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According to a general theory of domain decomposition methods (DDM), recently proposed by Herrera,
DDM may be classified into two broad categories: direct and indirect (or Trefftz-Herrera methods). This arti-
cle is devoted to formulate systematically indirect methods and apply them to differential equations in several
dimensions. They have interest since they subsume some of the best-known formulations of domain decom-
position methods, such as those based on the application of Steklov-Poincaré operators. Trefftz-Herrera
approach is based on a special kind of Green’s formulas applicable to discontinuous functions, and one of
their essential features is the use of weighting functions which yield information, about the sought solution,
at the internal boundary of the domain decomposition exclusively. A special class of Sobolev spaces is in-
troduced in which boundary value problems with prescribed jumps at the internal boundary are formulated.
Green’s formulas applicable in such Sobolev spaces, which contain discontinuous functions, are established
and from them the general framework for indirect methods is derived. Guidelines for the construction of
the special kind of test functions are then supplied and, as an illustration, the method is applied to elliptic
problems in several dimensions. A nonstandard method of collocation is derived in this manner, which pos-
sesses significant advantages over more standard procedures. c© 2002 Wiley Periodicals, Inc. Numer Methods
Partial Differential Eq 18: 296–322, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI
10.1002/num.10008
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I. INTRODUCTION

Domain decomposition methods have received much attention in recent years [1], mainly because
they supply very effective means for incorporating supercomputers in the numerical modeling
of continuous systems, because they are one of the most significant ways for devising parallel
algorithms that can benefit from multiprocessor computing. Some of the best known formulations
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of domain decomposition methods are based on the analysis of transmission conditions at sub-
domain interfaces, which in turn make use of Steklov-Poincaré operators. A recent, systematic
and well-organized account of such approach is contained in [2].

This article belongs to a series of articles in which a research on a general theory of domain
decomposition methods, proposed by Herrera in a previous article [3], is being reported. The
basic unifying concept of that theory, consists in interpreting domain decomposition methods as
procedures for obtaining information about the sought solution at the ‘‘internal boundary’’ (Σ),
which separates the subdomains from each other, sufficient for defining well-posed problems in
each one of the subdomains (to be referred as ‘‘local problems’’). In this manner, the solution can
be reconstructed by solving such kind of problems exclusively. There are two general procedures
that can be followed for gathering the information on Σ [3]; they are referred as ‘‘direct’’ and
‘‘indirect’’ (or Trefftz-Herrera) methods. In standard approaches, direct methods piece together,
just as ‘‘bricks,’’ the local solutions of the differential equations to build the global solution. A
slightly more innovative point of view is obtained when they are interpreted as procedures for
gathering information at the internal boundary, and when such point of view is adopted, direct
methods use the local solutions as an auxiliary tool to formulate compatibility conditions, to be
satisfied by the sought solution, from which the required information on Σ can be derived (see [4]).

An introductory presentation of direct methods from this point of view was given in [4], and
the present article is devoted to make an integrated exposition of indirect methods of domain de-
composition in their present state of development. Trefftz-Herrera formulation has special interest
because it subsumes the Steklov-Poincaré operators approach—thus, offering an alternative for
its derivation—and also, because it is quite general and systematic. One-dimensional problems
have already been treated in [5], by the indirect method, and the first multidimensional numerical
applications are presented here. The distinguishing feature of Trefftz-Herrera methods is the use
of specialized test (or weighting) functions in order to obtain the information on Σ. They stem
from the observation that when the method of weighted residuals is applied, the information
about the exact solution that is contained in the approximate one is determined exclusively by
the family of test functions that is used [6]. Then a special kind of weighting functions, which
have the property of yielding information at the internal boundary exclusively, is identified and
applied. Even more, among all the information that one might consider on Σ, a target information
is defined (to be referred as the ‘‘sought information’’) and families of test functions that yield
only the sought information are applied.

The development of indirect methods requires a framework suitable for identifying the infor-
mation yielded by different weighting functions, in which guidelines for constructing the special
kind of functions mentioned before can be established. The natural setting is based on Green’s
formulas, but the conventional approach to this matter is not suitable for application to domain
decomposition methods. Indeed, in the conventional approach [7], one considers the Green’s
formula ∫

Ω
wLudx =

∫
Ω

uL∗wdx, (1.1)

where Ω is a given region, and L and L∗ are a differential operator and its adjoint, respectively.
Then, given a family of functions {w1, . . . , wN}, any approximate solution, û, obtained with the
method of weighted residuals and this family as test functions, fulfills∫

Ω
wα(Lû − fΩ)dx =

∫
Ω

wα(Lû − Lu)dx =
∫

Ω
(û − u)L∗wαdx = 0. (1.2)

Thus, the conclusion is reached that the error u − û is orthogonal to the space spanned by the
family of functions {L∗w1, . . . ,L∗wN}. However, this result is of little use when dealing with
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domain decomposition methods. For them, it is necessary to have a theory that is applicable to
situations in which both trial and test functions may be discontinuous simultaneously. This was
done introducing a kind of Green’s formulas (‘‘Green-Herrera formulas’’) especially developed
for operators defined on discontinuous fields [6]. They are based on an abstract algebraic theory
possessing great generality, which was presented in a preliminary form in [8] and further developed
in [6] and [9]. It was later applied to the numerical treatment of differential equations [10–13]
and can be formulated in a special class of Sobolev spaces, in which their functions have jump
discontinuities [14].

Starting from a usual kind of variational formulation that involves the data of the problem—
and referred here as ‘‘the variational formulation in terms of the data,’’ a nonstandard kind of
variational formulation—here referred as ‘‘variational formulation in terms of the complemen-
tary information’’—is derived, when Green-Herrera formula is applied. This latter formulation
is a fundamental piece in Trefftz-Herrera domain-decomposition methods because they supply
effective means for analyzing the information contained in approximate solutions, which allows
the design of strategies for the construction of weighting functions that yield precisely the desired
information. In particular, the conditions that the weighting functions must fulfill in order to yield
the information on the internal boundary exclusively, are easily derived. However, in general, all
the information that one can get on Σ would be excessive for defining local well-posed problems,
and numerically, it may be inconvenient—at least, in some cases—to handle excessive informa-
tion. Thus, it is necessary to define the ‘‘target information’’ that will be sought in Σ. This choice
generally will be influenced by the fact that, given a differential operator, there are several kinds of
boundary conditions that can be imposed locally to define well-posed problems in the subregions,
and each choice leads to a different domain-decomposition algorithm. Using Green-Herrera for-
mulas, it is possible to establish a very systematic procedure for identifying the conditions that
the weighting functions must fulfill in order to yield the ‘‘sought information’’ and also to charac-
terize such information. This latter objective is accomplished by means of a variational principle,
which is shown to be a necessary and sufficient condition for the sought information. This princi-
ple constitutes a rather general—although, somewhat abstract—formulation of indirect methods,
which subsumes the Steklov-Poincaré approach.

