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In the 1st International Workshop, devoted to Trefftz Method, the author presented an indireet approach 
to Trefftz Method (Trefftz-Herrera Method), while in the Second one some of the basie ideas of how to 
integrate different approaches to Trefftz method were introduced. The present Plenary Leeture, eorre­
sponding to the 3rd International Workshop of this series, is devoted to show that Trefftz Method, when 
formulated in an suitable framework, is a very broad concept capable of incorporating and unifying many 
numerical methods for partial differential equations. In this manner, the unified theory of Trefftz Method 
that was announeed in the second publicatioIl. of this series, has been developed. It ineludes Direet Trefftz 
Methods (Trefftz-Jirousek) and Indirect Trefftz Methods (Trefftz-Herrera). At present, the unified theory 
is fully developed and an overview is given here, as well as a hrief description of its numerical implica.tions. 

1. INTRODUCTION 

Trefftz Method is a very broad eoneept capable of incorporating and unifying many numerical 
methods for partíal differential equations [1,2]. In the first publieation ofthis series [3] (see also [4]), 
Trefftz-Herrera method was introduced and, for the first time, presented as a domain deeomposition 
procedure. Later, in the seeond one [1, 5], the author announced a unified theory of Trefftz methods. 
Since then, considerable progress has been made both in the systematic formulation of Trefftz­
Herrera method [6, 7] and in the conceptualization of the unified theory of Trefftz methods [2, 8]. 
The present publication, which corresponds to the Third International Workshop on Trefftz Method, 
is devoted to describe Herrera's unified theory of Trefftz Method, as it is today, inc1uding recent 
numerical applications [6-12]. 

Let us start by explaining, very concisely, the main ideas of such framework. Consíder a boundary­
value problem - or an initial-boundary-value problem - for a partíal differential eq\lation, or system 
of such equations, formulated in a domain n (Fig. 1), with boundary {jil. When an initial-boundary­
value problem is discussed, il is a space-time domain and {jil contains the space domain, at the initial 
time. Thus, in the theory, for initial-boundary-value problems the initial conditions are incorporated 
as part of the boundary conditions. The general problem to be discussed consists in, given a partition 
JI == {nI, ... , ilE} of il, establishing procedures that permit solving the global problem, defined in 
.o, by solving exclusively local problema, defined in each one of the subdomains of the partition, ni, 
i = 1, ... ,E. The notion of internal boundary, to be denoted by E (Fig. 1), is extensively used in 
the developments. This is the boundary that separates the subdomains of the partition from each 
other. The basie and unifying strategy of the theory consists in defining well-posed local problems, 
which the restrictions of global solution must satisfy in each one of the subdomains of the partition .. 
To this end, a target of information 011 E - the sought information - is ehosen beforehand. And a 
search is carried out for obtaining the sought information. Different formulations of Trefftz method 
correspond to different proeedures for gathering the sought information .. 'I\vo very broad categories 
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of searching procedures are identified by the theory: 'direct' and 'indirect' (or 'Ifefftz-Herrera) 
methods [1, 2, 6, 10]. 

an 

Fig. 1. Partition of the domain n 

An essential property that the sought information must possess is to be sufficient for defining 
well-posed local problems in each one of the subdomains. But a choice of the sought information may 
satisfy this condition and yet contain additional information - referred as redundant information ­
that is not required for defining the well-posed local problems. When this happens, the corresponding 
method necessarily handles more information than necessary, which is numerically inconvenient. 
Thus, it is generally better to define the sought information in such a manner that only essential 
information is included and redundant information is eliminated. When the definition of the sought 
information enjoys this property, it is said to be an optimal definition. Once the sought information 
is known, the solution can be reconstructed by solving local problems exclusively. This latter process 
is called optimal interpolation [13]. This terminology is justified by the fact that, when the definition 
of the sought information is optimal, it is the only interpolation procedure that is compatible with 
the available information. 

In the usual interpretation of direct methods - referred as 'Ifefftz-Jirousek method [5] - as 
they were originally introduced by'Ifefftz [14] and later extensively developed by Jirousek and his 
collaborators [15-17], they are seen as techniques for building the global solution by putting together, 
just as 'bricks', the local solutions. In Herrera's unified theory of 'Ifefftz method, however, a slightly 
more sophisticated point of view is adopted, since the local solutions of the differential operator are 
only used to establish compatibility relations that the sought information must fulfill [10]. These 
relations give rise to the global system of equations from which the sought information is obtained. 

In 'Ifefftz-Herrera methods, on the other hand, a system of weighting functions of a special 
kind - the optimal test functions [18] - with the property of yielding the sought information in 
the internal boundary, exclusively, is developed and applied [6J. The idea of constructing such test 
functions stems from the observation that in the method of weighted residuals the information about 
the exact solution that the approximate one contains, depends on the system of weighting functions 
that is applied (see, for example, [19]), exclusively. However, in order to establish the conditions, 
which the optimal test functions must fulfill, it is necessary to have a procedure for analyzing such 
dependence. Green-Herrera formula [20-22] constitutes such basic tool. Using it, necessary and 
sufficient conditions for a weighting function to be an optimal test function are established [6]. AIso, 
a characterization of the sought information in terms of a variational principIe is supplied, which 
holds when the optimal test functions are applied [6, 7J. This principIe constitutes a very general, 
although abstract, formulation of Trefftz-Herrera methods. In general, the optimal test functions 
fulfill the adjoint differential equation in each one of the subdomains of the partition. Thus, an 
important difference between direct and indirect methods is that, in the latter, the global matrlx 
is derived using local solutions of the adjoint differential equation while, in the former, the same is 
done using local solutions of the original differential equation. Techniques to fabricate the optimal 
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test functions have also been developed [2]' but many open questions remain and the field, calling 
for future research, is quite wide. 

