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Abstract

This paper is intended as a contribution to enhance orthogonal collocation methods. In this, a novel collocation method—TH-collocation—is

applied to the biharmonic equation and themerits of such procedure are exhibited. TH-collocation relaxes the continuity requirements and, for the

2D problems here treated, leads to the development of algorithms for which the matrices are sparse (nine-diagonal), symmetric and positive

definite. Due to these properties, the conjugate gradientmethod can be directly, andmore effectively, applied to them. These features contrast with

those of the standard orthogonal spline collocation on cubicHermites, which yieldsmatrices that are non-symmetric and non-positive. This paper

is part of a line of research in which a general and unified theory of domain decomposition methods, proposed by Herrera, is being explored. Two

kinds of contributions can be distinguished in this; some that are relevant for the parallel computation of continuousmodels and newdiscretization

procedures for partial differential equations. The present paper belongs to this latter kind of contributions.
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1. Introduction

This paper is part of a line of research in which a general

and unified theory of domain decomposition methods

(DDM), proposed by Herrera [1] and stemming from

Trefftz method [2], is being explored. In it, the terms

‘domain decomposition methods’ are understood in broader

sense than usual and they include many aspects of numerical

methods for partial differential equations. As a matter of

fact, Herrera’s approach to partial differential equations

constitutes a general and systematic formulation of

discontinuous Galerkin methods [3], in which the use of

‘fully’ discontinuous functions is permitted. The investi-

gations that are being carried out, in the line of research

mentioned above, cover two different aspects. One is

concerned with developing novel discretization procedures

[4,5] and the other one deals with producing new ways of

efficiently using parallel computing resources in the

numerical simulation of continuous systems [3].
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The main purpose of the present paper is to present an

improved orthogonal-collocation treatment of the biharmo-

nic equation. This is based on the application of a new

general collocation method, ‘TH-collocation’, which was

introduced in a pair of previous papers [4,5]. An interesting

and attractive feature of TH-collocation is the relaxation of

the continuity conditions, which allows using trial-spaces of

functions that are globally only C0. This, in turn, permits

deriving algorithms with better-structured matrices. In

particular, it produces symmetric and positive matrices

when it is applied to differential systems with such

properties, as is the case of Laplace’s and the biharmonic

operators. Also, the number of degrees of freedom

associated with each node is reduced. For Poisson equation,

TH-collocation yields an algorithm of fourth order precision

whose global matrix, in addition to being symmetric and

positive definite, is block nine-diagonal, with blocks of at

most 3!3 [5]. This is to be compared with orthogonal

spline collocation (OSC), which for the same order of

accuracy yields a global matrix that is neither symmetric,

nor positive, and whose blocks are 4!4. Furthermore, TH-

collocation also yields another algorithm [5], of second

order precision, whose global matrix is strictly nine-

diagonal (i.e. with blocks 1!1). Such reduction is not
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possible when OSC is applied. Due to these important

advantages, over standard collocation procedures, which

TH-collocation possesses, domain decomposition methods

(DDM) can be effectively applied to TH-collocation

algorithms using the Conjugate Gradient Method (CGM)

in a direct manner [3].

For the biharmonic equation semi-analytical discretiza-

tion procedures, of the Trefftz–Jirousek type [6], have been

developed by several authors [7–9] and a review of such

methods can be found in [10]. As for non-analytical

discretization methods, a recent paper by Lou et al. [11]

presents a discussion, and a brief comparison, of several

discretization methods that are available to deal with the

biharmonic equation. According to them, some of the

existing finite difference methods are very efficient and one

due to Bjorstad is of optimal complexity. The order of

accuracy of such methods is only second order. However, a

fourth order collocation algorithm was introduced in [11].

