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Abstract. Herrera has developed a general theory ofdomain decomposition in which the unifying feature, for 
the diflerent domain decomposition methods, is the search for informa/ion abou/ the sought so/ution in lhe 
internal boundary (2:) which separates the subdomains from each other. According lo that theory. every domain 
decomposition method adopts a procedure for gathering information of that kind, sufficient for defining well­
posed "local problems" in each one of the subdomains of the domain decomposition. Such procedures are 
classijied into two very broad groups: 'direct' and 'indirect' methods. Indirect methods were introduced in 
numerical ana/ysis by Herrera and coworkers, and are referred as Tre.fftz-Herrera Methods; ils distinguishing 
feature is the use ofspecialized test functions which have the property ofyielding any desired information on 1:. 
The guidelines for the construction q{such weighting functions is supplied by a special kind ofGreen 's formulas 
(Green-Herrera formulas), formulated in Sobolev spaces ofdiscontinuous functions, which permit analyzing the 
informatíon on I, contained in approximate solutions. Direct methods, when seen from the perspective of 
Herrera 's general theory, lead lo the formulation of compatibility condilions that have to be satisfied by the 
sought solution and from which the required information on I, can be derived Also. a general description of 
direct methods and their foundations is given, exisling procedures which fall in this category are identijied and 
new methods suggested by the theory are discussed In the presentation, special emphasis is given fo a very 
general direct-over/apping me/hod, lo be called 'semidirect overlapping method', that subsumes Schwarz 
methods. This [atter class of methods have received much attention in recent years, bul this new 'semidírect 
overlapping method' is more direct and general, il is not restricted to posítive definite operators, and it is quite 
suitable for paral/el implementation. The generality of (he methodologies so obtained is quite wide. being 
applicable lo any linear differential equa/ion, or system of such equations, independently of its type (elliptic, 
parabolic and hyperbolic equations are included), and to problems with prescribed jumps and with 
discontinuous coefficients. 
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1. Introduction 

Domain decomposition methods have received much attention in recent years [1], mainly 
because they supply very effective means for parallelizing computational models of 
continuous systems. In addition, it is useful to analyze numerical methods for partíal 
differential equations from a domain-decomposition perspective, since the ideas related to 
domain decomposition are quite basic for them. Herrera has proposed a general theory of 
domain decomposition [2], based on the following unifyíng observation: "Every domain 
decomposition method (DDM) performs in some way the function of gathering information 
about the sought solution in the internal boundary (.E), sufficient for defining well-posed 
'local problems' in each one of the subdomains". There are two main procedures for 
performing this function: 'direct' and 'indirect (or Trefftz-Herrera) ' methods. 

Trefftz-Herrera methods were introduced in numerical analysis by Herrera and coworkers [3­
5], and its distinguishing feature is the use of specialized test functions which have the 
property of yielding any desired information on !:. The guide1ines for the construction of such 
weighting functions is supplied by a special kind of Green's formulas (Green-Herrera 
formulas), formulated in Sobolev spaces of fully discontinuous functions [6], which permít 
analyzing the information on !:, contained in approximate solutions and allow deriving 
'indirect methods' from a very general variational principie, to be presented in Section 4. 
Direct methods, on the other hand, derive the required information on L from compatibility 
conditions that the local solutions of the original problem must satisfy when they are 
assembled for constructing the global solution [7]. It must be mentioned that a direct (to be 
called 'semidirect') method derived in this manner subsumes Schwarz methods [8-10] (see 
[7]). When direct and indirect procedures are put to work, the main difference between them 
is that when the former are applied, the information on !: is derived using local solutions of 
differential equations formulated in terms of the original differential operators -Le., those 
occurring in the original formulation of the boundary value problem-, while the specialized 
test functions that are used in indirect methods fulfill equations that are formulated in terms of 
the adjoint differential operators. Each one of these methods, in turn, can be applied in 
overlapping or non-overlapping domain decompositíons. The generality of the methodologies 
must be stressed, sínce they are applicable to any linear differential equation, or system of 
such equations, independently of its type, and to problems with prescribed jumps and with 
discontinuous coefficients. 