In the unified theory discontinuous trial and test functions are systematically applied, and the 
general problem that is considered is a boundary value problem with prescribed jumps (BVP J). 
More precisely, in addition to the boundary conditions, which are prescribed in the outer boundary 
of the domain, jumps are prescribed at the internal boundary, E. Thus, a systematic framework 
for the use of discontinuous functions in numerical methods for partíal differential equations is also 
supplied. In addition, the theory is applicable to any linear difIerential equation or system of such 
equations, independently of its type, and the coefficients of the differential operators involved may 
be discontinuous. 

The general problem of TrefItz Methods, when formulated in the aboye manner parallels that of 
Domain Decomposition Methods (DDM) [23], but the resulting theory is quite general, elegant and 
systematic. It subsumes many numerical methods for partial differential equations and constitutes a 
powerful tool for analyzing such methods. It is very efIective, both as a discretization methodology 
and as a domain decomposition procedure [11]' and the area of its potential applications is quite 
broad. 

2. FUNCTION SPACES 

Consider a region n, with boundary an and a partition {nI, ... ,nE } of n (Fig. 1). Let 

E==U(ninnj ), (1) 
i:f.j 

then E will be referred as the intemal boundary and an as the extemal (or outer) boundary. For 
each i 1, ... , E, DI (ni) and D2 (ni) will be two linear spaces of functions defined on ni; then 
the space of trial (or base) functions and that of test (01' weighting) functions are defined to be 

(2) 

and 

(3) 

respectively. Observe that members of either DI or D2 are finite sequences of functions, each one 
of them defined at one sub-domain of the partition. The fact that no matching condition across 
E is required of such sequences generally implies that the function-spaces DI and D2 contain 
discontinuous functions. It will be assumed that for each i = 1, ... ,E, and (l' = 1,2, the traces on 
E of elements of Da (ni) exist, and the jump and the average of test 01' weíghting functions are 
defined by . 

[u] u+ - u_ and ü == --'--- (4) 

Here u+ and u_ are the traces from one and the other side of Throughout this paper, the unit 
normal vector to E, lb is chosen arbitrarily but the convention is such that it points towards the 
positive side of E. 

The case when for each i = 1, ... , E, and each (l' = 1,2, Da (ni) == H8 (nd, with s 2:: o has 
special interest. If one defines 

(5) . 

then DI = D2 == HS (n). This is the special cIass of Sobolev spaces that was considered in [24]. 
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3. TREFFTZ PROBLEM 

The general boundary value problem with prescribed jumps (BVPJ), considered in the unified 
theory of Trefftz methods, consists in finding u == (u1, •.. ,uE) E DI such that 

t.-u = t.-un f n in ni i = 1, ... , E 1 (6) 

BjU = Bjul) == 9j on an (7) 

and 

(8) 

The notation used here is similar to that of [25]: the Bjs and JLs are certain differential operators 
(the j's and k' s run over suitable finite ranges of natural numbers). In addition, here as in what 
follows un == (u}¿, ... ,um, Ul) == (u1, . .. ,uN) and UE == (ub, ... ,u~) are given functions belonging 
to DI (Le., tri al functions), which fulfill Eqs. (6), (7) and (8), respectively. Moreover, fn, 9j and jk 
may be defined by Eqs. (6) to (8). Let, u == (u1, .. , ,uE ) E DI, be the solution of the BVPJ, which is 

Eassumed to be unique, Then, Trefftz problem consists in finding the sequence u == (u1, ' , . ,u ) E DI; 

Le., it consists in finding ui E Dl, i 1, ... 1 E. 
As an example, consider the BVPJ for Laplace equation 

t.-u == - \l . \lu = f n , (9) 

subjected to Dirichlet boundary conditions 

u=u8 on an, (10) 

and the jump conditions 

[u] 	= fUE] == j~ and [aujan] '11 = [auEjan] '11 == ji; on E. (11) 

4. 	THE SOUGHT INFORMATION AND REDUNDANT INFORMATION 

Sorne notions related with the concept of sought information, of the general framework of the 
unified theory that was explained in the Introduction, are here discussed and illustrated for 
the case of Laplace equation. '!\vo broad categories of information, relating to the solution 
u == (u1, ..• ,uE ) E DI of Trefftz problem, will be distinguished. They are 

i. Data of the problem. This is information that is prescribed beforehand. In particular: fn, 9j 
and jk, in Eqs. (6) to (8). 

ii. 	Complementary information. Any information that is not prescribed is included under these 
terms. 