When discontinuous functions are admitted as base functions, one is led to formulate a general
boundary value problem in which jumps of the sought solution, and its derivatives are prescribed
on the internal boundary of the partitions. Consideration of this problem is required in order to have
complete freedom in the use of the base functions (one might say, in more mathematical terms,
in order for the methodology to be ‘‘closed’’). The methodology obtained in this manner is very
systematic and possesses great generality because it is applicable to any boundary value problem
with prescribed jumps of linear differential equations or systems of such equations, which are
otherwise arbitrary. This includes operators of any type (elliptic, parabolic, and hyperbolic) and
with possibly discontinuous coefficients. Thus, it must be stressed that the variational principle
characterizing the sought information, presented in Section 4 and which constitutes the general
formulation of TH-domain decomposition, is applicable to this very general problem. The basic
theory and the ideas stemming from it have had already a good number of applications, among
others being localized adjoint methods (LAM), Eulerian-Lagrangian LAM (ELLAM [12, 15–
17]) (also the method of Begehr and Gilbert [18]), and a general method for solving diffraction
problems in elasticity and other fields [19].

In this article, the numerical implementation for elliptic equations in two and more dimensions
is discussed with considerable detail. It is appealing to use collocation for solving the local
problems, and in this manner a nonstandard collocation method is obtained that possesses many
advantages over the usual method of orthogonal collocation on Hermite cubics. In particular, an
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inconvenience of this latter method is that the matrices for the global problem are nonsymmetric,
even when the differential operator is symmetric; however, in the new methods the matrix of
the global problem is positive definite and symmetric when the differential operator is. Also, a
dramatic reduction in the number of degrees of freedom associated with each node is obtained.
Indeed, in the standard method of collocation, that number is two in one dimension, four in two
dimensions, and eight in three dimensions; for some of the new algorithms, however, there is
only one degree of freedom in all space dimensions. A final comment worth mentioning refers to
the fact that the treatment of problems with prescribed jumps is not more complicated than those
without them; as a matter of fact, the global matrix is exactly the same for both problems.

The article is organized as follows. Section 2 is devoted to Preliminary Notions and Notations.
The scope of the theory and the general boundary value problem with prescribed jumps, to
which the theory is devoted, is introduced in Section 3. Trefftz-Herrera domain decomposition is
systematically presented, in an abstract and very general manner, in Section 4. In Section 5, such
theory is applied to the elliptic equation of second order in an arbitrary number of dimensions.
TH-complete systems of test functions are discussed in Section 6. The numerical application of
the theory is discussed in Section 7, whereas Section 8 is devoted to conclusions.

II. NOTATION

Consider a region Ω, with boundary ∂Ω and a partition {Ω1, . . . ,ΩE} of Ω (or a ‘‘domain
decomposition’’: Fig. 1). Let

Σ ≡
⋃
i 6=j

(Ω̄i ∩ Ω̄j); (2.1)

then Σ will be referred as the ‘‘internal boundary’’ and ∂Ω as the ‘‘external (or outer) boundary.’’
For each i = 1, . . . , E, D1(Ωi) and D2(Ωi) will be two linear spaces of functions defined on Ωi;
then the spaces of trial (or base) and test (or weighting) functions are defined to be

D̂1(Ω) ≡ D1(Ω1) ⊕ · · · ⊕ D1(ΩE); (2.2)

FIG. 1. Partition of the domain Ω.
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and

D̂2(Ω) ≡ D2(Ω1) ⊕ · · · ⊕ D2(ΩE), (2.3)

respectively. In what follows, we write D̂1 and D̂2, instead of D̂1(Ω) and D̂2(Ω), in order to
simplify the notation. Functions belonging either to D̂1 and D̂2 are finite sequences of functions
belonging to each one of the subdomains of the partition. It will be assumed that for each i =
1, . . . , E, and α = 1, 2, the traces on Σ of functions belonging Dα(Ωi) exist, and the jump and
average of test or weighting functions is defined by

[u] ≡ u+ − u−; and u̇ ≡ (u+ + u−)/2, (2.4)

where u+ and u− are the traces from one and the other side of Σ. Here, the unit normal vector to
Σ is chosen arbitrarily, but the convention is such that it points towards the positive side of Σ.

The case when for each i = 1, . . . , E, and each α = 1, 2, Dα(Ωi) ≡ Hs(Ωi), with s ≥ 0 has
special interest and will be considered in Section 5. If one defines

ĤS(Ω) ≡ HS(Ω1) ⊕ · · · ⊕ HS(ΩE), (2.5)

then D̂1 = D̂2 ≡ ĤS(Ω). This is the special class of Sobolev spaces that was considered in [13].

III. SCOPE

It must be emphasized that the scope of the general theory presented in this article, ‘‘Herrera’s
unified theory of domain decomposition’’ [4, 5], is quite wide, because it is applicable to any
linear partial differential equation or system of such equations independently of its type. It han-
dles problems with prescribed jumps in the internal boundary, Σ, and discontinuous equation
coefficients, although every kind of equation has its own peculiarities. In particular, we would
like to mention explicitly the following:

A. A Single Equation

1. Elliptic

i) Second order

ii) Higher-order

• Biharmonic

2. Parabolic

i) Heat equation

3. Hyperbolic

i) Wave equation

B. Systems of Equations

i) Stokes Problems
ii) Mixed Methods (Raviart-Thomas)

iii) Elasticity
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The general form of the boundary value problem with prescribed jumps (BVPJ), to be consid-
ered, is

Lu = LuΩ ≡ fΩ; in Ωi, i = 1, . . . , E (3.1)

Bju = Bju∂ ≡ gj ; on ∂Ω (3.2)

and

[Jku] = [JkuΣ] ≡ jk; on Σ (3.3)

where the Bj’s and Jk’s are certain differential operators (the j’s and k’s run over suitable finite
ranges of natural numbers). Here, in addition, uΩ ≡ (u1

Ω, . . . , uE
Ω), u∂ and uΣ are given functions

belonging to D̂1 (i.e., ‘‘trial functions’’), which fulfill Eqs. (3.1), (3.2), and (3.3), respectively.
Moreover, fΩ, gj , and jk may be defined by Eqs. (3.1), (3.2), and (3.3), respectively.

