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1. Unified Theory of Domain Decomposition Methods

I. Herrera1

1. Introduction. Domain Decomposition Methods (DDM) have been derived
by Herrera using a unifying concept, which consists in viewing DDM as procedures for
gathering information at the internal boundary (Σ) of a partition, sufficient for defining
well-posed problems at each one of its subdomains. Two broad categories of Domain
Decomposition Methods are identified in this manner: ’direct’ and ’indirect (or Trefftz-
Herrera)’ methods. Direct methods are usually understood as procedures for putting
together local solutions, just as bricks, to build the global solution. However, for direct
methods the point of view adopted by the unified theory, here presented, is different:
the local solutions are used, as means for establishing compatibility relations that the
global solution of the problem considered must fulfill. In Trefftz-Herrera methods,
on the other hand, local solutions are used in an indirect manner; as specialized test
functions with the property of supplying information on Σ, exclusively. Important
features of Herrera’s unified theory are the use, throughout it, of ”fully discontinuous
functions” and the treatment of a general boundary value problem with prescribed
jumps. The generality of the resulting theory is remarkable, because it is applicable
to any partial (or ordinary) differential equation or system of such equations, which
is linear, independently of its type and with possibly discontinuous coefficients. The
developments that have been carried out, thus far in this framework, have implications
along two broad lines: as tools for incorporating parallel processing in the modeling
of continuous systems and as an elegant and efficient way of formulating numerical
methods from a domain decomposition perspective. In addition, the theory supplies
a systematic framework for the application of fully discontinuous functions in the
treatment of partial differential equations.

This paper is part of a sequence of papers, contained in these Proceedings, devoted
to present, and further advance, this unified theory of Domain Decomposition Methods
(DDM) and some developments associated with it. DDM have received much attention
in recent years2, mainly because they supply very effective means for incorporating
parallel processing in computational models of continuous systems. Another aspect
that must be stressed is that it is useful to analyze numerical methods for partial
differential equations from a domain-decomposition perspective, since the ideas related
to domain decomposition are quite basic for them. Indeed, developing numerical
procedures as accurate as desired in small regions is an easy task that can be performed
by many numerical schemes and, once this has been done, the remaining problem is
essentially the same as that of Domain Decomposition Methods. In this respect, it is
useful to recall the main objective of DDM:

Given a domain Ω and one of its partitions (Fig. 1.1), to obtain the solution
of a boundary value problem defined on it (the ’global problem’), by solving problems
formulated on the subdomains of the partition (the ’local problems’), exclusively. In
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Figure 1.1: Partition of the domain Ω

what follows the subdomains of the partition will be denoted by Ωi(i = 1, ..., E) and
the internal boundary, which separates the subdomains from each other, will be Σ.

Herrera has proposed recently a unified theory of DDM [15],[14], in which most of
the known methods may be subsumed, supplying more general formulations of them
and hinting new procedures that should be investigated in the future. The sequence of
papers mentioned above, intends to present briefly such theory in its different aspects.
The present paper contains an exposition of the unified theory. Trefftz-Herrera Method
is given in [17], while direct methods are described in [9]. Applications to elliptic
equations are presented in [6],[22] and [5] -second order equations are treated in [6]
and the biharmonic equation in [5]-.

2. Some Unifying Concepts. Herrera’s theory is formulated in function spaces
whose elements are generally discontinuous, and the theory supplies systematic pro-
cedures for applying discontinuous functions in the numerical treatment of partial
differential equations. Such function spaces have the following general form:

D̂ (Ω) ≡ D (Ω1) ⊕ ... ⊕ D (ΩE) ; (2.1)

If u ∈ D̂ (Ω), then u ≡ (u1, ..., uE) where ui ∈ D (Ωi), i = 1, ..., E. Generally, when
variational formulations are considered, as in the theory of indirect methods, two such
spaces are introduced; namely, the space of trial or base functions D̂1 (Ω) and the space
of test or weighting functions D̂2 (Ω). When D (Ωi), i = 1, ..., E, are Sobolev spaces,
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a special kind of Sobolev space, Ĥ
s (Ω), is obtained: Ĥ

s (Ω) ≡ H
s (Ω1)⊕ ...⊕H

s (ΩE).
Of course, more complicated combinations are possible.