Within the complementary information, several dasses are distinguished. Firstly, complementary 
information in 51, such as the values of the solution in the interior of each one of the subdomains. 
Secondly, complementary informatíon in the outer boundary, ano The normal derivative at the outer 
boundary belongs to this category, when considering the Dirichlet problem for Laplace equation of 
Section 3. Thirdly, complementary information in the internal boundary, E and this dass of 
complementary information plays an important role in the unified theory of Trefftz methods. In the 
example of Section 3, the jumps oí the function [u] and that of its normal derivative [aujan] are data 
oí the problem, on E. In. this case, the average of the functíon and that of its normal derivative­

u ~ (u+ + u_) and a;;¡¡;;;" respectively - are complementary information on E. A choice for the 
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'arget 01 informa'ion on 'he sought information may be 'he pair { U, a;ja;;}everywhere on 

E. This pair possesses the required property of being sufficient, when complemented by the data of 
the problem, for defining a well-posed problem at each one of the subdomains, separately. Indeed, 
using the identities 

u+ =u+ ~ [u] and (12) 

the values of u and (aujan) on both sides of E can be derived, sínce the definítions of the positive 
and negative sides of E can be interchanged and, both, [u] and [aujanJ are data of the probIem. In 
addition, it can be seen that the knowledge of these values together with Eqs. (6) and (7) permit 
formulating well-posed boundary value problems in each .one of the subdomaíns of the partition . 

...-.......... 

However, knowl~dge of the average U, or alternatively aujan, would be suffident for this purpose . 

...-.......... 

Thus, either aujan or u is redundant information. Therefore, if the sought information is defined 

'o be the pair {u, a;ja;;} everyw here onE, sueh defini'ion is no' optimal. On 'he contrary, if 

the sought info~mation is defined to be the average ueverywhere on E, eliminating the redundant 
...-.......... 


informati.on auj8n, such definition is indeed optimal. Similarly, if the sought information is defined 
...-.......... 


to be aujan, on such definition is also optimal. 

5. THE DIRECT TREFFTZ METHOD 

The direct approach, using the point of view of the unified theory of Trefftz Method, was first 
presented in [10] from which we draw. Consider the one-dimensional version of the BVPJ of a 
second order elliptic equation. The notations are those of Section 2, with n == (O, l), ni (Xi-l, Xi), 
DI (ni) = D2 (ni) H2 (ni) and í = 1, ... , E. Then 

(13) 

The boundary and jump conditions are: 

u(O) = 9{)0, u(l) = 9m, [u] = j? == fUE] and 

[dU] = j~ == [dUE ] í = 1, ... ,E 1. (14)dx ~ dx' 

It will be assumed that the Dirichlet problem is well-posed in n and in each one of the subdo­
maíns ni. 

In every subinterval (Xi-l,Xi+¡), define the function ui(x) to be the restriction of u(x) to ní . 

Then, for every i = 1, ... , E - 1, ui(x), is the unique solution of a boundary value probIem with' 
prescribed jumps defined in the subinterval (Xi-l, Xi+l), which ís derived from the following con di­
tions: 

http:informati.on


500 I. Herrera 

/:"'uí in in (Xi-b Xi+!) , i 1, ... ,E 1, (15) 
i 

[U 
í]

i = Ji·0 , [ du ] = ji, i = 1, ... ,E 1, (16)
dx i 

Ui(Xi_l +) = U(Xi-l +) U(Xi-l) + ~j?-l , i=2, ... ,E 1, (17) 

Uí (Xi+l-) = U(Xi+l-) = U(Xi+!) ~jP+l , i = 1, ... ,E - 2, (18) 

u1 (O) =u(O) = gao and UE-1(l) = u(l) 98[· (19) 

Let the functions u}¡(x) and u~(x) be defined in (Xi-l, Xi+l) by the following conditions: 

/:"'u}¡=O in (Xi-I,Xi+l),' i l, ... ,E, (20) 

[U}¡li = i = 1, ... ,E - 1, (21)[d;;t= O, 

U}¡(Xi-l+) = U(Xi-l +) = u(xi-d + ~j?-l , í = 2, ... , E - 1, (22) 

U}¡(Xi+l-) = U(Xi+l-) = U(Xi+l) ~j2+! , í 1, ... , E - 2, (23) 

u}¡(xo) = u(O) = 9ao , (24) 

and 

(25) 

together with 

/:"'u~ = in in (Xi-l,Xi) and (Xi,Xi+l), separately, for i = 1, ... , E -1, (26) 

U~(Xi-l+) = U~(Xi+!-) = O for i = 1, ... ,E 1, (27) 

[u~li = jp and [~:t= jI, i = 1, ... ,E - 1, (28) 

Then, it can be verified that 

i = 1, ... , E-l. (29) 

Even more: 

u}{(X) = U}¡(Xi-l- )<p~(x) + U}¡(Xi+l +)<p~(x), (30) 

when <P1:.(x) and <p~(x) are defined by the conditions: 

/:..,<p~ = O, <P~(Xi-l) = O, <P~(Xi+!) 1, (31) 

/:"'<P~ = O, <P~(Xi-l) = 1, <P~ (Xi+!) O, (32) 

together with 

(33) 


F'tom Eqs. (29), (30), (22) and (23), ít follows that 

U(Xí) - U~(Xi) = Ü}¡(Xi) = {Ü(Xi-l) + ~j?-l } <P~(Xi) + {Ü(Xi+l) ~jP+! } <P~(Xi). (34) 
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Hence 

i = 2, ... ,E -2, (35) 

(36) 

and 

i = E 1, (37) 

where 

i _ ",i ( _)p_ - '#_ X t , i = 1, ... ,E 1, (38) 
i í 

p- -o . i ( ) P+-O 
¡.ti = TJi-l + Up Xi - TJi+1 , i = 2, ... ,E - 2, (39) 

i 

i ·í ( ) P+-O
f.Li = P-9ao +Up Xi - 2Ji+l , i = 1, (40) 

and 

i 
P- -o ·í () i - E 1 (41)f.Li = TJí-1 + Up Xi + P+981, '/, = - . 

