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Abstract

This article is offered to honor Professor George F. Pinder. Its technical contents were motivated by an Eulerian–Lagrangian

method that was recently proposed by him and his collaborators. Two one-node-collocation algorithms, which may be used to

advance that method are presented. Although they are here discussed for 1-D problems only, one of them has already been gen-

eralized to problems in several space variables. Thus, this paper essentially generalizes the above mentioned Eulerian–Lagrangian

method of Pinder et al. to problems in several dimensions. Also, the results presented in this paper have a wider interest in water

resources studies because they apply to advection diffusive transport processes in general. The methodology used to develop the new

algorithms is a unified theory of domain decomposition methods (DDM), recently introduced by the authors and which owes much

to George F. Pinder. The results reported in the present paper illustrate, by the way, its application and power.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The subject matter of the present paper is specially

adequate for honoring Professor George F. Pinder. On

the one hand, it contributes to the development of a
methodology initiated recently by Pinder and his col-

laborators, and on the other hand, to this end it applies

a numerical procedure, which owes much to him and

which combines collocation with domain decomposition

methods (DDM). As it is well known, Pinder has con-

tributed extensively to the progress of collocation

methods (see, for example, [1–3]). In addition, as men-

tioned in the Dedication, he initiated Herrera not only in
collocation methods, but in DDM as well. The new

method, of Pinder and his collaborators, published in a
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paper that has just appeared [4], is a novel Eulerian–

Lagrangian approach to advection diffusive transport,

which applies a non-conventional single point colloca-

tion discretization procedure. The present paper con-

tributes to its further development by offering two single
point collocation discretization procedures, which al-

lows an improvement in numerical efficiency and gen-

eralizes it to several spatial dimensions.

As it is well known, advection–diffusion transport is a

process of great interest in water studies. Furthermore,

the basic advection–diffusion transport models are

constituted by parabolic differential equations in time-

dependent problems, and by second order elliptic
equations in steady-state problems. In addition, time-

dependent problems are dealt with, most frequently, by

a semi-discretization approach, as it is done in the

method of Pinder and his collaborators. Thus, the

numerical solution of elliptic differential equations is a

subject of extreme importance in water studies and that

is the subject of the research reported in the present

paper. In particular, novel collocation approaches are
introduced in it.

Collocation methods are known to be very precise

and easy to implement, but their application had been
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restricted mainly because, in the past, in its formulation

‘‘splines’’ with a high degree of regularity had been

needed [5–8]. Recently, however, a wide range of

applications and new forms of applying collocation have

been opened by a unified theory of collocation methods
[9] introduced by the authors, whose origin is briefly

explained in the Dedication of the present paper. In the

setting of this unified theory, the regularity requirements

of trial and test functions are very much relaxed and one

can apply collocation to functions possessing not only

discontinuous derivatives, but as well to functions which

are themselves discontinuous. These are referred as

‘‘fully’’ discontinuous functions. For one-dimensional
problems and second order differential equations, in the

traditional approach, the lowest polynomial degree that

is admissible is three, and at least two collocation points

in each one of the subintervals are needed. This is due to

the high degree of regularity required from the trial

functions in that approach. On the other hand, when

collocation is carried out in the framework of the unified

theory, due to the relaxed regularity requirements, one
can use quadratic polynomials and one collocation

point, separately in each one of the subintervals, as was

pointed out in [10]. This can be done not only in 1-D,

but in several dimensions as well [11].

The unified theory classifies domain decomposition

methods into two broad categories [12,13]: ‘‘direct’’ and

‘‘indirect’’ (or Trefftz–Herrera) methods. In the present

article, two single collocation point methods for the
second order differential equations of elliptic type are

described: One is derived using the ‘‘direct’’ approach

[14] and the other is derived using the ‘‘indirect’’ ap-

proach [10,11]. Each one of these algorithms yields tri-

diagonal global matrices. Moreover, such matrices are

positive definite when the differential operator is sym-

metric and positive (as for non-advective transport or

the flow equations). In the case of the indirect approach,
as mentioned before, the results have already been ex-

tended to several dimensions [11]. However, up to now,

we cannot say the same about the direct approach, al-

though we think it can be done in a similar manner

because through our experience we have seen that there

is a parallelism between both approaches. In addition, it

is worth mentioning that we have found that the indirect

approach––paradoxically––is more direct, clear and
easy to apply. And this is corroborated in the present

paper. In Section 5, only a single arithmetic division is

needed for the construction of the special test functions,

which the application of the indirect method requires,

while the construction of the auxiliary functions of the

direct method, in Section 6, requires solving a 2 · 2

system instead.