In addition, the theory deals with a very general boundary value problem, the
Boundary Value Problem with prescribed Jumps (the BVPJ), in which, in addition to
boundary conditions on the external boundary, ∂Ω, jumps are prescribed across the
internal boundary Σ. And it is also applicable when the coefficients of the differential
operators are discontinuous across Σ. The general BVPJ considered by the theory is
type-independent and has the form

Lu = fΩ; in Ωi i = 1, ..., E (2.2)

Bju = g∂j ; on ∂Ω (2.3)

[Jku] = jΣk; on Σ (2.4)

Here L is a differential operator of any type; in particular it can be elliptic, hy-
perbolic or parabolic. Furthermore, it can be vector-valued and therefore the theory
includes systems of equations and not just a single equation. The solution of the
BVPJ will be denoted by u ≡ (u1, ..., uE). In this setting, the objective of Domain
Decomposition Methods is to find ui ∈ D (Ωi), for i = 1, ..., E. The unified theory is
based on the following unifying principle:

Domain Decomposition Methods are procedures for gathering information, on the
internal boundary Σ, sufficient for defining well-posed local problems in each one of
the subdomains. Then it is possible to reconstruct the solution in the interior of the
subdomains, ui ∈ D (Ωi), for i = 1, ..., E by solving local problems exclusively.

3. The Sought Information. The information that one deals with, when for-
mulating and treating partial differential equations (i.e., the BVPJ), is classified in
two broad categories: ’data of the problem’ and ’complementary information’. In turn,
three classes of data can be distinguished: data in the interior of the subdomains
of the partition (given by the differential equation, which in the BVPJ is fulfilled
in the interior of the subdomains, exclusively), the data on the external boundary
(Bju, on ∂Ω) and the data on the internal boundary (namely, [Jku], on Σ). The
complementary information can be classified in a similar fashion: the values of the
sought solution in the interior of the subdomains (ui ∈ D (Ωi), for i = 1, ..., E); the
complementary information on the outer boundary (for example, the normal deriva-
tive in the case of Dirichlet problems for Laplace’s equation); and the complementary
information on the internal boundary Σ (for example, the average of the function and
the average of the normal derivative across the discontinuity for elliptic problems of
second order [6]). In the unified theory of DDM, a target of information, which is
contained in the complementary information on Σ, is defined; it is called ’the sought
information’. It is required that the choice of the sought information fulfills the fol-
lowing assumption:

when ’the sought information’ is complemented with the data of the problem, there
is sufficient information available for defining well-posed problems in each one of the
subdomains of the partition.
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In general, however, the sought information may satisfy this property and yet be
redundant, in the sense that if all of it is used simultaneously together with the data
of the problem, ill-posed problems are obtained. Consider for example, a Dirichlet
problem of an elliptic-type second order equation (see [6]), for which the jumps of
the function and of its normal derivative have been prescribed. If for such problem
the sought information is taken to be the average of the function -i.e., (u+ + u−) /2-
, and the average of the normal derivative -i.e., 1

2∂ (u+ + u−) /∂n, on Σ-, then it
may be seen that it contains redundant information. Indeed, u+ = 1

2 (u+ + u−) +
1
2 (u+ − u−), u− = 1

2 (u+ + u−) − 1
2 (u+ − u−), and a similar relation holds for the

normal derivatives. Therefore, if the ’sought information’ and the ’data of the problem’
are used simultaneously, one may derive not only the value of the BVPJ solution on the
boundary of each one of the subdomains, but also the normal derivative, at least in a
non-void section of those boundaries. As it is well known, this is an ill-posed problem,
because Dirichlet problem is already well-posed in each one of the subdomains. Thus,
the sought information contains redundant information in this case.

Generally, in the numerical treatment of partial differential equations, efficiency
requires eliminating redundant information. This fact motivates the following defini-
tion:

The sought information is ’optimal’ when there is a family of well-posed problems -
one for each subdomain of the partition- which uses all the sought information, together
with the data of the BVPJ.