Equations (35) to (37) constitute an E - 1 three~diagonal system of equations, which can be 
solved for Ui (i = 1, ... , E - 1). Once the averages Ui (i = 1,. _. ,E - 1) are known, all that is 
required to reconstruct the exact solution of the BVPJ is to apply optimal interpolatíon. To this 
end use is made of the identities 

. 1 [1 . 1 -o d ( ) . 1 [ 1 . 1 -o u (Xi+ ) == Ui + '2 u i = Uí + '2Ji an u Xi- == Ui - '2 u i = Ui - '2Ji . (42) 

When these values are complemented with the prescribed boundary values of Eq. (14), well-posed 
local problems in each one of the subintervals of the partition can be defined. Using the previous 
developments, one can apply Eqs. (29) and (30), to obtain u(x) in the interior of the subintervals 
of the partition. Up to now, all the developments have been exacto However, the construction of 
the functions 4>~, 4>~ and u~, i = 1, ... ,E - 1, requires resorting to numerical approximations. 
Although any numerical method can be used for this purpose, collocation was applied in [10] giving 
rise to a non-standard method of collocation (Trefftz-Herrera Collocation). 

6. TREFFTZ-HERRERA APPROACH TO DDM 

Trefftz-Herrera indirect method has a long history [20-22, 26, 27], although its interpretation 
and development as a domain decomposition procedure is more recent [3, 4]. In particúlar, it has 
been known by a variety of names. An early version of it is known as Localized Adjoint Method 
(LAM) [22]. It was combined with the method of characteristics to treat advection-dominated trans­
porti the resulting procedure has been quite successful and has been extensively applied and it ís 
known as Eulerian-Lagrangian LAM (ELLAM) [18]. In particular, the presentation given in this 
Section is based on [6]. Given a differential operator, /:." and its formal adjoint, /:"*, the vector-valued 
bilinear functíon 'D (u, w), is such that 

w/:.,U - u/:"*w == '\l. 'D(u,w). (43) 

The bilinear functions 13(u, w), e(w, u), 8(u, w) and X(w, u), are such that 

'D(u, w) '!l 13(u, w) - e(w, u) on an, (44)' 

-[1:2(u,w)]'!l==8(u,w)-X(w,u) on E. (45) 
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Then, the following Green-Herrera formula holds: 

r w.cudx - r 13(u, w)dx - r a ( u, w)dx = 
Jn Jan JE 

r u.c*wdx- r e*(u,w)dx- r X*(u,w)dx. (46)
Jn Jan JE 

The choice of B and J depends on the kind of boundary and jump conditions considered. When 
the coefficients of the dífferential operators are continuous, J and K, are: 

(j(u, w) == -D([uJ, ÚJ) . 11, and X(w, u) == D(u, [w]) . 11. (47) 

Introduce the following notation: 

(Pu, w) = kw.cudx, (Q*u,w).= ku.c*WdX, (48) 

(Bu, w) { 13(u, w)dx, (C*u, w) = r e*(u, w)dx, (49)
Jan Jan 

(Ju, w) = In (j(u, w)dx, (K*u, w) = In X*(u, w)dx. (50) 

With these definitions, each one of P, B, J, Q*, C* and K*, are real-valued bílinear functionals 
defined on DI x D2, and Eq. (46) can be written as 

((P B - J)u,w) ((Q* - C* - K*)u,w) , (51) 

Or more briefiy, as an identity between two bilinear functionals: 

P - B J Q* - C* K* . (52) 

From now on: u E DI is the solution ofthe BVPJ, while j, 9 and j E D2are defined by j == Pun, 
9 == Bua and j == JUE· It is assumed that a weak formulation of the BVPJ is 

((P - B - J) u, w) == (f - 9 j, w) , (53) 

Eq. (53) can also be written as 

((Q - C - K)*u,w) (f - 9 - j,w) , (54) 

These equations supply two equivalent variational formulations of the BVPJ. They are the vari­
ational jormulation in terms oj the data and the variational formulation in terms oj the cample­
mentary information, respectively. According to their definitions, the linear functionals Q*u, C*u 
and K*u, represent complementary injormation in ni (i 1, ... )E), Gn and E, respectively. As 
explained in the Introduction, in the unified theory of Trefftz Methods one chooses a target of ín­
formation on E. Such target could be K*u itself. However, generally such choice would lead to a 
definition of complementary information that is not optimal, since usually K*u contains redundant 
injormation. Thus, to develop more efficient numerical methods, one needs to elimínate redundant 
information. To this end introduce a decomposition {S, R} of the bilinear functional K, such that 

(55) 

Rere, S ís such that a function tí E fh contains the sought injormatian when S,.tí = S*u, with 
u E D1 the solution of the BVPJ. Then, w E D2 , is an optimal test function when w E Ñ == 
NQ n Na n NR, where NQ, Na and NR are the null-subspaces of Q, C and R, respectively. At this 
point it is convenient to introduce an auxilíary concept: 
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Definition 1. A subset of optimal weighting functions, e e N == NQ n Nc n NR, is said to be 
TH-complete for S*, when for any uE DI, one has: 

(S*u,w} = O, \:Iw E e:::} s*u = o. (56) 

Using this concept it is possible to give a rather concise formulation of Trefftz-Herrera Methods. 
This is given in the next Theorem. 