In what follows, it will be assumed that the boundary conditions and jump conditions of this
BVPJ can be brought into the point-wise variational form:

B(u, w) = B(u∂ , w) ≡ g∂(w); ∀w ∈ D̂2 (3.4)

and

J (u, w) = J (uΣ, w) ≡ jΣ(w); ∀w ∈ D̂2 (3.5)

where B(u, w) and J (u, w) are bilinear functions defined point-wise.

IV. TREFFTZ-HERRERA APPROACH TO DDM

The description of Trefftz-Herrera approach to Domain Decomposition Methods, presented in the
Introduction is here recalled, because in this Section such methods are derived with more detail.
Subsection 4.1 is devoted to Green-Herrera formulas, which are applicable in function-spaces
whose members are generally discontinuous. Subsection 4.2 presents two variational formula-
tions: one in terms of the ‘‘data’’ of the problem—this variational principle is of the same kind
as those usually applied in the discussion of finite elements—and the other one is in terms of the
‘‘complementary information’’—this kind of principles is not usually considered in the numerical
treatment of partial differential equations. The ‘‘sought information in the internal boundary’’ is
included in the complementary information and by manipulation of this latter principle a varia-
tional principle characterizing the sought information is derived in Subsection 4.3. This yields a
rather general formulation, although somewhat abstract, of TH-domain decomposition.

A. Green-Herrera Formulas

To start, let L and L∗ be a differential operator and its formal adjoint; then there exists a vector-
valued bilinear function D(u, w), which satisfies

wLu − uL∗w ≡ ∇ · D(u, w). (4.1)

It will also be assumed that there are bilinear functions B(u, w), C(w, u),J (u, w), and K(w, u),
the first two defined on ∂Ω and the last two on Σ, such that

D(u, w) · n = B(u, w) − C(w, u); on ∂Ω (4.2)
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and

−[D(u, w)] · n = J (u, w) − K(w, u); on Σ. (4.3)

Generally, the definitions of B and J depend on the kind of boundary conditions and the ‘‘smooth-
ness criterion’’ of the specific problem considered [6, 8]. For the case when the coefficients of
the differential operators are continuous, Herrera [3, 6, 10, 12] has given very general formulas
for J and K, which fulfill Eq. (4.3); they are

J (u, w) ≡ −D([u], ẇ) · n, and K(w, u) ≡ D(u̇, [w]) · n. (4.4)

Applying the generalized divergence theorem [13], this implies the following Green-Herrera
formula [3, 8, 10]:∫

Ω
wLudx −

∫
∂Ω

B(u, w)dx −
∫

Σ
J (u, w)dx

=
∫

Ω
uL∗wdx −

∫
∂Ω

C∗(u, w)dx −
∫

Σ
K∗(u, w)dx. (4.5)

Introduce the following notation:

〈Pu, w〉 =
∫

Ω
wLudx; 〈Q∗u, w〉 =

∫
Ω

uL∗wdx; (4.6)

〈Bu, w〉 =
∫

∂Ω
B(u, w)dx; 〈C∗u, w〉 =

∫
∂Ω

C∗(u, w)dx; (4.7)

〈Ju, w〉 =
∫

Σ
J (u, w)dx; 〈K∗u, w〉 =

∫
Σ

K∗(u, w)dx. (4.8)

With these definitions, each one of P, B, J, Q∗, C∗, and K∗, are real-valued bilinear functionals
defined on D̂1 × D̂2, and Eq. (4.5) can be written as

〈(P − B − J)u, w〉 ≡ 〈(Q∗ − C∗ − K∗)u, w〉; ∀(u, w) ∈ D̂1 × D̂2 (4.9)

or more briefly

P − B − J ≡ Q∗ − C∗ − K∗. (4.10)

B. Variational Formulations of the Problem with Prescribed Jumps

A weak formulation of the BVPJ is

〈(P − B − J)u, w〉 ≡ 〈PuΩ − Bu∂ − JuΣ, w〉; ∀w ∈ D̂2 (4.11)

From now on, the following notation is adopted: u ∈ D̂1 will be a function that fulfills Eq. (4.11),
which is assumed to be unique. This equation can also be written as an equality between linear
functionals, if f, g, and j ∈ D∗

2 are defined by f ≡ PuΩ, g ≡ Bu∂ , and j ≡ JuΣ:

(P − B − J)u = f − g − j. (4.12)

This equation is equivalent to

(Q∗ − C∗ − K∗)u = f − g − j; (4.13)
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by virtue of Eq. (4.10). Thus, Eqs. (4.12) and (4.13) supply two different but equivalent variational
formulations of the BVPJ. The first one will be referred as the ‘‘variational formulation in terms
of the data,’’ whereas the second one will be referred as the ‘‘variational formulation in terms
of the complementary information’’ (this latter variational principle was introduced in [6] with
the title ‘‘variational formulation in terms of the sought information,’’ but, as will be seen, it is
more convenient to reserve such name for another formulation that will be introduced later in this
Section). Notice that Eqs. (4.12) and (4.13), alternatively, may be written as

〈(P − B − J)u, w〉 = 〈f − g − j, w〉; ∀w ∈ D̂2 (4.14)

and

〈(Q − C − K)∗u, w〉 = 〈f − g − j, w〉; ∀w ∈ D̂2 (4.15)

respectively. These equations exhibit more clearly their variational character.

C. Internal Boundary Information: Variational Formulations

A first step to derive Trefftz-Herrera procedures is to use the variational formulation in terms of
the complementary information of Eq. (4.13) to establish conditions that a weighting function
must fulfill in order to yield information on the internal boundary Σ, exclusively. By inspection of
Eq. (4.15), it is seen that such test functions must have the property of annihilating Q∗u and C∗u
in that equation. A weighting function possesses this ability if and only if Cw = 0 and Qw = 0,
because

−〈K∗u, w〉 = 〈f − g − j, w〉; ∀w ∈ NQ ∩ NC ⊂ D̂2. (4.16)

Observe that the left-hand side of Eq. (4.16) involves the complementary information on Σ,
exclusively, as desired. Generally, the complementary information on Σ, K∗u, is sufficient to
define well-posed problems in each one of the subdomains of the domain decomposition, when
the boundary data is added to it. However, it can be seen through specific examples that the
complementary information K∗u is more than what is essential to achieve this goal and handling
excessive information, in general, leads to handling too many degrees of freedom, which is
computationally inconvenient. Thus, to develop numerical methods of optimal efficiency, it is
necessary to eliminate part of such information. The general procedure for carrying out such
elimination consists in introducing a ‘‘strong decomposition’’ {S, R} of the bilinear functional
K (for a definition of strong decomposition, see [9]). Then, S and R are bilinear functionals and
fulfill

K ≡ S + R. (4.17)

Then the sought information is defined to be S∗u, where u ∈ D̂1 is the solution of the BVPJ. In
particular, a function ũ ∈ D̂1 is said to contain the sought information when S∗ũ = S∗u.