In this talk an overview of this unifying theory, is presented. In Section 2, the Sobolev spaces 
with discontinuous functions in which later developments are carried out, are introduced [6]. 
When boundary value problems are formulated in such setting, one is lead to consider 
problems with prescribed jumps and a general formulation of them is presented in Section 3. 
A very general and abstract formulation of indirect methods is introduced in Section 4, while 
Section 5 is devoted to illustrate them in connection with the general elliptic equation of 
second order. Direct methods are briefly explained in Section 6. Complete systems of 
functions which are required to apply the methodologies of the general theory are discussed in 
Section 7. Sorne quite appealing results, that have already been obtained are explained in 
Section 8, devoted to conc1usions. 
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2 Sobolev spaces with discontinuous functions 

In what follows, unless otherwise explícitly stated, a will be an open, bounded region. The 
closure of any set a will be denoted by n. The (outer) boundary of a will be denoted by díl. 
As usual, a collection n ={al"'" a E} of open subregiones a i (i=1 , ... ,E) of a, is said to be a 
partition ofa, jff 

l. ai nílj =1>, for every i i: j, and 
i=E 

ii. a un; 
i=1 

In addition, the partitions considered throughout this paper are assumed to be such that the 
subregiones a; are manifolds with corners, in the sense of Loomis and Stemberg [11] 

E 

(see also [6]). The manifold Uda; will be referred to as the 'generalized boundary', while 
;=1 

the 'internal boundary' of a -to be denoted by L- is defined as the closed complement of díl, 
considered as a subset ofthe generalized boundary. 

The formulation and treatment of boundary problems with prescribed jumps requires the 
introduction of a special c1ass of Sobolev spaces in which sorne of their functions are fully 
discontinuous. In general, the definition of such spaces which is suitable for a given problem, 
depends on the differential operator considered; in the case of the elliptic problems to be 
discussed later in this paper, such spaces are defined by BoS'(a,n)== HoS'(a l )Etl ... Etl HS (íl¡J, 

with s ~ O. Elements ti == {u 1, ... , uE 
} e RoS' (íl,n) are sequences of functions such that 

i u i E HS (a;), i =l, ...,E. For s ~ O, u E HO (a i ), i =1, ...,E, HS(ai)c HO(a;) and the 

sequence {ul, ... ,U
E 

} defines a unique function u e HO(a) with the property that ul o, =ui 
, 

i=l, ...,E. The mapping fJS(a,n)~HO(a), so defined, is referred as the natural 

immersion of BS(a,n) into HO(a). 

When Vi e H S (a¡)ands>1I2, then the trace of Vi belongs to H S
-

1I2 (daJ [18]. Let be 

Lif == da; nda j , then the traces on Lij of each pair Vi and v j are well-defined, and using this 

pair of traces, the following notation is introduced: 
v+ ==Trace of(vi

) (2.4a) 

when a í Hes on the positive side of Lif and 

v_ ==Trace of(v i
) (2.4b) 

otherwise. The jump ofu across Lij' is defined by 

(2.5a) 

and the average by 
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(2.5b) 

Observe that under the natural immersion HO(n):::> B$(n,n):::> H$(n}, and it can be shown 

that, when s is an integer, an element fI E B8 (n,n) belongs to H$ (0.), if and only if the 

jump of the normal derivatives up to order s -1 , vanish on 1::. 

3. Problems witb prescribed jumps and scope 

Herrera's unified theory of domain decomposition pos ses ses considerable generality, since it 
applies to a very general c1ass of boundary value problems for which jumps are prescribed in 
the internal boundary 1::. Given 0., the region of definition of the problem, and a partítion ofo. 
(or domain-decomposition) n={nW.. ,.QE}' let 1::=1::(n,n) be the internal boundary. 

Then, using a notation similar to that presented in [12], the general form of such boundary 
value problem with prescribedjumps (BVPJ) is 

(3.1a) 

(3.1b) 

and 
(3.1c) 

where the Bj's and h's are certain differential operators (the j's and k's run over suitable finite 

ranges ofnatural numbers) and un (uh, ...,u~), together with ud and u}; are given functions 

ofthe space oftrial functions. In addition, lo., gj and jk may be defined by Eq.(3.1). 