When approaching the discretization of the biharmonic

equation with non-analytical procedures, there are mainly

two options. The first one consists in using a 13-point stencil

[12,13] and in the second one, the ‘splitting approach’ [13],

the biharmonic equation is rewritten as a system of two

equations whose treatment requires solving two Poisson

equations successively. When this latter procedure is

applied, the effectiveness of the method and of its parallel

computation depends essentially on those of the Poisson

equations. The most popular collocation formulation for

partial differential equations of second order, which the

majority of the authors working in this field have used up to

now, is OSC; i.e. the Hermite bi-cubic orthogonal spline

collocation [14]. The OSC formulation is applied in a trial-

space of functions which are globally C1; this produces a

global matrix, which in its usual form is neither symmetric

nor positive definite, even when the differential operator has

these properties.

In this paper, we tackle the biharmonic equation using

the splitting approach and solve each one of the Poisson

equations by means of TH-collocation, profiting from the

advantageous features of the TH-collocation treatment of

Poisson equation. Thus far, the order of accuracy of our

algorithms has been only derived experimentally, as was

done in [5] and in Section 7. However, an interesting

characteristic of our method is that it actually produces the

same solutions as those obtained by Lou et al. [11]. Using

this fact, a rigorous theoretical proof of the fourth order

accuracy of our algorithm can be constructed. However,

such discussions will be presented elsewhere.
2. Notations

In our formulation the notations U3Rn and vU are used

for a domain of the Euclidean space of dimension n and its

boundary, respectively. Throughout this paper n is taken to

be equal to 2. LetPh{U1,.,UE} be a partition ofU. Given
such a partition, the boundaries of the subdomains are vUi,

iZ1,.,E. Clearly, vU3gE
iZ1vUi and the ‘internal bound-

ary’, S, is defined to be the closed complement of vU
relative togE

iZ1vUi. Then, vU will be referred as ‘external

boundary’. In the external boundary, the unit normal vector

is taken pointing outwards. As for the internal boundary, a

positive side of S and a unit normal vector, also denoted by

�
n, are defined almost everywhere (a.e.) on it with the

convention that
�
n points toward the positive side.

It is assumed that for each iZ1,.,E, there is a linear

space D(Ui), whose elements are functions defined in Ui.

Then, trial and test functions are taken from the linear space

D, defined by:

DhDðUÞhDðU1Þ4/4DðUEÞ (1)

Possible choices for D(Ui) are the Sobolev spaces

H5(Ui), iZ1,.,E. For the case of elliptic equations of

second order that will be considered, it is convenient to take

sR2. In fact, when the space D is defined by Eq. (1), a

function u2D is a finite sequence of functions

uh(u1,.,uE) such that ui2D(Ui), iZ1,.,E. It is assumed

that the trace of every ui2D(Ui) is defined a.e. on vUi.

Given any function u2D, uh(u1,.,uE), two traces are

defined at every point of S, which are denoted by uC and

uK, respectively. Since generally, uCsuK, it is useful to

define the ‘jump’ and the ‘average’ of any function u2D by

½u�Z uCKuK and _uZ ðuCCuKÞ=2 (2)

respectively. This notation will be applied not only for a

function, but for its derivatives as well. Clearly, the

definition of the jump of a function is dependent on the

orientation of S; however, the expressions that will be

handled in this paper are invariant with respect to such

orientation.

In some previous works, for simplicity, we have written

LuZ fU, in U, to mean:

LuZ fU; at each Ui; iZ 1;.;E (3)

For greater clarity, in the present paper we will be more

explicit and write directly, Eq. (3), since wLu is not, in

general, defined on S when u2D and w2D. Similarly, we

also write
PE

iZ1

Ð
Ui
wLu dx instead of

Ð
U wLu dx. Assume

a tensor-valued function
�
a
�

is defined in U and write

�
a
n
ha$

�
n, then it can be shown that

XE
iZ1

ð
vUi

w
�
a
n
$Vu dxZ

ð
vU

w
�
a
n
$Vu dxK

ð
S

½w
�
a
n
$Vu�dx (4)
3. Splitting formulation of the biharmonic equation

The formulation of well-posed problems in function

spaces containing discontinuous functions require that some

jump of the functions and their derivatives, across the

internal boundary, be prescribed. A well-posed boundary
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value problem with prescribed jumps (BVPJ) for the

biharmonic equation is considered in what follows. It is

defined by the differential equation

LuhD2uZ fU; in Ui; iZ 1;.;E (5)

the boundary conditions

uZ g0 and DuZ g1; on vU (6)

and by the jump conditions:

½u�Z j0;
vu

vn

� �
Z j1; ½Du�Z j2;

vDu

vn

� �
Z j3; on S

(7)

When j0Zj1Zj2Zj3Z0 the solution of such problem is

the same as that of a standard boundary value problem for

the biharmonic equation, without jumps. Here, this problem

is tackled using the splitting approach mentioned in Section

1. Then, the biharmonic equation is rewritten as a system of

two Poisson equations [13]:

KDuZ v;

KDvZ fU;
in U

(
(8)

Then the solution of BVPJ of Eqs. (5)–(7) can be

obtained by solving sequentially two Poisson’s equations,

where each of them is subjected to non-homogeneous

Dirichlet boundary conditions:

KDuZ v; in U

uZ g0; on vU

½u�Z j0;
vu

vn

� �
Z j1; on S

8>>>>><
>>>>>:

and

KDvZ fU; in U

vZ g1; on vU

½v�Z j2;
vv

vn

� �
Z j3; on S

8>>>>><
>>>>>:

(9)

In this paper, the resulting coupled system of Eq. (9) will

be solved by applying the indirect Trefftz–Herrera colloca-

tion procedures developed in Refs. [4,5].

A last comment, before finishing this section, is in order.

The splitting approach to the biharmonic equation is

applicable to some other combinations of boundary

conditions. Boundary value problems in which the follow-

ing pairs: (u, vDu/vn), (vu/vn, Du) or (vu/vn, vDu/vn) are
prescribed in the outer boundary can also be split into a

system of two Poisson equations. However, other problems

such as those in which the pairs (u, vu/vn) and (Du, vDu/vn)
are prescribed in the outer boundary cannot be split in this

manner. In such case, TH-collocation has to be applied

directly to the original biharmonic equation using

a procedure that is under investigation at present and that

we intend to publish in the near future.
4. Solution of Poisson equation

TH-collocation, as presented in [5], will be here applied

to each one of the Poisson’s problems of Eq. (9). To this

end, the results presented in [5] are specialized for the

following boundary value problem with prescribed jumps

KDuhKV$VuZ fU; on Ui; iZ 1;.;E (10)

together with:

uðxÞZ uv on vU; ½u�Z j0S and
vu

vn

� �
Z j1S on S (11)

Our interest will focus in the case when j0SZ0 and

j1SZ0 on S.

In Herrera’s indirect approach, in which TH-collocation

is based, a special class of test functions is used; they are

taken from a linear subspace N3D whose members, w2N,

fulfill the conditions [5]:

DwZ 0; at Ui; iZ 1;.;E;

½w�Z 0; on S and wZ 0 on vU
(12)

Thus, such test functions are continuous in U, but their

derivatives may have jump discontinuities across S. Let

u2D be the solution of the Poisson BVPJ considered in this

section and ~u2D be any function of D. Then, the weak

formulation that will be applied (see [5]) states that _�~uh _�u,
on S, if and only if:

K

ð
S

u
vw

vn

� �
dxZ

XE
iZ1

ð
Ui

wfU dxK

ð
vU

uv
vw

vn
dx

K

ð
S

wj1S K j0S
vw

vn

� �
dx; cw2N

(13)

In passing, it is observed that when both v and w2N the

following identity holds:

K

ð
S

v
vw

vn

� �
dxh

ð
U

Vv$Vw dx; cv; w2N (14)

Therefore, the bilinear form K
Ð
S v½vw=vn�dx is sym-

metric and positive-definite on N.