Let Ñ ⊂ D̂2 be defined by Ñ ≡ NQ ∩ NC ∩ NR. An auxiliary concept, quite useful for
formulating Trefftz-Herrera domain decomposition procedures, is the following (see [20]).

Definition 4.1. A subset of weighting functions, E ⊂ Ñ ≡ NQ ∩ NC ∩ NR, is said to be
TH-complete for S∗, when for any û ∈ D̂1, one has

〈S∗û, w〉 = 0, ∀w ∈ E ⇒ S∗û = 0. (4.18)

Clearly, a necessary and sufficient condition for the existence of TH-complete systems, is that
Ñ ≡ NQ ∩ NC ∩ NR be, itself, a TH-complete system.
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Theorem 4.1. Let E ⊂ Ñ be a system of TH-complete weighting functions for S∗, and let
u ∈ D̂1 be the solution of the BVPJ. Then, a necessary and sufficient condition for û ∈ D̂1 to
contain the sought information, is that

−〈S∗û, w〉 = 〈f − g − j, w〉; ∀w ∈ E . (4.19)

Proof. If u ∈ D̂1 is the solution of the BVPJ, one has

−〈S∗u, w〉 = 〈f − g − j, w〉; ∀w ∈ E . (4.20)

Hence,

−〈S∗(û − u), w〉 = 0; ∀w ∈ E , (4.21)

and, therefore, S∗û = S∗u.
Theorem 4.1, supplies a very General Formulation of Indirect Methods (or Trefftz-Herrera

Methods) of Domain Decomposition, which can be applied to any linear equation or system of
such equations. When uP ∈ D̂1 is a function satisfying PuP = f and BuP = g, then Eq. (4.19)
can be replaced by

−〈S∗û, w〉 = −〈S∗uP , w〉 + 〈J(uP − uΣ), w〉; ∀w ∈ E (4.22)

In applications, Eq. (4.22) determines the average of the solution and/or its derivatives on Σ. It is
applicable to any linear differential equation or system of such equations independently of its type
(elliptic, parabolic, or hyperbolic), including the case when the coefficients are discontinuous. In
particular, when the differential operator is elliptic symmetric and positive definite and the sought
information, S∗, is suitably chosen, the Steklov-Poincaré formulation can be derived from it.

D. The Symmetric Case

In this subsection it is assumed that D̂1 = D̂2 ≡ D̂, P = Q, B = C, and J = K. Then
Ñ ≡ NQ ∩ NC ∩ NR = NP ∩ NB ∩ NR, and it is further assumed that the bilinear functional
−〈S∗u, w〉 is symmetric and positive definite when ∀u, w ∈ Ñ . Even more, the hypotheses is
taken that given any u ∈ D̂, there is a ũ ∈ Ñ such that S∗ũ = S∗u. This latter hypotheses is
tantamount to assume existence of solution of a local boundary value problem, as can be seen
through specific examples. When this assumptions are fulfilled, it can be shown that the quadratic
functional −〈S∗û, û〉−〈f −g−j, û〉 attains its minimum over Ñ , at ũ ∈ Ñ , if and only if ũ ∈ Ñ
contains the sought information.

V. ELLIPTIC EQUATIONS

As an illustration, in this section the methodology will be presented in detail in connection with the
second-order linear differential equation of elliptic type, when the problem is defined in a space
of an arbitrary number of dimensions. The procedures are applicable to any kind of boundary
conditions for which the problem is well posed, but only boundary conditions of Dirichlet type
will be considered here.

Using the notions and notations introduced in Section 2, for each i = 1, . . . , E and each
α = 1, 2, it will be assumed that Dα(Ωi) ≡ H2(Ωi), so that D̂1 = D̂2 ≡ Ĥ2(Ω). Then the
boundary value problem with prescribed jumps to be considered is

Lu ≡ −∇ · (a · ∇u) + ∇ · (bu) + cu = fΩ (5.1)
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subjected to the boundary conditions

u = u∂ on ∂Ω, (5.2)

and the jump conditions

[u] = [uΣ] ≡ j0
Σ and [a · ∇u] · n = [a · ∇uΣ] · n ≡ j1

Σ; on Σ. (5.3)

Here, it will be assumed that L is coercive and that the BVPJ possesses one and only one solution.
When L is given by Eq. (5.1), the adjoint differential operator L∗ is

L∗w ≡ −∇ · (a · ∇w) − b · ∇w + cw, (5.4)

whereas

D(u, w) ≡ a · (u∇w − w∇u) + buw. (5.5)

For Dirichlet boundary conditions, a possible choice for B is

B(u, w) ≡ (an · ∇w)u. (5.6)

In such case, Eq. (4.2) implies

C∗(u, w) ≡ w(an · ∇u − bnu). (5.7)

Above an = a · n and bn = b · n. The developments that follow apply even if the coefficients
of the differential operator are discontinuous. In particular, when the coefficients are continuous,
the second of the jump conditions of Eq. (5.3), in the presence of the first one, is equivalent to[

∂u

∂n

]
=

[
∂uΣ

∂n

]
; on Σ. (5.8)

Define

J 0(u, w) ≡ −[u]( ˙a · ∇w + bw) · n and J 1(u, w) ≡ ẇ[a · ∇u] · n, (5.9)

together with

K0(w, u) ≡ u̇[a · ∇w + bw] · n and K1(w, u) ≡ −[w]( ˙a · ∇u) · n. (5.10)

Then, for the case of continuous coefficients, application of Eqs. (4.4) yields

J (u, w) ≡ J 0(u, w) + J 1(u, w), and K(w, u) ≡ K0(w, u) + K1(w, u). (5.11)

It is relevant to observe that, although in the above developments continuous coefficients were
assumed, when the definitions of Eqs. (5.6), (5.7), (5.9), (5.10), and (5.11) are adopted, Eqs.
(4.2)–(4.5) are fulfilled even if the coefficients of the differential operator L are discontinuous.
Then, it is not difficult to verify that as was mentioned before, the theoretical developments that
follow are applicable also to that case.