It must be emphasized that the scope of ,the general theory presented in this paper is quite 
wide, since they are applicable to any part~al differential equation or system of such equations 
which is linear, independently of its tyqe, Although every kind of equation has its own 
peculiarities. In particular, we would like tp mention explicitly the following: 

A.- A single equation 
1).- Elliptic 

i) Second Order 
ii) Higher-Order 

• Biharmonic 

2).- Parabolic 

i) Heat Equation 


3).- Hyperbolic 

i) Wave Equation 


4 




i 

ECCM-2001, Cracow, Poland 

B.- Systems of equations 

í) Stokes Problems : 
ii) Mixed Methods (RJvíart-Thomas) 
iii) Elasticity I 

4. Trefftz-herrera methods 

As mentioned in the Introduction, Tref~-Herrera methods were introduced in numerical 
analysis by Herrera and coworkers, and ~.t'dístinguishing feature is the use of specialized test 
functions for gathering the required info ation on L. Since the set of data that would define 
well-posed problems in each one of the ubdomains is not unique, it is necessary to defme 
which information will be 'sought' on Lf Once the sought information is defined, a spedal 
kind of Green's formulas (Green-Herrera formulas), formulated in Sobolev spaces of 
discontinuous functions, allow identi:fyinif necessary and sufficient conditions that the test 
functions must fulfill in order to have thej property of yielding precisely such information on 
L. Green-Herrera formulas are presented: in the first part of this Section and then Trefftz­
Herrera method is explained. These res41ts, in the form here presented, have remarkable 
generality since they can applied to la single equation or to systems of equations, 
independently of their type, as well ~s to problems with prescribed jumps and with 
discontinuous coefficients. 

To start, let .4 and ,[JI be a differentialoperator and its formal adjoínt, then there exists a 
vector-valued bilinear function Z2(u, w), which satisfies 

w.4u-u,¿*w=VeZ2(u,w), (4.1) 

It will also be assumed that there are bilinear functions 6'(u, w), 8(w,u), fJ(u, w) and 

~(w, u) , the first two defined on an and the last two on L ,such that 

z;>(u,w) el1'= 6'(u,w)-8(w,u), onan (4.2a) 

-[Z;>(u,w)]en fJ(u,w)-~(w,u), on L (4.2b) 

Applying the generalized divergence theQrem [6], this implies the following Green-Herrera 
formula [3,13,14]: 

Inw L u dx- Ian g'(u, w) dx- h: P(u, w) dx = 

.bu'¿*wd~-1e*(u,w)dX-l'R*(U,W}dX (4.3) 

Introduce the following notation: 

(Pu,w) = .b w'¿udx; (Q * u,w) .buL * wdx (4.4a) 

(Bu,w) = In a'(u,W)df; (C * U,w) = 1 e· (u,w)dx (4.4b) 
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(Ju,w) i {l(u,w)dx; (K * u,w) i ~ *(u,w)dx (4.4c) 

With these definitions, each one of P, B, J, Q*, C* and K*, are real-valued bilinear 
functionaIs defmed on [)I (Q)x.Dz(Q) and Eq. (4.3) can be written as 

((P-B-J)u, w) == ((Q*-C*-K *)u, w), V'(u, W)E D¡ (Q)xD2 (Q) (4.5) 

or more briefly 
P-B-J Q*-C*-K* (4.6) 

A weak formulation of the BVPJ is 

((P-B-J)u,w)==(Puo-Bu¡¡-Jur.,w), V'wED2 (Q) (4.7) 

When f, g and j, are defined by f == PUo.;··· g == Bua;··· j == Jur., this equation can also be 

written as 
(P-B-J)u == f - g- j; (4.8) 

or, in view ofEq.(4.6), 
(Q*-C*-K*)u == f - g- j; (4.9) 

Eqs. (4.8) and (4.9) supply two alternallive and equivalent variational formulations of the 
BVPJ. The first one is referred as the 'variational formulation in terms of the data of the 
prob/em " while the second one will be referred as the 'varia/lonal formulation in terms ofthe 
complementary information '. 

Notice that Eqs. (4.8) and (4.9), alternatív~ly, may be wrítten as 

«P-B-J)u, w>=< f - g- j;w>;"'V'WE D 2 (4.10) 

and 
«Q-C-K)*f¡,w>==<f-g- j;w>;"'V'WE D2 (4.11) 

respectively. These equations exhibít morf c1early their variational character. 
, 

Generally, the definitions of B and J d~pend on the kind of boundary conditions and the 
"smoothness criterion" ofthe specific prÓblem considered. For the case when the coefficients 
ofthe differential operators are continuou~, Herrera [3,14,15] has given very general formulas 
for J and K; they are: . 