At this point, it is convenient to introduce an auxiliary

function, u02D, satisfying:

u0ðxÞZ uvðxÞ; on vU

½u0�Z ½uS�Z j0S; on x2S

vu0
vn

� �
Z

vuS
vn

� �
Z j1S; on x2S

(15)

Furthermore, define:

vðxÞZ uðxÞKu0ðxÞ; in U (16)
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Then

KDvðxÞZ fU CDu0ðxÞ; for x2Ui; iZ 1;.;E (17)

vðxÞZ 0; on vU

½v�S Z 0; on S

vv

vn

� �
S

Z 0; on S

(18)

and Eq. (13) reduces to:

K

ð
S

v
vw

vn

� �
dxZ

XE
jZ1

ð
Uj

wðfU CDu0Þdx cw2N (19)

In Eq. (19), the value of the function v onS has been used

instead of the average _v, because _vZv, as v is continuous

across S. Even more, when fU2HrðUÞ and Du0(x)2Hr(U),

with rR0, then v2HrC2(U). In particular, the trace of v on

S, belongs to C1ðSÞ. This fact permits simplifying the

numerical implementation of the method, because the

search for v can be carried out in a smaller space of

functions.

The weak formulation of Eq. (19) is sufficient for

obtaining the function v on the internal boundary S,

exclusively, which in turn yields the average of the sought

solution there, by means of Eq. (16); i.e.

_uZ _u0 Cv; on S (20)

If desired, the solution u of the BVPJ can be obtained in

the interior of the subdomains of the partition by ‘optimal

interpolation’, which consists in solving well-posed Dirich-

let problems in each of the subdomains of the partition. At a

given subdomain, Ui, the boundary data for such a problem,

at points belonging to ShvUi, are defined by the equations

uCh _uC
1

2
½uS� and uKh _uK

1

2
½uS� (21)

and by the first of Eq. (11), at points belonging to vUhvUi.

Observe that the identity

K

ð
S

v
vw

vn

� �
dxh

XE
iZ1

ð
vUi

v
vw

vn
dx (22)

holds when v2D fulfills Eq. (18), and w2N. The following

chain of equalities

K

ð
S

v
vw

vn

� �
dxZ

ð
vU

v
vw

vn
dxK

ð
S

v
vw

vn

� �
C v½ �

�vw

vn

$0
@

1
Adx

Z

ð
vU

v
vw

vn
dxK

ð
S

v
vw

vn

� �
dxZ

XE
iZ1

ð
vUi

v
vw

vn
dx

(23)

makes Eq. (22) clear.
5. TH-discretization

When TH-collocation is applied for solving Poisson

equation, the construction of the global system of equations

is based on Eq. (19) but the linear subspace N3D of special

test functions is replaced by a TH-complete system E3N

(see [5]). TH-complete systems are infinite for problems in

more than one independent variable and, in numerical

applications of TH-collocation, it is necessary to approxi-

mate TH-complete systems by finite families, whose

members belong to N3D. This, of course, implies a

truncation error that is reflected in the accuracy of the

approximate solutions so obtained.

Functions w2N are uniquely determined by their traces

on the internal boundary S, because they fulfill Eq. (12).

Thus, the subspace of test functions ~N3N to be applied can

be specified by taking a suitable finite-dimensional linear

manifold of dimension m, of functions defined on S. This

manifold, in turn, is determined when a basis that spans it is

specified. We use the notation ~N3N for the subspace

spanned by Ehf ~w1;.; ~wmg3N. Also, the exact solution

v2N will be approximated on S by

~vh
Xm
aZ1

ca ~w
a; on S (24)

that fulfills Eq. (19), but only for all ~w2 ~N. Then

KS$
�
cZ

�
b (25)

where
�
chðc1;.; cmÞ and �

bhðb1;.; bmÞ, with:

bah
XE
iZ1

ð
Ui

~waðfU KLu0Þdx; iZ 1;.;m (26)

In addition, the elements of the matrixKS are given by:

KSabhK

ð
S

~wb v ~wa

vn

� �
dxZ

XE
iZ1

ð
vUi

~wb v ~w
a

vn
dx

Z
XE
iZ1

ð
Ui

V ~wb$V ~wa dx (27)