In view of what has been said in the first part of this
Introduction, the bearing of these results in water re-

sources studies is clear. Firstly, an important element of

the Eulerian–Lagrangian method, introduced by Pinder
and his collaborators [4], is a single collocation discret-

ization procedure that yields, in one spatial dimension, a

five-diagonal matrix. The schemes here presented, on the

other hand, yield tri-diagonal matrices. This is a sub-

stantial reduction. Even more, the extension to several
dimensions of the indirect approach has already been

published [11]. It yields, when piecewise linear functions

are applied for the interpolation at the internal bound-

ary, systems with only one degree of freedom associated

with each node, independently of the dimension [11]. It

must be mentioned that this is an outstanding reduction

with respect to the standard collocation method for

which, using cubic Hermites, the number of degrees of
freedom associated with each node grows exponentially

with the dimension (2D): 2 for 1-D, 4 for 2-D and 8 for

3-D.

Secondly, from a more general perspective, any

improvements in the numerical treatment of elliptic

equations are immediately reflected in progress for water

resources studies. In particular, the implications that our

results have for the Eulerian–Lagrangian method of
Pinder and his collaborators illustrate well this point. In

addition, similar remarks apply to the groundwater flow

models, with the additional feature that in this latter

case, for the steady-state, the differential operators are

symmetric and our algorithms yield symmetric positive

matrices. This is a significant property that is not en-

joyed by the standard collocation methods and it is a

very important one, because of many reasons, to men-
tion just one: The application of parallel processing re-

sources becomes much more effective when the matrices

involved are symmetric and positive definite. And, we

recall that the contributions of parallel processing

methods to the growth of the computational capabili-

ties, in recent times, have been extremely significant

[15,16].

The paper is organized as follows: Section 2 is de-
voted to explain, in a rather brief manner, the main

ideas of the unified theory of DDM. We think the

inclusion of this section in the paper will help unfamiliar

readers to get a general perspective of our methods,

grasp their scope and be better oriented when applying

them. The advective diffusion transport problem to be

considered is introduced in Section 3. In Section 4, it is

shown that single collocation discretization schemes
cannot be more accurate than Oðh2Þ. Sections 5 and 6

are devoted to introduce the results of references [10]

and [14] that will be needed for the application of the

indirect and direct approaches, respectively. Finite dif-

ference procedures, such as those introduced in Sections

5 and 6, only yield information about the sought solu-

tion at the nodes and, in order to extend it beyond those

points, it is necessary to resort to interpolation methods.
The unified theory of DDM, itself, implies an interpo-

lation procedure that is referred as optimal interpolation.

This is explained in Section 7. It is applicable indistinctly
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of the approach, direct or indirect, that is used. Section 8

is devoted to present numerical experiments, and Sec-

tion 9 to discussion and conclusions.
2. Unified theory of domain decomposition methods

The general theory of collocation methods [9] stems

from a unified theory of domain decomposition methods

[12] and a brief explanation of its basic idea follows.

Consider a boundary value problem––or initial bound-

ary value problem––for a partial differential equation, or

system of such equations, formulated in a domain X
(Fig. 1). Then, given a partition P � fX1; . . . ;XEg of

such a domain, the general problem of domain decom-
position methods consists in establishing procedures

which permit solving the ‘‘global’’ problem defined in X,

by solving exclusively ‘‘local’’ problems defined in each

one of the subdomains of the partition Xi, i ¼ 1; . . . ;E.

The unified theory of domain decomposition methods

considers DDM as procedures for gathering informa-

tion––about the global solution of the problem––at the

internal boundary of the partition R, i.e., that which
separates the subdomains from each other. In the

general method of the unified theory, a target of

information on R––the sought-information––is defined

beforehand, such that it is sufficient for defining well-

posed local problems, which the global solution must

satisfy in each one of the subdomains of the partition Xi,

i ¼ 1; . . . ;E. Then a search is directed to obtaining the

sought-information. Two very broad categories of pro-
cedures for achieving this goal are identified by the

theory: ‘‘direct’’ and ‘‘indirect’’ (or Trefftz–Herrera)

methods.

In the usual interpretation of direct methods, they are

seen as techniques for building the global solution by

putting together, just as ‘‘bricks’’, the local solutions. In

the unified theory, however, a slightly more sophisti-

cated point of view is adopted, since the local solutions
of the differential operator are used to establish com-

patibility relations that the sought-information must
Fig. 1. A partition P � fX1; . . . ;XEg of the domain X.
fulfill. These relations give rise to the global system of

equations, from which the sought-information is ob-

tained.

In Trefftz–Herrera methods, on the other hand, a

system of weighting functions of a special kind, with the
property of yielding the sought-information at the

internal boundary, exclusively, is developed and applied.