;J(u,w)==-Z2([u],w)el1, and ~(w,u)==Z2(ü,[w]).l1; (4.12) 

By ínspection of Eqs. (4.4), it can be rec . gnized that the information about the solution UED 

is given by Q*u, in the interior of the sub egions Qi 0= l ....,E); it is given by C*u, in the outer 
boundary C)Q; and it is given by K*u, in t e internal boundary :E. A frrst step to derive Trefftz­
Herrera procedures, is to manipulate t e variational formulatíon in terms of the sought 
information of Eq.(4.9), in such a way as to leave ínformation in the internal boundary, 
exclusively. This requires elimínating Q u and K*u, in that equation. A weighting function 
possesses this ability if and only if Cw = and Qw O. Indeed, by virtue of Eq.( 4.11), it seen 

that 
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-<K*u, w>:=<f ig- j;W>;···'v'WE NQ nNc Cl\(O) (4.13) 

The information contained in K*u , will b~ referred as the "complemenray ínformation on E". 
Generally, this information when it is cotPplemented with the boundary data, is sufficient to 
define well-posed problems in the subdo~ains of the domain decomposítion. However, it can 
be seen through specific examples that it i~ more than what is needed to achieve thís goal and, 
to develop numerical methods of optimal¡efficiency, it is necessary to eliminate part of such 
informatíon. 

i 
The general procedure for carrying out $uch elimination consists in introducing a "strong 
decomposition" {S,R} of the bilinerr functional K (for a definition of strong 

decomposition, see [16]). Then, S and R ~e bilinear functionals and fulfill 
: K,= S + R (4.14) 

Then "lhe sought information" is define~ to be S*u, where u E DI is the solution of the 

BVPJ. In particular, a function ü E DI ¡s said to "contain the sought information" when 

S*ü=S*u. l' 

I 
An auxiliary concept, quite useful for fCllrmulating Trefftz-Herrera domain decomposition 
procedure, is the following. I 
Definitioo 4.1.- A subset of weighting flmctions, & c NQ nNc nNR , is said lo be TH-

complete for S*, when for any aE DI (O) , rne has: 

<s*a,w>po, 'v'WE&~S*a O; (4.15) 

Clearly, a necessary and sufficient conditi~ for the existence ofTH-complete systems, is that 
nNR be, itself, a TH-complete system. NQ nNc 

Theorem 4.1.· Let ti e N Q n Ne n N. be ~ system weighting fonctions, TH ·complete jor S', 

and lel u E DI (O) be lhe solution 01 the Br'PJ. Then, a necessary and sufficient condition for 

aE DI to contain lhe sought information, i that 

-< s'a, w~=< f -g- j, w>,···'v'WE &; (4.16) 
Proof.- The proof of this result is straight-fqrward. 

Theorem 4.1, supplies a very General tormUlation of Indirect Methods (or Trefftz­
Herrera Methods) of Dornaio Decompo~tioo which can be applied to any linear equation 
or system of such equations. When up f DI (n) is a function satisfying Pup =I and 

Bup =g, then Eq.(4.16) can be replaced by 

-<S*u,w>=-<S*qp,w>+<J(up-ul:)'w>; 'v'WE& (4.17) 

I 
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5. The elliptic second-order equation 

As an illustration, in this Section the methodology will be presented in detail in connection 
with the second-order differential equatiop of elliptic type, when the problem is defined in a 
space of an arbitrary number of dimensipns. The procedures are applicable to any kind of 
boundary conditions for which the problem is well-posed, but here only boundary conditions 
of Dirichlet type will be considered. 

Recall the notation i~troduced in Section F; O is a region and II =={O¡, ...,Od a partition of 

O. A function u E H 2(0) == H 2(0¡) ffi ... tH2(OE) is sought, such that 

.éu == -V. (~ • V u ~ + V • (º,) + cu = f Q> in Oi , i =1, ... , E (5.1) 

subjected to the boundary conditions 

inaO (5.2) 

and jump conditions 

[u] = JO :::= [UI;]; on I; (5.3) 

[~. Vu]. fl = } =[~. VUI;]. fl; onI; (5.4) 

Here, as it is usual when dealing with elliptic operators of second order, it will be assumed 
that g is coercive. AIso, it will be assu¡med that this problem possesses one and only one 

solution. The developments that follow! apply even if the coefficients of the differential 
operator are discontinuous. In the partic~lar case when the coefficients are continuous, the 
jump condition ofEq.(5.4), in the presenc~ of(5.3), is equivalent to 

[~) =[a;;J on l:, (5.5) 

I 

Define the bilinear functions . . 
g'(u, w) == u(ª" • Vw+b" w)and P(u, w) == lí{a. • Vu] -[u](a" • Vw+b" w),(5.6a) 

together with . • 
e(w,u) == w(ªn. Vu) and ~(w,u) == u[ª,.Vw]-[w](ª,. Vu-b"u), (5.6b) 

Ihe linear functionals g E D; and j E D; are defmed by the condition that Vw E D2 , one has 

g(w) == g'(u;p w) together with j(w) == P(u~:, w). 