For the BVPJ defined by Eqs. (5.1)–(5.3), the variational formulations of Section 4, in ‘‘terms
of the data’’ and in ‘‘terms of the complementary information,’’ become available when the
definitions of Eqs. (4.6)–(4.8) are introduced in Eqs. (4.14) and (4.15). If the notations

〈J0u, w〉 ≡
∫

Σ
J 0(u, w) dx and 〈J1u, w〉 ≡

∫
Σ

J 1(u, w) dx; (5.12)
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〈K0w, u〉 ≡
∫

Σ
K0(w, u) dx and 〈K1w, u〉 ≡

∫
Σ

K1(w, u) dx (5.13)

are adopted, then J = J0 + J1 and K = K0 + K1, according to Eqs. (4.8). There are several
options for the definition of the ‘‘sought information’’ of Section 4. To illustrate them, some of
the choices that are possible are given next.

Choice 1. S = K and R = 0. For this choice, a function ũ ∈ Ĥ2(Ω) ‘‘contains the sought
information,’’ if and only if

˙̃u ≡ u̇ and ( ˙a · ∇ũ) · n = ( ˙a · ∇u) · n; on Σ, (5.14)

where u ∈ Ĥ2(Ω) is the solution of the BVPJ. In the case of continuous coefficients, the second
of these equations can be replaced by

∂̇ũ

∂n
=

∂̇u

∂n
.

A function w ∈ E ⊂ NQ ∩ NC ∩ NR ⊂ Ĥ2(Ω) fulfills

L∗w = 0, in Ω and w = 0, on ∂Ω (5.15)

Observe that no condition is imposed on Σ, and therefore the method can be applied in a nonover-
lapping domain decomposition.

Choice 2. S = K0 and R = K1. The sought information, in this case, is the average of the
function across Σ, i.e., ˙̃u ≡ u̇, and

−〈S∗ũ, w〉 ≡ −
∫

Σ

˙̃u[a · ∇w] · ndx. (5.16)

A function w ∈ E ⊂ NQ ∩ NC ∩ NR ⊂ Ĥ2(Ω), if and only if, it fulfills

[w] = 0, on Σ, (5.17)

in addition to satisfying Eq. (5.15). Because of this continuity condition that the specialized
test functions must satisfy, the application of this option of the method requires an overlapping
domain decomposition. For Choice 2, the local well-posed problems, can be formulated as follows:
assuming u̇, on Σ, has been determined, one can apply the identities

u+ = u̇ +
1
2

[u] and u− = u̇ − 1
2

[u]; on Σ (5.18)

to obtain the values of the sought solution on both sides of Σ, because the jump [u] is a datum. This
information, when it is complemented with the prescribed boundary values on the outer boundary,
in those elements for which this is required, is enough for formulating a Dirichlet boundary-value
problem in each one of the subdomains of the partition. Solving them, the solution u ∈ Ĥ2(Ω) is
recovered in the whole region Ω. On the other hand, for Choice 1, applying Eq. (5.16) together
with

(an · ∇u)+ = ( ˙an · ∇u) +
1
2

[an · ∇u];

and (an · ∇u)− = ( ˙an · ∇u) − 1
2

[an · ∇u], (5.19)
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one can obtain not only the values of the sought solution but also the fluxes an ·∇u, on both sides
of Σ. This information is redundant; indeed, if all of it were used to formulate local boundary-
value problems, they would be ill-posed. Numerically, this is a handicap of Choice 1, because
handling excessive information is in general inconvenient.

It is interesting to observe that due to Eq. (5.17), for Choice 2, any function of a TH-complete
system E ⊂ NQ ∩ NC ∩ NR ⊂ Ĥ2(Ω) belongs to C0(Ω), in spite of the fact that the sought
solution u ∈ Ĥ2(Ω) itself cannot be C0(Ω), when [uΣ] 6= 0, on Σ. Thus, the boundary value
problem with prescribed jumps has been solved using exclusively weighting functions taken from
a smaller space. Indeed, the original problem has been formulated on a space of fully discontinuous
functions [i.e., this is Wheeler’s C−1(Ω) space], whereas the specialized weighting functions are
sought on a space of continuous functions [i.e., a C0(Ω) space]. Observe also that in a C0 spline
formulation the functions of the space Ĥ2(Ω) are C0 from the start, and one necessarily has
[u] = 0, on Σ. Thus, the formulation here presented is more general, because one may consider
problems for which [u] 6= 0, on Σ, is prescribed. It is timely to mention that when implementing
numerically the corresponding algorithms, the global matrix is exactly the same for problems in
which the functions are smooth (zero jumps) and for problems with non vanishing jumps, as will
be seen in Section 7.

When b ≡ 0 and c ≥ 0, the differential operator L is symmetric and positive definite and the
following relations hold:

P ≡ Q, B ≡ C, J ≡ K (5.20)

Even more, for Choice 2, S = K0 = J1 and R = K1 = J0 and the notation Ñ ≡ NQ ∩ NC ∩
NR = NQ ∩ NC ∩ NK1 = NP ∩ NB ∩ NJ0 will be adopted. It can be verified that

−〈S∗û, w〉 ≡ −
∫

Σ
û[a · ∇w] · ndx ≡

∫
Ω

{∇w · a · ∇û + cwû}dx, (5.21)

when û ∈ Ñ ⊂ Ĥ2(Ω) and w ∈ Ñ ⊂ Ĥ2(Ω), so that −S∗ ≡ −K0∗ is a symmetric and positive
definite bilinear functional on Ñ ⊂ Ĥ2(Ω).

VI. TH-COMPLETE SYSTEMS OF TEST FUNCTIONS

Discussions of TH-complete systems, in the context of the general theory, may be found in
[4, 11]. Here attention will be restricted to the elliptic problem of Section 5, when the sought
information is the average u̇ across Σ (this is Choice 2 of Section 5). In this case the test functions
w ∈ Ñ ≡ NQ ∩ NC ∩ NR are continuous, vanish on ∂Ω, and fulfill

L∗w ≡ −∇ · (a · ∇w) − b · ∇w + cw = 0; in Ω − Σ, (6.1)

In what follows it will be assumed that the region Ω is a rectangular region and the partition is also
a rectangular one (Fig. 2). Then one can associate with each internal node (xi, yj), four rectangles
{Ω1

ij , . . . ,Ω
4
ij} (Fig. 3), and the notations Ωij , ∂Ωij , and Σij are adopted for the interior of the

union of the four rectangle closures, the boundary of Ωij , and the intersection Σ∩Ωij , respectively.
In a manner similar to what is done in direct decomposition methods (see Quarteroni and Valli
[2]), let Λ(Σij) be a space of functions defined on Σij and vanishing on ∂Ωij , defined by

Λ(Σij) ≡ {η ∈ H3/2(Σij)|η = v|Σij
for a suitable v ∈ H2

0 (Ωij)}.