The idea of constructing such test functions stems from

the observation that, in the method of weighted resid-

uals, the information about the exact solution that the

approximate one contains, depends on the system of

weighting functions which is applied [17]. And, in order

to fabricate the special test functions, it is necessary to
have a procedure for analyzing such dependence. In the

theory of indirect domain decomposition methods, the

basic ingredient of such analysis are Green–Herrera

formulas. These are formulas, which apply when both

trial and test functions are fully discontinuous, some-

thing that cannot be done when the standard theory of

distributions is used. They were originated by Herrera

[18,19]. They have already played a fundamental role in
establishing the theoretical foundations of a method

that is very important in water resources studies; we

refer to the Eulerian–Lagrangian Localized Adjoint

Method (ELLAM) [20].

Using them, necessary and sufficient conditions that

the test functions must fulfill, in order to yield the

sought-information exclusively, are established. Also, a

characterization of the sought-information in terms of a
variational principle (or weak characterization) is sup-

plied, which holds when test functions of the special

kind described above, are applied. This principle con-

stitutes a very general, although abstract, formulation of

indirect methods [11]. In addition, techniques to fabri-

cate the special kind of test functions are developed in

the theory. Ref. [11] supplies an updated version of

indirect domain decomposition methods, where the
theory and its applications to problems in several

dimensions are discussed with considerable detail. In

addition, a plenary lecture of the 14th International

Conference on Domain Decomposition Methods was

devoted to the indirect method of domain decomposi-

tion [21] and further applications can be found in its

proceedings [22]. In the applications that have been

done thus far, many advantages of TH-Collocation with
respect to standard collocation methods have been

exhibited [11]. Among others, generally the structure of

the global matrix is simpler and, if desired, a significant

reduction of the number of degrees of freedom associ-

ated with each node can be achieved. A common feature

of ‘‘direct’’, when formulated as in the unified theory,

and ‘‘indirect’’ methods is that in both, the information

about the solution is obtained at the internal boundary
exclusively and, consequently, the interpolation func-

tions used to approximate the sought solution are also

applied at the internal boundary only. Such information
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can be extended to the interior of the subdomains of the

partition by a procedure, which is implied by the theory,

referred as optimal interpolation. This is explained in

Section 7.
3. The one-dimensional boundary problem with jumps
(BVPJ)

The problem to be considered in this article is the

two-point boundary value problem with jump condi-

tions (BVPJ) of the general differential equation of sec-

ond order in one space variable. It consists of the

differential equation

Lu � � d

dx
a

du
dx

� �
þ d

dx
ðbuÞ þ cu

¼ fX in ðxi�1; xiÞ; i ¼ 1; . . . ;E ð1Þ

to be fulfilled in an interval X � ð0; ‘Þ;
The boundary conditions, for simplicity, are assumed

to be of Dirichlet type

uð0Þ ¼ go0; uð‘Þ ¼ go‘; ð2Þ
together with the jump conditions

½u
 ¼ j 0
i � ½uR
 and

du
dx

� �
¼ j1i �

duR

dx

� �
;

i ¼ 1; . . . ;E � 1; ð3Þ

where the square brackets stand for the ‘‘jump’’ of the

function contained inside, i.e., ½u
 � uþ � u�, limit on

the right ðuþÞ minus limit on the left ðuþÞ.
These latter conditions have to be satisfied at the

internal boundary, which for this simple one-dimen-

sional problem, consists of the collection, fxigE�1
i¼1 , of

internal nodes of the partition P � fð0 ¼ x0; x1Þ; ðx1; x2Þ
; . . . ; ðxE � 1; xE ¼ ‘Þg. Observe that the differential

equation is required to be satisfied at interior points of

the subdomains, only, since the functions considered

may be discontinuous at the internal boundary.

This BVPJ is the one-dimensional version of the
BVPJ of second order and elliptic type in several

dimensions, considered in [11]

Lu � �r � ða � ruÞ þ r � ðbuÞ þ cu

¼ fX; in Xi; i ¼ 1; . . . ;E � 1; ð4Þ

u ¼ uo on oX; ð5Þ

½u
 ¼ j0R and ½an � ru
 ¼ j1R on R: ð6Þ
It will be assumed that the Dirichlet problem is well-

posed in the whole interval X � ð0; ‘Þ, as well as is in

each one of the subintervals of the partition P. The

notation, uðxÞ, is adopted for the unique solution of this

BVPJ, in X. In the framework of the unified theory of

collocation methods, whose basic ideas were presented
in Section 2, throughout this article the sought-infor-

mation is chosen to be, the average of the solution,
_u � 1

2
ðuþ þ u�Þ, across R. That is, the sought-information

is the finite sequence f _u1; . . . ; _uE�1g. Observe that this

information, when it is complemented with the data of
the problem, is sufficient to define well-posed problems

in each one of the subintervals ðxi�1; xiÞ, i ¼ 1; . . . ;E.