The "complementary information" in this case, at every point of k, is made of u and 

_ª, • Vu + b"u. Ihis information, when it is complemented with the prescribed jumps on k, 
is more than what is required to define well-posed problems in the subdomains. Indeed, from 
the fact that 
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(5.7a) 

and 

(~ .Vu+bnut = ~ .V~+bnu+':[~ .Vu+bnu], 
2 

(~.VU+bnUL =~ .V~+bnu-':[~ .Vu+bnu] (5.7b) 
2 

• 
it is seen that when both u and ~.Vu+bnu are available, then u+, u_, (~.Vu+bnut 

and (~ .Vu+b"uL, are easily derived. However, either pair u+, u_ or (~.Vu+bnut, 

(~.Vu+b"uL, are sufficient to define well posed problems in the subdomains, as can be 

verified by inspection. As a matter of f/let when these two pairs are available on l;, there 
many other ehoices one can make to defme well-posed local problems. If one decides to 
define Diriehlet problems in each one of tbe subdomains, all what is neeessary to know is u+, . 
U_ on l; and it is enough to seek for u. Suitable defmitions of the operators S and R, are 

(Sw, v) =Ls(w,v)dx and (Rw,v) =L~(w,v)dx with 

. 
S(w,v) v[ª-,.Vw] and ~(w,v)=-[w](ªn. -q,v) (5.8) 

With this choice, a function w E (NQ n Ne n NR) if and only if 

,4*w -V.(~.Vw)-!>.Vw+cw= O; inni , i=l, ...,E (5.9) 

subjeeted to the boundary eonditions 

w = O; in an (S. lOa) 
and jump eonditions 

[w] = O; on L (5.lOb) 

In general, the eontinuity condition that is implied by Eq.(5.l0b) can only be fulfilled by 
funetions with support in the uníon of several subdomains of the original partition. Due to this 
faet the resulting method is an indireet-overlapping one. 

6. Direct methods 

Direet methods have be en explained in [2,7]. It is possible to apply two different approaches; 
one whieh is more direct and the other one which is less direct -in sorne sense it is onIy 'semi­
direct'-. In this Iatter one, the base funetions are used to impose a 'compatibility condition' 
from whieh the required infonnation on l; is obtained. In this manner a very general 
methodology whích subsumes Schwartz methods [8-10] has been derived [7]. This procedure 
handles only essential infonnation, so that the number ofdegrees of freedom ís mínimal. 
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The 'semi-direct' method has been developed for problems formulated in an arbitrary number 
of dimensions and handles problems with prescribed jumps and with discontinuous 
coefficients. It is based on an idea which is easy to explain in one dimensiono Thus, consider 
the one dimensional version of Eq. (5.1), with In == O, in an interval of the real lineo Let 

x¡ e ( Xi_1,X¡+l ) , then u ( Xi ) depends linearly on u ( X¡_l) and u ( X¡+l ). Indeed, 

u (Xi) = rp; (X¡ )u (Xi_1) + ep7 (X¡ )u (X¡+I ), and this equation constitutes a three-diagonal system 

of equations, whose coefficients can be obtained solving locally, by collocation, a pair of 
boundary value problems in the interval (X¡_I' X¡+l) : .t!ep; =.t!rp7 =O, subjected to 

rp; (xi-! ) = ep7 (X¡+I ) =1 and ep¡- (Xi+1) =ep7 (Xi_ 1) =O . 

The extension of this procedure to several dimensions was explained in [7] and requires the 
introduction of the concept of conjugate partitions. It was applied to the general elliptic 
equation of Section 5. 

7. TH-complete systems and numerical approximations 
Classical approaches for developing TH-complete systems are based on analytical methods 
and a thorough account may be found in a book by Begehr and Gilbert [17]. The function 
theoretic method was pioneered by Bergman [18] and Vekua [19], and further developed by 
Colton [20-22], Gilbert [23,24], Kracht-Kreyszig [25], and others. The author has supplied 
such systems for Stokes problem [26], Helmholtz equation (in [27] it is shown that a system 
of plane waves possesses that property) and biharmonic equation [28J. Other means of 
constructing them are using fundamental solutions and spectral methods, among others (see 
[17]). However, the most general procedures for constructing TH-complete systems are based 
on the numerical solution ofthe 'local' boundary-value problems. 