Theorem 1. Let ee Ñ be a system of optimal weighting functions, TH-complete for S*. Then, a 
necessary and sufficient condition for uE DI to contain the sought information, is that 

(S*u,w) = (f 9 - j,w) ! \:Iw E e. '(57) 

Proof is given in [6], by substitutíon in Eq. (54). 
Theorem 1, supplies a General Formulation of Indirect Trefftz-Herrera Methods which 

can be applied to any linear equation or system of such equatíons, independently of its type (elliptic, 
parabolic or hyperbolic), including the case when the coefficients are discontinuous. In particular, 
when the differential operator is symmetric and positive definite, tlJen the bilinear form S*, is also 
positive definite on the linear subspace of optimal test functions, N == NQ n Nc n N R. 

7. TREFFTZ-HERRERA METHOD IN SEVERAL DIMENSIONS 

Throughout this Section the results of Section 6, will be íllustrated with the BVPJ of the general 
second order elliptic equation 

Lu == -\7. . \7u) + \7. (!l.u) + cu = fn. (58) 

Here gis symmetric and positive definite. The boundary and jump conditions are 

u = U& on 8f} , (59) 

[u] = fUE] == jf); and [g' \7uJ . !l = [g. V'UE) . !l == j1 on E. (60) 

The developments that follow apply even if the coefficients of the differential operator are dis­
continuous. In particular, when the coefficients are continuous the second of the jump conditions of 
Eq. (11), in the presence of the first one, is equivalent to 

on (61)[~~] = [8;:] E. 

When L is gíven by Eq. (9), the adjoint differential operator L* is: 

L*w == -\7. (g' \7w) - Q' V'w + cw, (62) 

while 

D(u, w) == g' (uV'w - w\7u) + !l.uw. (63) 

For Dirichlet boundary conditions, a possible choice for ~ is: 

~(u,w) == (fIn' \7w)u. (64) 

In such case, Eq. (44) implíes 

e*(u, w) == W(fIn . V'u - bnu). (65) 
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Above ª-n =g' n and bn = l!.. n. Apply Eq. (45), to define 

(66) 

With 

(67) 

and 

(68) 

Observe that J = JO + JI and K = KO + K I, if 

(J°u,w) == koO(u,W)dX and (J1u,w) == k8I(u,W)dX, (69) 

(KOw, u) == k XO (w, u) dx and (KIw, u) == k Xl (w, u) dx. (70) 

There are several options for the definition of the sought information. Here, our target of infor­
mation will be the average of the solution across E, U. Such information is enough to define well 
posed problems in each one of the subdomains of the partition, when it is complemented with the 
data of the BVP J. Even more, this definition of sought information is optimal, For this choice, 
S = KO and R = Kl: 

- (S*u, w) == - { t[ª-· Vw] . ndx, (71)lE ­
and the system of equations for the sought information is 

-h t[ª-n' Vw}dx = (f - 9 - j,w) 'i/w E e e N=. NQ nNa nNR. (72) 

Here, w E NQ B t.,*w = O, on ni(i= 1, ... ,E),w E Na B w = 0, on an, and w E NR {:} 
[w] =0, on E. In addition, 

(f,w) == Lwfndx , (g, w) == Jan '13 (ua, w) dx and (j, w) == ha (UE, w) dx. (73) 

Because of the continuity condition that the optimal test fundions must satisfy, the application 
of this procedure leads to an overlapping DDM; Le., the support of test functions includes more 
than one subdomain of the partition. 

When Q == O and e 2: 0, the differential operator t., is symmetric and positive definite and the 
following relations hold: 

P == Q, B == e, J == K. (74) 

Even more, when uE N and w E N, it can be verified that 

- (S*u,w) == - { u[ª-. VwJ. ndx == {{Vw. a· Vu + cwu}dx. (75)lE - ln 

Therefore, S* is a symmetric and positive definite bilinear functional on Ñ. 
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8. TH-cOLLOCATION 

For simplicity, here the procedure is only explained for the case of vaníshíng jumps; Le., j~ lb = O 
(see [6], for more general results). The system of equations for the sought injormation - which has 
been chosen to be the average of the function, across E; Le., the function on E, since it is continuous 
are derived by direct application of the variational principIe of Eq. (72), with a suitable TH-family 
of optimal test junctions, e e D2: 

r uall' ª . 'Vwd2i, VwEe. (76)
Jan ­

8.1. The weighting functions 

For one-dimensional problems like the one considered in Section 5, TH-complete systems are finite 
and Eq. (76) can be applied using a whole TH-complete system. On the other hand, in numerical 
applications to multidimensional problems one can not apply TH-complete systems in fun since, in 
that case, they are infinite. Instead, one truncates a TH-complete family and applies Eq. (76) with 
a finite subset of it, only. The numerical construction of optimal test junctions, for the case when' 
the region Q is a rectangle and the subdomains of the partition are also rectangles, Fig. 2; proceeds 
as follows. One can associate with each internal node (Xi, Yj), four rectangles {Q-&, ... ,Q~}, Fig. 3i 
and the notations Qij, 8Qij and Eij are adopted for the interior of the union of the four rectangle 
closures, the boundary of Qij and the intersection En Qij, respectively. Associated with each node, 
(Xi, Yj), several optimal test functions can be constructed. The support of each one of them is 
contained in Qij. They vanish identically on 8Qij and, so, they are determined uniquely by their 
restrictions to Eij. 

4 
an 

"" 
YEy-1 

/ 
/ 

• 
hy

YI 
hx ...... .. 