Indeed, using the relationships

uþ ¼ _uþ 1

2
½u
 ¼ _uþ 1

2
j0i and u� ¼ _u� 1

2
½u


¼ _u� 1

2
j0i ð7Þ

together with the differential equation (1) and the

boundary conditions of Eq. (2), when necessary, such

problems can be formulated.
4. Remark on the order of approximation

In single collocation point methods, the order of

approximation cannot be better than Oðh2Þ. This can be

seen using a standard argument [23]. Indeed, assume the

differential equation (1) is fulfilled, exclusively, at the

single Gaussian collocation point, xi ––this is the mid-

point––of each subinterval ðxi�1; xiÞ. Let eðxÞ � uðxÞ�
ûðxÞ be the error, where uðxÞ and ûðxÞ are the exact and

the approximate solutions, respectively. Then

eðxÞ � LeðxÞ ¼
XE
i¼1

giðxÞHxi
ðxÞ; ð8Þ

where Hxi
ðxÞ � x� xi on the subinterval ðxi�1; xiÞ and

vanishes identically outside of it. In terms of the Green’s

function, Gðx; nÞ, one can write

eðxÞ ¼
Z ‘

0

Gðx; nÞeðnÞdn

¼
XE
i¼1

Z xi

xi�1

Gðx; nÞgiðnÞHxi
ðnÞdn: ð9Þ

Expressing giðnÞ by means of a Taylor expansion around

the point n ¼ xi , one gets

eðxÞ ¼
XE
i¼1

X1
j¼1

Z xi

xi�1

Cjðn � xi Þ
jþ1

dn ¼
XE
i¼1

Oðh3Þ

¼ Oðh2Þ; ð10Þ

where Cj are the coefficients of the Taylor series

expansion. In addition, here the fact thatZ xi

xi�1

Hxi
ðnÞdn ¼

Z xi

xi�1

ðn � xi Þdn ¼ 0 ð11Þ

when xi is the midpoint of the interval ðxi�1; xiÞ, has been

used.
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Fig. 2. Support of the weighting function wiðxÞ.
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5. The algorithm of the indirect approach

In [11], the indirect method was applied to the BVPJ

for the general second order elliptic equation, defined by

Eqs. (7) to (6), in several dimensions. However, here the
indirect method will only be applied to the 1-D case,

corresponding to Eqs. (1)–(3). For the sought-informa-

tion, several choices are possible; for example, if the

average of the flux is chosen, a mixed method is ob-

tained. However, as stated before, throughout this

article the averages of the solution, f _u1; . . . ; _uE�1g, are

chosen to be the sought-information. Then, the system of

equations fulfilled by the sought-information is [10]

q�
i _ui�1 þ qi _ui þ qþ

i _uiþ1 ¼ hf � j;wii; i ¼ 2; . . . ;E� 2;

ð12Þ

q1 _u1 þ qþ
1 _u2 ¼ hf � g � j;wii ð13Þ

and

q�
E�1 _uE�2 þ qE�1 _uE�1 ¼ hf � g � j;wii: ð14Þ

Here

q�
i ¼ � a

dwi

dx

�
þ bwi

�
x¼xi�1

; ð15Þ

qi ¼ � a
dwi

dx

�
þ bwi

�
i

; ð16Þ

qþ
i ¼ a

dwi

dx

�
þ bwi

�
x¼xiþ1

; ð17Þ

hf ;wii �
Z xiþ1

xi�1

wifX dx; i ¼ 1; . . . ;E � 1; ð18Þ

hg;w1i � �uo0 a
dw1

dx

� �
x¼0

and

hg;wE�1i � uol a
dwE�1

dx

� �
x¼l

; ð19Þ

hj;wii �
Xk¼iþ1

k¼i�1

wi
kj

1
k � j0k

_
a
dwi

dx
þ bwi

! 
k

( )
;

i ¼ 2; . . . ;E � 2; ð20Þ

hj;w1i �
Xk¼2

k¼1

w1
kj

1
k � j0k

_
a

dw1

dx
þ bw1

 !
k

( )
and

hj;wE�1i �
Xk¼E�1

k¼E�2

wE�1
k j1k � j 0

k

_
a

dwE�1

dx
þ bwE�1

 !
k

( )
:

ð21Þ

For each i ¼ 1; . . . ;E � 1 the test function wiðxÞ (Fig. 2)

is defined to be identically zero outside the interval

ðxi�1; xiþ1Þ. In addition,
Lwi � � d

dx
a
dwi

dx

� �
� b

dwi

dx
þ cwi ¼ 0;

i ¼ 1; . . . ;E � 1 ð22Þ

in ðxi�1; xiÞ and ðxi; xiþ1Þ, separately. Also, wiðxi�1Þ ¼ 0,

wiðxiÞ ¼ 1 and wiðxiþ1Þ ¼ 0. This set of conditions de-

fines wiðxÞ uniquely, because they are sufficient to for-

mulate two well-posed problems to be satisfied by wiðxÞ:
one of them in the interval ðxi�1; xiÞ and the other in the

interval ðxi; xiþ1Þ. When the differential equation (22) is

satisfied exactly, the solution of the system of equations

defined by Eqs. (12)–(14) yields the exact values of the

sought-information. However, only in simple cases, such

as that of constant coefficients, it is possible to obtain

the exact solution of Eq. (22). For more general situa-

tions, it is necessary to resort to approximate numerical
methods. If the numerical method applied to obtain the

test functions is collocation, the resulting procedure for

solving the global boundary value problem is a non-

standard method of collocation. In this paper, one such

collocation method is derived, which has the peculiarity

of using only one collocation point at each one of the

subintervals ðxi�1; xiÞ and ðxi; xiþ1Þ, for the construction

of each one of the test functions wiðxÞ––recall that when
cubic Hermites are applied, two collocation points are

used in each subinterval. Then, three conditions have to

be fulfilled by each wiðxÞ, at the subinterval ðxi�1; xiÞ: two

boundary conditions and one collocation equation. If a

polynomial of degree G is used for representing wiðxÞ in

the interval ðxi�1; xiÞ, it must have three free coefficients

in order to be determined uniquely there by those three

conditions. Thus, G ¼ 2. Of course the same reasoning
applies at the interval ðxi; xiþ1Þ. This argument shows

that, when a single collocation point is applied at each

subinterval, wiðxÞ must be taken as a piecewise contin-

uous quadratic polynomial. At the only two subinter-

vals, ðxi�1; xiÞ and ðxi; xiþ1Þ, in which such polynomial

does not vanish identically, it must fulfill the local

boundary conditions mentioned before: wiðxi�1Þ ¼ 0,

wiðxiÞ ¼ 1 and wiðxiþ1Þ ¼ 0. Any piecewise quadratic
polynomial satisfying these conditions can be expressed

as

wiðxÞ � l ðxÞ þ k�l ðxÞl ðxÞ for x < x < x ð23Þ
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and

wiðxÞ � liðxÞ þ kþ
i liðxÞliþ1ðxÞ for xi < x < xiþ1: ð24Þ

Here, for every i ¼ 1; . . . ;E � 1, liðxÞ is the piecewise

linear Lagrange polynomial, with the property that it

vanishes at every node xj 6¼ xi and liðxiÞ ¼ 1. In addition,
k�
i and kþ

i are two real numbers. When orthogonal

collocation is used in the construction of the special test

function wiðxÞ, these two numbers are determined by the

condition that they must satisfy the adjoint differential

equation (22) at the midpoints of the two subintervals,

ðxi�1; xiÞ and ðxi; xiþ1Þ, respectively. Observe that this pair

of equations is uncoupled, so a simple arithmetic divi-

sion solves each one of them. In conclusion, the con-
struction of each one of the test functions, wiðxÞ, is

rather simple: It is given by formulas (23) and (24),

where each one of the coefficients, k�
i and kþ

i , are ob-

tained by a simple arithmetic division.

After the set of special test functions, fw1; . . . ;wE�1g,
has been constructed, one can apply Eqs. (18)–(21), to

evaluate all the terms occurring in the system of Eqs.

(12)–(14). The solution of the tri-diagonal system of
equations, obtained in this manner, yields the sought-

information, f _u1; . . . ; _uE�1g. Of course, the value of the

sought-information so obtained is no longer exact, be-

cause the special test functions that have been applied

are not exact. A preliminary analysis of the error, which

was presented in [10], indicates that the error is Oðh2Þ.
This has been corroborated through numerical experi-

ments that are reported in Section 8. It must be added
that the solution, f _u1; . . . ; _uE�1g, of the tri-diagonal

global system of equations, only gives information

about the solution at the internal nodes of the partition.

If one desires to obtain information in the interior of the

subintervals of the partition, one can apply optimal

interpolation, as it is explained in Section 7.
6. The direct approach algorithm

The method to be applied was derived in detail in

[14]. Any number of collocation points per subinterval

can be used, but here a procedure with only one such

point is explained. According to [14], the averages at the

internal nodes fulfill the following tri-diagonal system of

equations:

�qi
� _ui�1 þ _ui � qi

þ _uiþ1 ¼ li; i ¼ 2; . . . ;E � 2; ð25Þ

_ui � qi
þ _uiþ1 ¼ li; i ¼ 1 ð26Þ

and

�qi
� _ui�1 þ _ui ¼ li; i ¼ E � 1; ð27Þ

where

qi ¼ /i ðx Þ; qi ¼ /i ðx Þ; i ¼ 1; . . . ;E � 1; ð28Þ
� � i þ þ i
li ¼
qi
�
2
j0i�1 þ _uiP ðxiÞ �

qi
þ
2
j 0
iþ1; i ¼ 2; . . . ;E � 2; ð29Þ
li ¼ qi
�go0 þ _uiP ðxiÞ �

qi
þ
2
j 0
iþ1; i ¼ 1 ð30Þ

and

li ¼
qi
�
2
j0i�1 þ _uiP ðxiÞ þ qi

þgo‘; i ¼ E � 1: ð31Þ

Here, /i
�ðxÞ, /i

þðxÞ and uiP ðxÞ are auxiliary functions
which vanish identically outside ðxi�1; xiþ1Þ, and within,

they are defined as the unique solutions of the following

‘‘local’’ boundary value problems:

For i ¼ 1; . . . ;E � 1,

LuiP ¼ fX; in ðxi�1; xiÞ and ðxi; xiþ1Þ; separately;

ð32Þ
uiP ðxi�1þÞ ¼ uiP ðxiþ1�Þ ¼ 0; ð33Þ
½uiP 
i ¼ j0i and
duiP
dx

� �
i

¼ j1i ; ð34Þ
L/i
þ ¼ 0; /i

þðxi�1Þ ¼ 0; /i
þðxiþ1Þ ¼ 1; ð35Þ
L/i
� ¼ 0; /i

�ðxi�1Þ ¼ 1; /i
�ðxiþ1Þ ¼ 0; ð36Þ
½/i
þ
i ¼ ½/i

�
i ¼
d/i

þ
dx

� �
i

¼ d/i
�

dx

� �
i

¼ 0: ð37Þ

The above results are exact [14]. In particular, the

solution of the system of equations (25) and (26), yields

the exact values of the sought-information, f _u1; . . . ;
_uE�1g. However, one can apply the system of equations

(25)–(27), only if the functions /i
�ðxÞ, /i

þðxÞ and uiP ðxÞ,
are available. When such functions are known exactly

(i.e., the analytical solutions are known), then the direct

method yields exact results. However, more generally, it
is necessary to compute them by approximate numerical

methods. For the single collocation procedures pre-

sented here, each one of the local boundary value

problems imposes six conditions: two boundary condi-

tions, two jump conditions and two collocation condi-

tions (one in each one of the subintervals neighboring

the node xi). These six conditions define a unique

piecewise quadratic polynomial which vanishes identi-
cally outside ðxi�1; xiþ1Þ. Working with functions that

satisfy the jump and local boundary conditions from the

start, this system can be reduced to a 2 · 2 system, as was

done in [14]. Notice that even so, the final system is a

little more complicated than that corresponding to the

indirect method. The interested reader may see addi-

tional details in the reference just mentioned.
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7. Optimal interpolation

If the solution of the problem is continuous, the

values of _ui yield directly the values of the functions at

the nodes. In standard finite difference procedures, this
is all that such methods give, and if the values outside of

the nodes are desired, one has to apply some kind of

interpolation procedure. However, the interpretation of

the indirect and direct approaches as domain decom-

position methods provides a very efficient interpolation

procedure; this is referred as optimal interpolation [24].

After obtaining the averages _ui; ði ¼ 1; . . . ;E � 1Þ, by

either one of the methods described in Sections 5 and 6,
one applies the identities

uðxiþÞ � _ui þ
1

2
½u
i ¼ _ui þ

1

2
j 0
i ð38Þ

and

uðxi�Þ � _ui �
1

2
½u
i ¼ _ui �

1

2
j 0
i : ð39Þ

When these values are complemented with the data of

the BVPJ, Eqs. (1)–(3), enough information is available

for defining well-posed boundary value problems in each

one of the subintervals of the partition. Therefore, the

information that has been obtained in the internal
boundary exclusively, extends uniquely into the interior

of the subdomains, as the solution of such local

boundary value problems. Furthermore, that is the only

extension that is compatible with the available infor-

mation. All that is required to apply these ideas to

reconstruct the solution of the BVPJ in the interior of

the subintervals of the partition is solving such ‘‘local

problems’’ by a numerical method that preserves the
accuracy with which the information in the internal

boundary is known. Of course, this can be done using

only a single collocation point in each subinterval of the

partition, in which case three conditions have to be

satisfied by the approximate solution uðxÞ at every

subinterval ðxi�1; xiÞ, i ¼ 1; . . . ;E: two boundary condi-

tions and one collocation equation. Thus a quadratic

polynomial approximation is suitable. This way of
proceeding yields precisely the precision which is com-
Table 1