Given any function wΣij
∈ Λ(Σij), one can associate uniquely a function wij ∈ Ñ whose support

is Ωij and its restriction to Σij is wΣij . Thus, in this manner a mapping of such subset of H3/2(Σij)
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FIG. 2. Partition of the domain Ω = [xmin, xmax] × [ymin, ymax] in rectangular Ex ×Ey elements, where
hx = xi − xi−1; i = 1, . . . , Ex and hy = yj − yj−1; j = 1, . . ., Ey .

into Ñ is defined. Let Er
i,j ⊂ H3/2(Σij) be a family of functions that spans H3/2(Σij), and let

Ei,j ⊂ Ñ be the transform of Er
i,j by means of the mapping just described. Define

E ≡
⋃

(i,j)∈S
Ei,j ⊂ Ñ , (6.2)

where S is the set of indexes for which (xi, yj) is a node of the partition. Then, it can be shown
that E ≡ ∪(i,j)∈SEi,j ⊂ Ñ is a TH-complete system.

In what follows, the local families of functions Er
i,j will be taken to be families of piecewise

polynomials defined on Σi,j . This kind of TH-complete families were first described in [11].
According to Fig. 3, Σij is the union of four intervals and using the numbering of internal
boundaries of Fig. 3, associated with each node (xi, yj), five classes of weighting functions will
be constructed:

FIG. 3. Subregion Ωij associated with the node (xi, yj).
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FIG. 4. Support of five classes of weighting functions.

Class 0. This is made of only one function, which is linear in each one of the four interior
boundaries between the rectangles of Fig. 4, and such that (xi, yj) = 1.

Class 1. The restriction to interval ‘‘1,’’ of Fig. 4 is a polynomial that vanishes at the end points
of interval ‘‘1.’’ There is one such polynomial for each degree (G) greater than one.

Classes 2–4. Classes 2, 3, and 4 are defined replacing interval ‘‘1’’ by the interval of the corre-
sponding number in the definition of Class 1.

The support of the function of Class ‘‘0,’’ is the whole square Ωij , whereas those associated
with Classes ‘‘1’’ to ‘‘4,’’ have as support the rectangles illustrated in Fig. 4. Observe that the set
of polynomials of degree one that vanish at the end points of the interval ‘‘1’’ is void, and the
same is true for the other intervals (‘‘2’’ to ‘‘4’’).

It must be observed that the above construction does not lead directly to a system of linearly
independent functions. This is due to the fact that each interval is counted twice in the above
construction. Thus, for example, the four rectangles illustrated in Fig. 3 are those associated with
the node which limits interval ‘‘1’’ by the left. When one considers the four rectangles associated
with the node that limits interval ‘‘1’’ by the right, then the same interval becomes interval ‘‘3.’’
However, a slight modification of the procedure just explained allows avoiding such repetition.

VII. THE NUMERICAL IMPLEMENTATION

As mentioned before, Theorem 4.1 constitutes a very general formulation, although somewhat
abstract, of Trefftz-Herrera method of domain decomposition and the different algorithms in
specific applications are derived directly from that theorem. However, Theorem 4.1 is an exact
result and if it were possible to apply it fully, an exact solution would be obtained. The approximate
nature of numerical solutions derived using TH-domain decomposition (TH-DD) stems from two
sources: one of them is due to the fact that generally the differential equation is only fulfilled in
an approximate manner and the second one comes from the fact that TH-complete systems for
problems in several dimensions are infinite, and in numerical implementations one can apply only
finite families of test functions. In particular, with reference to the families of functions introduced
in the previous section, one may construct algorithms in which only polynomials of degree less
or equal to G, where G is a given number, are kept in each one of the Classes ‘‘1’’ to ‘‘4.’’ In
general, each choice of G will give rise to a different kind of algorithm.

In this section the following notations are used: H0
i (x) is the one-dimensional Hermite cubic

polynomial with support in the interval (xi−1, xi+1), which takes the value 1 at node xi and zero
at nodes xi−1 and xi+1, and its first derivative is zero at all nodes xi−1, xi, and xi+1. Similarly,
H1

i (x) is the one-dimensional Hermite cubic polynomial with support in the interval (xi−1, xi+1),
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TABLE I. Definitions of functions Bβ
ij(x, y), β = 0, . . ., 4, where H0

i (x), H1
i (x), H0

j (y) and H1
j (y) are

Hermite cubic polynomials in x and y, respectively.

Ω1
ij Ω2

ij Ω3
ij Ω4

ij

B0
ij (x, y)

(
x−xi+1
xi−xi+1

)(
y−yj+1
yj−yj+1

) (
x−xi−1
xi−xi−1

)(
y−yj+1
yj−yj+1

) (
x−xi−1
xi−xi−1

)(
y−yj−1
yj−yj−1

) (
x−xi+1
xi−xi+1

)(
y−yj−1
yj−yj−1

)
B1

ij (x, y) H1
i (x)H0

j (y) 0 0 H1
i (x)H0

j (y)

B2
ij (x, y) H0

i (x)H1
j (y) H0

i (x)H1
j (y) 0 0

B3
ij (x, y) 0 H1

i (x)H0
j (y) H1

i (x)H0
j (y) 0

B4
ij (x, y) 0 0 H0

i (x)H1
j (y) H0

i (x)H1
j (y)

which takes the value zero at nodes xi−1, xi, and xi+1, and its first derivative takes the value 1 at
node xi and zero at the other nodes xi−1 and xi+1.