Yo 

XI 

Fig. 2. Partition of the domain Q = [Xmin, xmaxl x [Ymio, Yma,,] in rectangular Ex x E y elements, where 
h",=x. X'-1, i 1, ... ,E",andhy Yj-Yj-1, i=l, ... ,Ey 

In [6], associated with each node (Xi,Yj) three optimal test functions wij(x,y), a = 0,1,2, were 
buílt. The general expression, separately in each one of the four basic subdomains, for the optimal 
test functions is (for a = O, 1,2, ¡ = 1, ... ,4): 

4 

wij(x, y) = Bij(x, y) + ~Cff (-r) Nfl(X, Yi ¡), (X,y) E Q~. (77) 
fJ=l 
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I:ij 
2 2

nij 

3 1 

(x¡'Yj) 

4nt n~ 

B VFig. 3. Subregion tV" + 2:;=1 OjNi associated with the node (Xi, Yi) 

Here, G::/ (-r), 'Y = 1, ... ,4, are suitable real numbers. The values of wij, on Eij , are determined 
by the functions Bij(x, y), which were taken successively, as piecewise linear and cubic, on E. In 

addition, they vanished on éJSlij . The functions NZ(x, y; 'Y), f3 = 1, ... ,4, with support in ft¿ for each 
'Y = 1, ... ,4,· were introduced in order to be able fulfill the adjoint differential equation, /:.;*wij = 0, 
at four Gaussian collocation points, of each basic rectangle, without modifying the values at their 
boundaries. For each 'Y = 1, ... ,4, NZ(x, Yi 'Y) was taken to be a bi-cubic polynomial vanishing 

identically on the boundaries of the basic subdomains. The functions B~(x, y) and NZ(x, y; i) are 
given in Tables 1 and 2. 

Table 1. Definitions offunctions B~(x, y),{3 = 0, ... ,4, where H2(x), Hl(x), HJ{y) and H] (y) are Hermite 
CUblC polynomials in X and y, respectively 

Sllj ft¿ Slrj Sl~ 

B~(x,y) ( X-Xi±l ) 
Xi-Xitl 

( Y-Yj+l ) 
Yj-Yj±l 

( X-Xi-l ) 
Xi-Xi-l 

( Y-Yi+l ) 
Yj-Yj+l 

( X-Xi-I ) 
Xi-Xi-I 

( Y-Yj-l ) 
Yj-Yj-l 

( X-XiiI) ( Y-Yj-l ) 
Xi-Xi±l Yj-Yj-l 

Blj(x,y) Hf(x)HJ(y) Hl(x)HJ(y) Hf(x)HJ(y) Hf(x)HJ(y) 

Btj(x,y) Hf(x)HJ(y) Hf(x)HJ(y) Hf(x)HJ(y) 
I 

HP(x)HJ(y) 

Table 2. Definitions offunctions Ng(x,y),{3 = 1, ... ,4, where Hl(x) and H](y) are Hermite cubic 
polynomials in x and y, respectively 

1 2 3 4 
! 

i 

N¿(x,Yii) HI (x)H] (y) HLl (x)H] (y) HLl(x)H]_l(y) H[(x)HJ_l (y) 

Ni1(x, Yi i) HI+! (x)H] (y) Hl (x)H) (y) HI(x)H}_l(Y) Hl+! (X)H}_l (y) 

N~(x,y;'Y) Hl+! (x)HJ+! (y) Hl(x)H)+! (y) H[(x)HJ(y) Hl+l (x)HJ(y) 

Ni~(X,y;i) Hl{x)H}+l (y) HLl (x)HJ+! (y) Hl_l(X)HJ(y) HI(x)HJ(y) 
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8.2. Solution approximation on E 

In ilefftz-Herrera indirect method one retríeves information about the solution of the BVP J on 
the internal boundary E, exdusively. On E, one has to distinguish two sources of information, 
about the solution of the BVPJ; the optimal test functions, when they are used in the variational 
principIe of Eq. (76), and the boundary conditions, at intersection points of 8D and In ad­
dition, the solution approximation has to be defined there only. There is considerable freedom of 
choice for the base functions to be used on E, except for the fact that their number has to be 
equal to that of the weighting functions. This is required in order for the system of Eqs. (76) to 
be determined. However, it is frequently advantageous to use, as base functions, the restriction 
of the test functions to the interna! boundary, E. In particular, for the symmetric and positive 
definite case this leads to symmetric and positive matrices. When the base functions are cho­
sen in this manner, the general expression for the approximate solution of the BVPJ, to be used 
on E, lS 

NF-l 

u (x, y) = L L U¡:IWkl(x, y) + L ua (xr ,Ys) w~s(x, y), (X,y)EE. (78) 
(k,I)Er¡ /.1=0 (r,s)E1]é) 

The reader is warned that Eq. (78) holds at the internal boundary E, only. Here, r¡ lS the collection 
of no des for which the set of weighting functions that vanish identically on 8D 18 not void. In 
addition, r¡a is the set oí nodes lying on the external boundary. More precisely, r¡a is the set of pairs 
(r,s) such that (Xr,Ys) E 851. Corner-nodes need not be included, in the second sum of Eq. (78), 
because when (xr,Ys) 18 a corner then w~s == O, on E. In addition, N F is the number of functions 
associated with the node (Xk, Yl). Although this number generally varíes with the particular node 
considered, this variation is not incorporated in the notation for the sake of simplicity. Final1y, U¡:l 
are coefficients that are determined by application ofthe varíational principIe of Eq. (76). In Eq. (78) 
the two sources of information, mentioned before, are clearly separated. Indeed, in the right-hand 
side member of that equation, the coefficients of the second sum contain information supplied by 
the DirichIet boundary conditions, while the coefficients of the first one contain information that 
will be derived by application of the optimal test functions in the variational principIe of Eq. (76). 
This is explained next. 