Definitions of the examples treated

Example a b

1 1 2px=q

2 1 0

3 x2 � 1 0

4 4x2 þ 3 3x� 1

5 )1 �a
6 )1 0

7 ) 1; 06 x6 1 0

)4; 1 < x6 2
patible with the precision with which the averages at the

nodes have been obtained. Any additional effort,

involving a more elaborate procedure for solving the

local problems with greater precision, would be waste-

ful.
8. Numerical examples

To test the algorithms that were presented in previ-
ous sections, numerical results have been obtained for

several examples, see [10,14]. They were treated by both

the direct approach of Section 6 and the indirect ap-

proach of Section 5. The numerical experiments that

were performed consist in solving Eq. (1), subject to

Dirichlet boundary conditions for several choices of the

coefficients, which are given in Table 1, and for each

one of them the analytical solutions are known and are
given in Table 2. In all cases, the domain of definition

was the interval ½0; 1
. The prescribed boundary values

are those implied by the analytical solutions of Table 2

and, except for Example 6, the prescribed jumps are

taken to be zero. The meshes were successively refined

to test the asymptotic order of approximation. To this

end, the number of elements was increased from 10 to

200.
The numerical results are summarized in Figs. 3–11.

In each one of Figs. 3–11, the behavior of the error––

measured in terms of the norm k:k1––for indirect Tre-

fftz–Herrera and direct collocation methods using one

collocation point is shown.

The differential equation for Example 5 depends on

the parameter a. This parameter was varied to take the

values: 20 and 100, Figs. 7 and 8, respectively. Large a
corresponds to steady-state advection dominated

transport. The shape of the sharp-front solution is

illustrated in Fig. 9.

The results of all these numerical experiments cor-

roborate the theoretical order of approximation, of

Section 4, for the two single point collocation proce-

dures, here presented: Oðh2Þ. Observe that in some cases

the results yielded by the two methods are remarkably
similar.
c fX

� 4pð1þpÞ
q2 þ 2p2

q þ p2
n o

0

�40p2 0

30 0

3xðxþ 1Þ �ðxþ 1Þ2ex
0 0

)1 0

1 0



Table 2

Solution for each one of the examples

Example Exact solution

1 sinðpxÞ þ x cosðpxÞ, where p ¼
ffiffiffiffiffi
40

p
p, q ¼ 1 þ pð1 þ x2Þ

2 sinð
ffiffiffiffiffi
40

p
pxÞ

3 ð63x5 � 70x3 þ 15xÞ=8

4 ex

5 eax�ea

1�ea ; a ¼ 20; 100

ex, 06 x < 1=2
1
4
þ e1=2, x ¼ 1=2

6 1
�

� 1
2

e�1=2

e�1

�
ex þ 1

2
e3=2

e�1
e�x; 1=2 < x6 1;

where the jump conditions are

j0ð0:5Þ ¼ 0:5; j1ð0:5Þ ¼ 0:5ð1þe
1�eÞ;

7 A sin x; 06 x6 1

C sin x
2
þ D cos x

2
; 1 < x6 2, where A, C and D are

defined by

sinð1Þ � sinð1
2
Þ � cosð1

2
Þ

cosð1Þ �2 cosð1
2
Þ 2 sinð1

2
Þ

0 sinð1
2
Þ cosð1Þ

2
4

3
5 A

B
C

2
4

3
5 ¼

0

0

1

2
4
3
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Example 2:
Indirect TH-Collocation
Direct Collocation

slope=2.00

Fig. 4. Example 2: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions.
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Example 3:
Indirect TH-Collocation
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Fig. 5. Example 3: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions.
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Fig. 3. Example 1: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions.
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9. Discussion and conclusions

The present paper is devoted to honor Professor

George F. Pinder. Its subject matter is quite adequate

for such purpose because it has been motivated by some

of his recent research and also, because it exhibits the

power of a methodology that owes much to him, as it is
explained in the Dedication and Introduction of this

article. Pinder and his collaborators recently published

[4] a novel Eulerian–Lagrangian approach to advection
diffusive transport, which applies a non-conventional

single collocation discretization procedure. The present

paper contributes to its further development by offering
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Indirect TH-Collocation
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Fig. 6. Example 4: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions.
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Example 5a: ( alfa=20)
Indirect TH-Collocation
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slope=2.00

Fig. 7. Example 5: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions (a ¼ 20).
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Example 5b: (alfa=100)
Indirect TH-Collocation
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Fig. 8. Example 5: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions (a ¼ 100).
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Fig. 9. Example 5: Graphic of analytical solution for a ¼ 20 and 100.
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two single point collocation discretization procedures

which may be used to improve its numerical efficiency

and to generalize it to several spatial dimensions.

