel processing.

Example 1

In this case, the solution is an oscillating function u(x) = sin px+x cos px, where p = (40π)1/2.
For the usual Hermite cubic polynomials, convergence starts with E = 10 and follows a fourth-
degree curve. However, for higher-degree polynomials, convergence starts to occur for as little as
E = 3 and proceeds with a higher-degree slope. See Figs. 1 and 2.

Example 2

The differential equation yields as a solution a function giving a ‘‘sharp front.’’ Values for alpha of
20 and 100 are illustrated. A similar behavior is observed with convergence occurring at a lower

FIG. 1. The exact solution for Example 1.
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FIG. 2. Error behavior for Example 1.

number of node points and with a higher slope for higher-degree approximation polynomials. As
is to be expected, the convergence is faster for the lower value of alpha (20), since the function is
more easily approximated at the inflection point of the curve. See Figs. 3–6.

FIG. 3. Exact solution for Example 2 and α = 20.
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FIG. 4. Error behavior for Example 2 and α = 20.

Example 3

In this case, prescribed jumps for the solution and its first derivative were specified at the value
x = 0.5. Since the underlying numerical method essentially solves for the solution in each

FIG. 5. Exact solution for Example 2 and α = 100.
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FIG. 6. Error behavior for Example 2 and α = 100.

of the ‘‘smooth’’ interiors and then pieces these solutions together in the global tridiagonal
linear equation, it is to be expected that similar convergence results would also occur. In this
case, only two graphs were available due to numerical ‘‘rounding’’ errors after about 11 digits.

FIG. 7. Exact solution for a problem with prescribed jumps (Example 3).
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FIG. 8. Error behavior for Example 3.

Again, the initial slope of h4 is seen for the standard Hermite polynomials, while it is diffi-
cult to ascertain from this example exactly what kind of slopes result from higher values of G.
See Figs. 7 and 8.

Example 4

This example was included to illustrate how the method of this article can be used for the case of
piecewise discontinuous coefficients. Here a(x) was taken as the constant 1 for 0 ≤ x ≤ 1 and as
the constant 4 for 1 < x ≤ 2. The functions u(x) and a(x)u′(x) were assumed smooth across the
point x = 1. Again the numerical solution obtained gave results in accordance with the expected
values for G and h but again, the ‘‘round-off’’ problem occurred too quickly to obtain a clearer
pattern for the convergence slopes. See Figs. 9 and 10.

X. CONCLUSIONS

This article is part of a line of research devoted to developing a general theory of domain de-
composition and the methods derived from it. Such general theory divides domain decomposition
methods into two broad classes: direct and indirect approaches. Indirect methods (Trefftz–Herrera
methods), as well as the general theory, although not fully developed yet, have been the subject of
several publications. In the present article, a general direct overlapping method called ‘‘semidirect
overlapping method,’’ which subsumes Schwarz methods (including multiplicative and additive
methods), has been introduced. This method, the semidirect overlapping method, is quite suitable
for parallel implementation.
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FIG. 9. Exact solution for a differential equation with discontinuous coefficients (Example 4).

In the examples here presented, to test the numerical performance of our approach, several
additional advantages became apparent. These advantages can be expected to be increasingly
more significant, since the procedure is readily extended to higher dimensions and its appli-

FIG. 10. Error behavior for Example 4.
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cation to such problems is under investigation at present. Furthermore, the methodology pro-
posed in this article possesses great generality, since it handles many kinds of discontinuities
(discontinuous coefficients, discontinuous functions, and any boundary value problem with pre-
scribed jumps in the internal boundaries of the domain decomposition) and can be applied to
any differential equation or system of such equations. Using it one can treat, for example, el-
liptic, parabolic, and hyperbolic equations, as well as systems such as Stokes problems and
elasticity.

The authors acknowledge the valuable help given by Martin Diaz in different aspects of the
developments presented in this article and the financial support received from CONACYT and
DGAPA (UNAM) through their Projects #32051-A and IN105998, respectively.
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