8.3. The system of equations 

Applying the expression for the approxima.te solution of Eq. (78), the global system oí equations is 
obtained: 

M 1J./.I U/.I - FIk (k,l) and (i,j)Er¡, ¡.¡., v = 0, ... , N F - 1 . (79)ijkl kl - ij' 

The matríx of the system is gíven by 

(80)M~%l = - .In Wkz[n' g' \7w~] 
The right hand side of Eq. (79) is 

Ff. = { wl:'·fndx - { u"n· a· \7w(t.dx + '" U8rs { wO [n. a· \7w~¿.] dx
tJ Jn 1.J - JA u_ = !J - L...t Jl rs - = tJ-' 

en (r,s)E1]fJ E 

(k,l) and (i,j)Er¡, ¡.¡., v = O, ... , N F - 1 . (81) 

http:approxima.te
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When the differential operator, is symmetric and positive definite (this corresponds to Q == O 
and e 2:: O), then so is this global matrix of Eq. (80). In [6] two algorithms were developed and 
tested: 

AIgorithm l. 

The family of test functions contains only one member, whose values on the internal boundary 
are piecewise linear. Only one degree of freedom is associated with each internal nade and a nine­
diagonal global matrix. This matrix is symmetric and positive definite when so is the differential 
operator. 

AIgorithm n. 
The full family of three test functions (or less, at those nodes in which some of the functions 
of this family do not satisfy the required zero boundary condition on the external boundary) 
was applied at each node, including boundary nodes. This leads to an algorithm in which the 
optimal test functions are piecewise cubic on the internal boundary and the global matrix is 
block nine-diagonal. The blocks are 3 by 3. 

8.4. The error 

For problems in several dimensions the error of numerical solutions, derived using Trefftz-Herrera 
method stems from two sources. Fírstly, the dífferential equations are only fulfilled in an approximate 
manner in the interior of the subdomains of the partition. Secondly, an additional error is introduced 
by truncation of the TH-complete systems. For the above-mentioned algorithms the error introduced 
by the differential equation is O (h4 ) i the truncation errors are O (h2) and O (h4 ), for AIgorithms 1 
and II, respectively, and so are the overall errors are O (h2) and O (h4). 

8.5. Optimal interpolation 

To extend the information on the internal boundary to the whole domain, n, one solves the local 
problems by collocation. When the differential operator is symmetric, the optimal test functions are 
used for this purpose. 

8.6. The numerical experiments 

The numerícal experiments that were performed in [6] consisted in applying two algo­
rithms (1 and U), for soIving the BVPJ of Eqs. (58) to (60). In AIgorithm 1, linear base func­
tions on E are used, while in Algorithm II the whole set of cubic piecewise polynomials, which 
are el (E) are applied. The examples treated correspond to several choices of the coefficients in 
Eq. (58), which are given in Table 3. In addition, TabIe 4 exhibits the analytical solutions for each 
one of them. 

In aH cases the domain of definition was the unit square [0,1] x [0,1], except for Example 2, in 
which the problem dom~n was the SqUare [1,2] x [1,2]. The analytical solutions imply the boundary 
values that were imposed. Only in Examples 6 and 7 the jumps conditions were different to zero 
and they are indicated in TabIe 4. 

The numerical resulta are summarized in Figs. 4 to 10. Each one of the examples was solved 
in a uniform rectangular partition (E == Ex == Ey) of the domain (Fig. 2), using Algorithm 1 and, 
subsequently, Algorithm n. The convergence rate of the error -measured in terms of the norm 
111100 - is O (h2) and O (h4 ) respectively, as shown in those figures. 
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Table 3. Coefficients and right hand term of the examples treated 

Example !J. e Inº' 
1 an = a22 = 1 bl=b2 =0 1 (1 _x2 y2)éY 

a12 = a21 = O 

2 au = a22 = xy b1 =b2=0 O O 

a12 a21 = O 

3 au = 1 + x2 b1 = b2 = O 1 6(y2 x2) 

a22 = 1 + y2 

a12 = a21 = O 

4 aH = a22 = 1 b1 = b2 = O 1 - 2(471")2 cos(41fx) sine41fY) 

a12 = a21 = O 

5 all = 1 + x2 b1 = Y - 2 2(x + y) -(x4 + y4)exy 

a22 = 1 +y2 b2 = x 2 
i a12 = a21 = O 

6 all = a22 = 1 b1 b2 = 1 O O 

a12 = a21 = O 

(1 - X2 - y2)exy O~ y ~ 1/2
7 au = a22 = b1 =b2=O O 

(1 4x2 - 4y2)exy 1/2 ~ Y ~ 1 

O ~ y ~ 1/2={ 1 

4 1/2 ~ y ~ 1 


a12 = a21 = O 


Table 4. Coefficients and right hand term of the examples treated 

Example Exact solution I 
XY1 e

2 x2 y2 

x2 _ y23 

4 cos(41fx) sine41fY) 
XY5 e

6 eX + eY y < 1/2 

eX + eY y = 1/2 

eX + eY + 2 Y > 1/2 

with jump conditions: 

j~(x,O.5) 4', x E [0,1] 
XY7 e

with jump conditions: 

ib(x,0.5) = 3xéI:/2j x E [0,1] 
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10-¡~================~---------------¡ 
Example1: 