Domain decomposition methods have received much

attention in recent years [25], mainly because they are
the most effective means for parallel processing mathe-

matical models of continuous systems and the contri-

bution of parallel processing to the growth of the

computational capabilities has been extremely signifi-

cant [15,16]. In addition, domain decomposition con-

cepts are fundamental for many numerical methods of
partial differential equations, since a first step, for most

of such methods, consists in the introduction of a par-

tition of the problem domain. Thus, research on DDM

can also enlighten many aspects of numerical methods

for partial differential equations, in general, and it is in

this context that the authors, in a series of articles, have

introduced and are developing a unified theory of do-

main decomposition methods [12]. This is briefly de-
scribed in Section 2 of the present paper. According to

it, there are two general classes of domain decomposi-
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Fig. 10. Example 6: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions.
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Fig. 11. Example 7: Convergence rate of direct and indirect Trefftz–

Herrera collocation methods using one collocation point and quadratic

weighting functions.
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tion methods: direct and indirect (or Trefftz–Herrera)

methods. Most formulations of domain decomposition

methods that have been applied, up to now, fall in the
category of direct methods. Indirect methods, on the

other hand, were introduced by Herrera et al. [11], and
stem from previous developments; in particular, Local-

ized Adjoint Method [26] and Jirousek’s version of

Trefftz method [27].

The two discretization non-conventional algorithms

that constitute the main technical objective of the pres-
ent paper were derived by means of the domain

decomposition methods of the unified theory; one cor-

responds to the direct approach and the other one to the

indirect one. Through numerical experiments, they were

both shown to be Oðh2Þ and, in Section 4, a theoretical

discussion shows that single-node collocation algo-

rithms cannot be more accurate than that. Both of them

yield tri-diagonal global matrices, a fact that is clearly
advantageous when compared with the five-diagonal

matrices of the original paper of Pinder and his collab-

orators. In this manner, they contribute to enhance the

efficiency of their method. Also, the application of the

algorithm yielded by the indirect approach is specially

simple, as explained in Section 5 with considerable de-

tail.

The algorithms discussed with detail in this paper
refer to one-dimensional formulations exclusively, but

our one-collocation point algorithm, derived using the

indirect approach, readily extends to problems in several

dimensions. Indeed, in [11], we presented collocation

procedures that can be applied in any number of

dimensions. When the indirect method of domain

decomposition is applied, the functions approximating

the sought solution are defined in the internal boundary
only and, in [11], two algorithms were derived using

piecewise cubic and piecewise linear interpolations on

the internal boundary, respectively. The special test

functions, on the other hand, were developed using,

locally, cubic Hermites. For the 2-D case, four colloca-

tion points (2 · 2) per rectangular subdomain were used

(more generally 2D). Another manner in which the

special test functions can be developed is by locally using
quadratic polynomials, as it is done in the present paper,

and only one collocation point, independently of the

dimension. Notice the analogy: 1D ¼ 1. The precision

achieved when piecewise linear interpolations on the

internal boundary are applied, is Oðh2Þ, which is con-

sistent with the use of only one collocation point in each

rectangular subdomain for the construction of the spe-

cial test functions. Thus, our results establish a way in
which the non-conventional Eulerian–Lagrangian sin-

gle-node method of Pinder and his collaborators [4] can

be extended to multi-dimensional problems. It remains,

however, to test numerically the expected precision of

the procedure, Oðh2Þ, for the multi-dimensional case. In

any event, some attractive features of the algorithm so

obtained can be anticipated. In [11], when the special

test functions were constructed applying cubic-Her-
mites, locally, and the interpolation in the internal

boundary was piecewise linear, the precision was shown

to be Oðh2Þ and only one degree of freedom was asso-
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ciated with each internal node. This latter property is

independent of the dimension. This is an outstanding

reduction when compared with standard collocation

methods. For them, that number grows exponentially

with the dimension ð2DÞ: 2 for 1-D, 4 for 2-D and 8 for
3-D. Finally, it is worth mentioning that for differential

operators that are symmetric and positive, as for the

flow equations, the matrices are symmetric and positive

definite. This is a very important property that is not

enjoyed by standard collocation. A more systematic

comparison of the indirect method of collocation and

conventional collocation, is available [11].
10. In summary

The contribution contained in this paper to the water

resources literature is four-fold:

(1) It introduces two algorithms that can be used for

improving a method recently proposed by Pinder
and his collaborators. This was the main motivation

for its writing.

(2) These two algorithms can be applied in some other

instances of advection–diffusion transport problems

of interest in water resources studies.

(3) The methodology used to obtain the results reported

in the paper, which owes much to George Pinder, is

very general and with many potential applications to
water resources, but it is little known by the water

resources community. Thus, exhibiting its power

and usefulness in an article whose expected audience

comes mainly from that community, is also signifi-

cant.

(4) In addition, when the method of Pinder and his col-

laborators is incorporated in the framework of this

general methodology, it immediately generalizes to
several dimensions, since one of the algorithms that

are introduced in the paper has already been so gen-

eralized.
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