A. The Weighting Functions

In the numerical implementations reported in this article, two families of test functions were
constructed:

F ≡ {w0
ij , w

1
ij , w

2
ij} and

_F ≡ { _w0
ij ,

_w1
ij ,

_w2
ij ,

_w3
ij ,

_w4
ij}. (7.1)

Here, w0
ij ≡ _w0

ij is the unique function belonging to Class ‘‘0,’’ of Section 6, and _wα
ij is a

function of Class ‘‘α,’’ for each α = 1, . . . , 4, which fulfills, at interval ‘‘α,’’ the boundary
condition _wα

ij(x, yj) = H1
i (x), for α = 1, 3, and _wα

ij(xi, y) = H1
j (y), for α = 2, 4. In addition,

one defines

w1
ij(x, y) ≡ _w1

ij(x, y) + _w3
ij(x, y) and w2

ij(x, y) ≡ _w2
ij(x, y) + _w4

ij(x, y). (7.2)

It can be seen that the supports of w1
ij and w2

ij are the whole rectangle Ωij , and they are C1(Ωij)
and fulfill the conditions w1

ij(x, yj) = H1
i (x) at the interval xi−1 ≤ x ≤ xi+1 together with

w2
ij(xi, y) = H1

j (y) at the interval yj−1 ≤ y ≤ yj+1.
The family

_F was first constructed, and the family F was then derived by application of
Eq. (7.2). The family

_F was built by solving local boundary value problems in each one of
the subregions {Ω1

ij ,Ω
2
ij ,Ω

3
ij ,Ω

4
ij}, separately. This was done introducing a set of functions

{B0
ij , B

1
ij , B

2
ij , B

3
ij , B

4
ij}, which fulfills the boundary conditions, and adding to it a linear com-

bination of a family of functions {N1
ij , N

2
ij , N

3
ij , N

4
ij}, which vanish on the boundary of each one

of the subregions {Ω1
ij ,Ω

2
ij ,Ω

3
ij ,Ω

4
ij}, in order to fulfill the differential equation. At each one of

the four rectangles the local differential equations were solved using orthogonal collocation at
four Gaussian points.

The functions {B0
ij , B

1
ij , B

2
ij , B

3
ij , B

4
ij} and {N1

ij(x, y), . . . , N4
ij(x, y)} have different expres-

sions in each one of those rectangles; they are given in Tables I and II.
The general expression for functions of family

_F is (for α = 0, . . . , 4):

_wα
ij(x, y) = Bα

ij(x, y) +
4∑

β=1

Cαβ
ij Nβ

ij(x, y), (7.3)

where the coefficients Cαβ
ij are piecewise constant in Ωij (Fig. 3), generally taking different

values at each one of the rectangles {Ω1
ij ,Ω

2
ij ,Ω

3
ij ,Ω

4
ij}. They were obtained solving the system
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of collocation equations

4∑
β=1

Cαβ
ij L∗Nβ

ij(x
p, yp) = L∗Bα

ij(x
p, yp); p = 1, . . . , 4. (7.4)

Generally, for nodes on the outer boundary ∂Ω, some of the functions of the family F do not
vanish on ∂Ω and therefore do not belong to Ñ = NQ∩NC ∩NR and cannot be used as weighting
functions when applying the variational principle of Eq. (4.19).

B. The Base Functions

With respect to the base functions to be applied, except for the fact that their number has to be
equal to that of weighting functions, there is considerable freedom of choice since they need only
be defined on Σ. However, it is frequently advantageous to use the restriction of the test functions
to the internal boundary Σ as base functions; in particular, in the symmetric and positive definite
case this leads to symmetric and positive matrices, a fact that is specially advantageous when
iterative methods are applied to solve the global system of equations. When the base functions
are chosen in this manner, the general expression for the approximate solution of the BVPJ to be
used on Σ is

˙̃u(x, y) =
∑

(k,l)∈η

NF−1∑
ν=0

Uν
klw

ν
kl(x, y) +

∑
(r,s)∈η∂

u∂rsB
0
rs(x, y)

+
∑

(k,l)∈ηI

σ

2
[uΣ]klB

0
kl(x, y). (7.5)

Here, η is the collection of nodes for which the set of weighting functions, which vanish identically
on ∂Ω, is not void; η∂ is the set of nodes lying on the external boundary but excluding the nodes at
the corners; ηI is the set of internal nodes; and σ is the sign of the side of the internal boundary Σ. In
addition, u∂rs = u∂(xr, ys) and NF is the number of functions associated with the corresponding
node.

C. The Algorithms

The algorithms that were developed in the work reported in this article, stem from direct application
of the variational principle of Eq. (4.19) with Choice 2 of Section 5. According to Eq. (5.16), one
has

−
∫

Σ
u̇[n · a · ∇w]dx =

∫
Ω

wfΩdx −
∫

∂Ω
u∂n · a · ∇wdx

+
∫

Σ
j0
Σ

˙(n · a · ∇w + bnw)dx −
∫

Σ
j1
Σẇdx, ∀w ∈ E ; (7.6)

TABLE II. Definitions of functions Nβ
ij(x, y), β = 1, . . ., 4, where H1

i (x) and H1
j (y) are Hermite cubic

polynomials in x and y, respectively.

Ω1
ij Ω2

ij Ω3
ij Ω4

ij

N1
ij(x, y) H1

i (x)H1
j (y) H1

i−1(x)H1
j (y) H1

i−1(x)H1
j−1(y) H1

i (x)H1
j−1(y)

N2
ij(x, y) H1

i+1(x)H1
j (y) H1

i (x)H1
j (y) H1

i (x)H1
j−1(y) H1

i+1(x)H1
j−1(y)

N3
ij(x, y) H1

i (x)H1
j+1(y) H1

i−1(x)H1
j+1(y) H1

i−1(x)H1
j (y) H1

i (x)H1
j (y)

N4
ij(x, y) H1

i+1(x)H1
j+1(y) H1

i (x)H1
j+1(y) H1

i (x)H1
j (y) H1

i+1(x)H1
j (y)
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Applying the expression for the approximate solution ˙̃u(x, y) of Eq. (7.5), the global system of
equations is derived:

Mµν
ijklU

ν
kl = Fµ

ij ; (k, l) and (i, j) ∈ η, µ, ν = 0, . . . , NF − 1 (7.7)

where the matrix of the system is given by

Mµν
ijkl = −

∫
Σ

wν
kl[n · a · ∇wµ

ij ]dx, (7.8)

and the right hand side is

Fµ
ij =

∫
Ω

wµ
ijfΩdx −

∫
∂Ω

u∂n · a · ∇wµ
ijdx +

∑
(r,s)∈η∂

u∂rs

∫
Σ

B0
rs[n · a · ∇wµ

ij ]dx

+
∫

Σ
j0
Σ

˙(n · a · ∇wµ
ij + bnwµ

ij)dx −
∫

Σ
wµ

ijj
1
Σdx +

∑
(k,l)∈ηI

σ

2
[uΣ]kl

∫
Σ

B0
kl[n · a · ∇wµ

ij ]dx

(k, l) y (i, j) ∈ η, µ, ν = 0, . . . , NF − 1 (7.9)

In the work reported in this article two algorithms were developed and tested:

Algorithm I. The family of test functions contained only one member: w0
ij associated with each

internal node. This leads to an algorithm in which only one degree of freedom is associated with
each internal node. Even more, the global matrix is nine-diagonal, and when so is the differential
operator, symmetric and positive definite (this corresponds to b ≡ 0 and c ≥ 0).