'V TH Collocation (linear) 
<> TH Collocation (cubic) 

8 

slope=3.90
Q 

4 

0.4 	 0.8 1.2 1.6 2 2.4 
LogE=-Logh 

Fig. 4. Example 1: Convergence rate oí Trefftz-Herrera collocation method using linear and cubic 
weighting íunctions 

10 

Example2: 
'V TH Collocation (linear) 
<> TH Collocation (cubic) 

8 
slope=3.80 

o:: 

6 


.§' 
I 

<> 


~ 

slope=1.97 

4 

0.4 	 0.8 1.2 1.6 2 2.4 
Lag E=-Lagh 

Fig. 5. Example 2: Convergence rate of Trefftz-Herrera collocation method using linear and cubic 
weighting functions 

http:slope=1.97
http:slope=3.80
http:slope=3.90
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10~------------------------------------------~ 

Example3: 
v TH Collocation (linear) 
<) TH Collocation (cubic) 

8 

slope=3.83 

6 

slope=1.98 
<) 

4 

0.4 0.8 1.2 1.6 2 2.4 
Log E=-Logh 

Fig. 6. Example 3: Convergence rate of 'frefftz-Herrera collocation method using linear and cubic 
weighting functions 

6-.------------------------------------------~ 

Exa!ll>le 4: 
v TH Collocatlon (linear) 
<) TH Collocation (cubic) 5 

4 

slope=3.97 

i 3 

~ 
slope=2.00 

2 

O-+----~--~---r--~--_.----~--,_--_r--_,--~ 

0.4 	 0.8 1.2 1.6 2 2.4 
Log E =-Log h 

Fig. 7. Example 4: Convergence rate of Trefftz-Herrera collocation method using linear and cubic 
weighting functions 

http:slope=2.00
http:slope=3.97
http:slope=1.98
http:slope=3.83
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10-.----------------------------------------~ 

Example5: 
v TH Collocation (linear) 
<> TH Collocation (cubic) 

8 

slope=3.90 

6 

slope=1.98 

4 

0.4 	 0.8 1.2 1.6 2 2.4 
LogE=-Logh 

Fig. 8. Example 5: Convergence rate of Trefftz-Herrera collocation method using linear and cubic 
weighting functions 

10 

Example6: 
v TH Collocation (linear) 
<> TH Collocation (cubic) 

8 

slope=3.98 

i 
6 

~ 
I 

4 

2 

O-+----,----,----,----,----r----r----,---~ 

0.4 	 0.8 1.2 1.6 2 
LogE=-Logh 

Fig. 9. Example 6: Convergence rate of Trefftz-Herrera collocationmethod using linear and cubic 
weighting functions 

http:slope=3.98
http:slope=1.98
http:slope=3.90
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10 

ExafTl)le 7: 
v TH Collocation (linear) 
<> TH Collocation (cubic) 

8 

slope=3.90 

i <> 

6 <> 

~ <> 

4 

slope=1.95 

0.4 0.8 1.2 1.6 2 
LogE=-Logh 

Fig. 10. Example 7: Convergence rate of Trefftz-Herrera collocation method using linear and cubic 
weighting functions 

9. 	CONCLUSIONS 

It has been shown that Trefftz Method, when it is formulated as in Herrera's unífied theory, is quite 
broad and capable of incorporatíng and unífying many numerícal methods for partíal differential 
equations. It is a valuable tool both as a discretization procedure and as a domain decomposition 
method. 

The unified theory of Trefftz Methods ís quite systematic and possesses outstanding generality. It 
ís applicable to any differential equation, or system of such equations, which is linear) independently 
of its type. This ineludes the case of discontinuous coefficients. The general probIem treated is one 
in which, in addition to the conditions prescribed in the external domain boundary, jumps are 
prescribed in some internal boundaries. In this paper the basic concepts of this unified theory 
have been presented. Using this general framework two very wide elasses of Trefftz Methods were 
identified: direct and indirect (or Trefftz-Herrera) methods. A brief description of each of these 
procedures has been presented. As an íllustration, the indirect method was used to produce a 
non-standard method of collocation (Trefftz-Herrera Collocation) for elliptic problems, of second 
arder) in several dimensions. TH-collocation exhibits several advantages with respect to standard 
collocation. Among them: 

l. 	A dramatic reduction in the number of degrees of freedom associated with each node. In the 
standard method of collocation that number is two in one dimension (l-D); four in 2-D; and 
eight in 3-D. For some of the TH-collocation algorithms, this is one for all space dimensions. 

2. 	 In the standard method of collocation, using Hermite cubics, the global matrix is non-symmetric 
even when the differential operator is formally symmetric. In TH-collocation, the global matrix 
is symmetric and positive definite when the differential operator has these properties. 

3. 	 When Hermite cubics are used to approximate the local solutions, in the problems treated in this 
paper, the error is O (h4 ), if the test functions are piece-wise cubíc on E, and it is O (h2) when 

http:slope=1.95
http:slope=3.90
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the test functions are only piece-wise linear. Prom theoretical considerations, an error O (h3 ) ís 
expected for piece-wise-quadratic test functions. 

4. 	 The construction of the test functions and optimal interpolation are quite suitable for parallel 
computation. 
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