For illustration purposes the subdomains ofthe partition are assumed to be squares and let íl¡¡ 

be the union of four neighboring squares (Fig. 1), while I:1í will be the inner boundary 

separating the four subdomains from each other in the interior of íl¡¡. To be specific, the 

construction of TH-complete systems here will only be discussed in connection with the 

indirect-overlapping method for which the specialized test functions we (NQ (1 N e (1 N K) 

fulfill Eqs.(5.9) and (5.10). In particular, any we (NQ (1 Nc (1NK ) with support in íllí takes 

zero values on the external boundary aíllí of íl¡¡. Then, it can be seen that such test function 

• 
is uniquely determined by its average w, on I:1í . This establishes a one-to-one 

correspondence between HO (I:ij) and N Q (1 Ne (1 NK; given a function ':'e HO (I:¡¡) the 

construction of we (NQ (1Nc (1NK ) sueh that its restriction to I:1í is the given ':'e HO (I:Ií) 

requires solving four boundary value problems, one in each of the subdomains of the 
partition contained in íllí • 
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I 
I 
II (i,j)

----------T------­
I 
I 
I 
I 
I 
I 
I 
I ions 

On the other hand, a su I nNc nNK to be TH-complete 

is that for every Ly the set of restrictions to Ly of elements of span HO (Ly ). Thus, a 

procedure for constructíng TH -complete families of NQ n Ne n N K' wíth local support, ís the 

following: take a subset ¿ e HO (Ly) which spans HO (Lij ) , and for every element of E solve 

the four boundary value problems, one in each of the subdomains of 0y' defmed by the 

differential Eq.(5.9), zero values on the external boundary dOy of O;¡, and the additional 

boundary conditions which are implied by Eqs.(5.7a) together with the condition that w be 
the given function on Ly. 

Any numerical method can be applied, to solve the local boundary-value problems with 
prescribed jumps. Collocation is quite suitable [1] and has been used by the author and his 
collaborators in several instances. It must be mentioned that TH-complete systems for one 
dimensional problems (ordinary differential equations) are fmite. However, for 
multidimensíonal problems (partíal differential equations proper) such systems are infinite 
and in applications only a finite number can be applied. This introduces an additional error 
source and when carrying out the error analysis one has to account for inaccuracies due to the 
approximation of tbe differential equation and inaccuracies due to the truncation of tbe TH­
complete family. 

8. Conclusions 
This paper summarizes a general theory of domain decomposition metbods (DDM), recently 
proposed by the author, which subsumes many methods that have been reported in the 
literature, but which in addition implies certain number of other methods that have not yet 
been reported or researched. The theory classifies DDM into two quite broad groups: direct 
and indirect (or Trefftz-Herrera) methods. Most ofthe research carried out worldwide tbus far 
has be en devoted to direct methods while indirect methods have been introduced and 
developed, almost exc1usively, by Herrera and coworkers. It must be mentioned, in addition, 
that the 'semidirect' method briefly described in this paper, which subsumes Schwarz method, 
is also fairly new, it was introduced in [7]. 
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There are two main lines of application of the theory; one is to DDM 'per se', and the other 
one is con cerned with the development of new discretization methodologies. Because of the 
novel character of a good number of the results implied by the general theory of DDM, here 
presented, they should be researched further since several promising results have already been 
reported. For example, the methods derived from the theory have been implemented for 
elliptic equations in several dimensions using collocation and in this manner a non-standard 
collocation method (Trefftz-Herrera collocation) has been obtained which possesses many 
advantages over the usual method of orthogonal collocation on Herrnite cubics. In particular, 
a dramatic reduction in the number of degrees of freedom associated with each node is 
obtained. Indeed, in the standard method of collocation that number is two in one dimension, 
four in two dimensions and eight in three dimensions, while for some of the new algorithms 
they are one in all space dimensions. AIso, the bandwidth of the associated approximation 
matrix is also dramatically reduced. In addition, when the 'standard method' of collocation is 
applied to a differential operator which is symmetric and positive definite this property is not 
reflected in corresponding properties of the matrix of the global system of equations. On the 
other hand, such properties are reflected in corresponding properties of the global matrix, 
when TH-collocation is applied. 
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