Analysis of existing methods reveals that there are some for which the sought
information is optimal and others for which this is not the case. In general, except for
the simple case of first order equations, methods for which the sought information is
optimal are overlapping.

4. Direct and Indirect Methods. There are two main procedures for gather-
ing the sought information on Σ: ’direct’ and ’indirect (or Trefftz-Herrera)’ methods.
Both of them derive the sought information, on Σ, from compatibility conditions that
the global solution of the BVPJ must satisfy locally and the local solutions are applied
precisely for deriving such compatibility conditions. The global system of equations,
for the sought information, is constructed in this manner. Trefftz-Herrera methods
were introduced in numerical analysis by Herrera et al. [10], [16], [11], [4], [18], [12],
[13] and [20], and its distinguishing feature is the use of specialized test functions which
have the property of yielding any desired information on Σ. The guidelines for the
construction of such weighting functions is supplied by a special kind of Green’s for-
mulas (Green-Herrera formulas), formulated in spaces of fully discontinuous functions
[10],[16],[18], which permit analyzing the information on Σ, contained in approximate
solutions. Using Green-Herrera formulas it has been possible to give a very general
formulation of Indirect Methods in terms of a variational principle possessing great
generality. This is Eq. (?) of reference [6](see also [20]), which corresponds to an
Invited Plenary Talk of this Conference that was devoted to a full description of
Trefftz-Herrera Methods and is contained in these Proceedings.

Conventional descriptions of Direct Methods present them as procedures for as-
sembling, just as bricks, local solutions in order to build the global one. When these
methods are formulated using the unified theory approach, direct methods derive the
sought information, on Σ, from compatibility conditions that the global solution of
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the BVPJ must satisfy locally [9] and the local solutions are applied precisely for
deriving such compatibility conditions. An important difference between direct and
Trefftz-Herrera methods is that in the latter local solutions of equations formulated in
terms of the adjoint differential operator are used, while in the former such equations
are formulated in terms of the original differential operator.

To finish this Section some general remarks are in order. In the methods of the
unified theory the only information that is obtained when solving the global problem
refers to information on the internal boundary Σ and no information at all is obtained
in the interior of the subdomains. If such information is desired, it can be derived
solving the well-posed local problems that are obtained in the manner explained before.
When the unified theory is applied as a discretization procedure, the process described
above for deriving the solution in the interior of the subdomains of the partition, which
can be carried out by any numerical method, is referred as ’optimal interpolation’.
This is in agreement with, and supplements, the nomenclature that has been used in
some past work, in which the specialized test functions that supply information at the
internal boundary exclusively, are referred as optimal test functions [3].

5. General Conclusions. An elegant framework for Domain Decomposition
Methods, which is quite general and simple, has been presented. The generality of
the methodologies must be stressed, since they are applicable to any linear differential
equation, or system of such equations and to problems with prescribed jumps and with
discontinuous coefficients. In addition, the theory supplies systematic procedures for
applying discontinuous functions in the numerical treatment of partial differential
equations. Even more, its applicability is type-independent. Thus, it is not only
applicable to elliptic equations, but also to hyperbolic and parabolic ones.

Thus far, DDM have been mainly applied as a tool for parallelizing numerical mod-
els of continuous systems [21]. However, Herrera’s Unified Theory permits developing
wide classes of numerical methods with many attractive features [20]. In addition, we
claim that this theory subsumes most of the existing methods of domain decomposi-
tion. Using its framework Schwarz and Steklov-Poincaré methods were incorporated
in this framework in [19] and [20], respectively, while Mixed Methods were derived in
[18]. The theory also implies wide generalizations of the Projection Decomposition
Method [1]. We suspect that the capacity of using fully discontinuous functions sys-
tematically -and the foundations of such capacity is one of the contributions of the
theory- permits eliminating Lagrange multipliers in many instances and that it also
has a bearing on partitions of unity and its applications. This, however, remains to be
shown. Other subjects that should be investigated in the future are the implications
of the unified theory on Mortar [2] and FETI methods [7],[8].
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