Algorithm II. The complete family F of three functions (or less, at those nodes in which some
of the functions of this family do not satisfy the required zero boundary condition on the external
boundary) was applied at each node, including boundary nodes. This leads to an algorithm in
which three, or less, degrees of freedom are associated with each node. Even more, the global
matrix is block nine-diagonal and, when so is the differential operator, symmetric and positive
definite (this corresponds to b ≡ 0 and c ≥ 0). The blocks are 3 × 3.

D. The Numerical Experiments

The numerical experiments that were performed consisted in applying the Algorithms I and II, of
Subsection 7.3, for solving the BVPJ Eqs. (5.1)–(5.3), subjected to Dirichlet boundary conditions.
The examples treated correspond to several choices of the coefficients in Eq. (5.1), which are given
in Table III. The analytical solutions are given in Table IV, for each one of them. In all cases the
domain of definition was the unit square [0, 1]× [0, 1], except for Example 2 in which the domain
of definition of the problem was the square [1, 2]× [1, 2]. The boundary values that were imposed
were those which are implied by the analytical solutions. Only in Examples 6 and 7 the jumps
imposed were different from zero, and for these latter examples, they are given in Table IV.

The numerical results are summarized in Figs. 5–11. Each one of the examples was solved in
a uniform rectangular partition (E = Ex = Ey) of the domain (Fig. 2) using Algorithm I and,
subsequently, Algorithm II, for which the weighting functions are piecewise linear and piecewise
cubic, respectively, on Σ. The convergence rate of the error—measured in terms of the norm
‖ ‖∞—is O(h2) and O(h4), respectively, as shown in those figures.
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TABLE III. Coefficients and right-hand term of the examples treated.

Example a b c fΩ

1 a11 = a22 = 1 b1 = b2 = 0 1 (1 −x2 − y2)exy

a12 = a21 = 0
2 a11 = a22 = xy b1 = b2 = 0 0 0

a12 = a21 = 0
3 a11 = 1 +x2 b1 = b2 = 0 0 6(y2 − x2)

a22 = 1 +y2

a12 = a21 = 0
4 a11 = a22 = 1 b1 = b2 = 0 0 −2(4π)2 cos(4πx)sin(4πy)

a12 = a21 = 0
5 a11 = 1 +x2 b1 = y− 2, 2(x + y) −(x4 + y4)exy

a22 = 1 +y2 b2 = x− 2
a12 = a21 = 0

6 a11 = a22 = 1 b1 = b2 = 1 0 0
a12 = a21 = 0

7 a11 = a22 = b1 = b2 = 0 1 (1 −x2 − y2)exy; 0 ≤ y ≤ 1
2

=

{
1; 0 ≤ y ≤ 1

2
4; 1

2 < y ≤ 1
a12 = a21 = 0 (1 − 4x2− 4y2)exy; 1

2 < y ≤ 1

TABLE IV. Analytic solution for each one of the examples.

Example Exact solution

1 exy

2 x2 − y2

3 x2 − y2

4 cos(4πx)sin(4πy)
5 exy

6 ex + ey− 2; y < 1
2

ex + ey; y = 1
2

ex + ey+ 2; y > 1
2

with jump conditions:
j0
Σ(x, 0.5) = 4; x ∈ [0, 1]

7 exy

with jump conditions:
j1
Σ(x, 0.5) = 3xex/2; x ∈ [0, 1]
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FIG. 5. Example 1. Convergence rate of Trefftz-Herrera collocation method using linear and cubic weighting
functions.
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FIG. 6. Example 2. Convergence rate of Trefftz-Herrera collocation method using linear and cubic weighting
functions.
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FIG. 7. Example 3. Convergence rate of Trefftz-Herrera collocation method using linear and cubic weighting
functions.
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FIG. 8. Example 4. Convergence rate of Trefftz-Herrera collocation method using linear and cubic weighting
functions.
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FIG. 9. Example 5. Convergence rate of Trefftz-Herrera collocation method using linear and cubic weighting
functions.
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FIG. 10. Example 6. Convergence rate of Trefftz-Herrera collocation method using linear and cubic
weighting functions.
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FIG. 11. Example 7. Convergence rate of Trefftz-Herrera collocation method using linear and cubic
weighting functions.
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VIII. CONCLUSIONS

In the general theory of domain decomposition methods, introduced by Herrera et al. in previous
articles [3, 4], two broad classes of procedures were identified: direct and indirect, or Trefftz-
Herrera, methods. In the present article, this latter kind of method has been presented in a more
complete and systematic manner than in previous publications. As it has been exhibited here,
the theory of indirect methods is quite systematic and possesses outstanding generality. One
important feature of indirect methods is that they subsume the Steklov-Poincaré approach, as
has been indicated here and will be discussed more thoroughly elsewhere. When the numerical
procedure that is used for producing the local solutions is collocation, a nonstandard method of
collocation is obtained that possesses several attractive features. Indeed, a dramatic reduction in
the number of degrees of freedom associated with each node is obtained: in the standard method
of collocation that number is two in one dimension, four in two dimensions, and eight in three
dimensions, whereas for some of the new algorithms they are only one in all space dimensions,
which is due to the relaxation in the continuity conditions required by indirect methods. Also, the
global matrix is symmetric and positive definite when so is the differential operator, whereas in the
standard method of collocation, using Hermite cubics, this does not happen. In addition, it must be
mentioned that the boundary value problem with prescribed jumps at the internal boundaries can
be treated as easily as the smooth problem, i.e., that with zero jumps, because the solution matrix
and the order of precision is the same for both problems. It must be observed also that, when
the indirect method is applied, the error of the approximate solution stems from two sources: the
approximate nature of the test functions and the fact that TH-complete systems of test functions,
which are infinite for problems in several dimensions, are approximated by finite families of such
functions. In particular, when Hermite cubics are used to approximate the local solutions, in the
problems treated in this article, the error is O(h4), if the test functions are piecewise cubic on
Σ, and it is O(h2) when the test functions are only piecewise linear, on that interior boundary.
Finally, the construction of the test functions is quite suitable to be computed in parallel.

The authors acknowledge the valuable help given by Gerardo Zenteno and Luis Ochoa in different
aspects of the development presented in this article.
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