The matrixKS is symmetric and positive definite.
6. The test functions

As mentioned before, the test functions, w2N, are

uniquely determined by their traces on S. In a manner

similar to what was done in [5], in the applications to

Poisson equation that are considered in this paper, the linear

subspace of test functions, ~N3N, is such that the traces on

S of its members are continuous piecewise polynomials of a

fixed degree G. Two algorithms will be constructed. For

Algorithm 1, GZ1, and for Algorithm 2, GZ3. In addition,



Fig. 1. Partition of the domain UZ[xmin,xmax]![ymin,ymax] in rectangular

Ex!Ey elements, where hxZxiKxiK1; iZ1,.,Ex and hyZyjKyjK1; jZ
1,.,Ey.
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for Algorithm 2, the traces are required to be C1ðSÞ. Then,

in each case the family of test functions E3 ~N, of Section 5,
will be a basis of ~N, whose construction, for cases when the

partition subdomains are either triangles or quadrilaterals, is

relatively straightforward. The procedure is explained next

for the case when the domain U of definition of the BVPJ is

a rectangle and the subdomains of the partition are also

quadrilaterals (Fig. 1). Then, associated with each internal

node (xi, yj), we consider a cross which is made of two

intervals limited, one of them, by the nodes (xiK1, yj) and

(xiC1, yj), and, the other one, by the nodes (xi, yjK1)

and (xi, yjC1), Fig. 2. They intersect at the ‘center’ of

the cross (xi, yj). For both algorithms, there are systems E

basis of ~N whose functions have support contained in one of

those crosses.

Algorithm 1. Given any node (xi, yj), there is one, and only

one, piecewise linear function with support in the cross

associated with it, such that it takes the value ‘1’ at (xi, yj)

and vanishes at the other end points of the cross. Then the

system E3N, basis of ~N, is the collection of functions of N

whose restriction to S is one of such piecewise linear

functions.
Fig. 2. Subregion Uij associated with the node (xi, yj).
Algorithm 2. Here the following notations are used, H0
i ðxÞ

is the one dimensional Hermite cubic polynomial with

support in the interval (xiK1, xiC1), which takes the value 1

at node xi and zero at nodes xiK1 and xiC1; and its first

derivative is zero at all nodes xiK1, xi and xiC1. Similarly,

H1
i ðxÞ is the one dimensional Hermite cubic polynomial with

support in the interval (xiK1, xiC1), which takes the value

zero at nodes xiK1, xi and xiC1; and its first derivative takes

the value 1 at node xi and zero at the other nodes xiK1 and

xiC1. The use of the notations H0
j ðyÞ and H1

j ðyÞ is similar.

Furthermore, let us order the intervals (xiK1,yj)K(xiC1,yj), as

‘first’, and (xi,yjK1)K(xi,yjC1), as ‘second’. Then any

function defined in the cross associated with the node (xi,

yj), is made of an ordered pair of functions {p(x),q(y)}, where

p(x) is defined on (xiK1, xiC1), while q(y) is defined on (yjK1,

yjC1). For Algorithm 2, when (xi, yj) is an internal node, the

trace on each one of the members the system of functions

E3N, is one of the following functions:
i.
 fH0
i ðxÞ;H

0
j ðyÞg,
ii.
 fH1
i ðxÞ; 0g and
iii.
 f0;H1
j ðyÞg.
If (xi, yj) lies on the external boundary vU, then in

order to fulfill the boundary condition of Eq. (12), only

the functions of this set, which vanish on vU are taken. In

particular, for boundary nodes that are not a corner, only

one of the test function associated with each one of them

is used. When (xi, yj) lies on a vertical boundary, such

function is the restriction of fH1
i ðxÞ; 0g to the intersection

of the cross with the domain U and, similarly, if (xi, yj)

lies on a horizontal boundary, such function is the

restriction of f0;H1
j ðyÞg to the intersection of the cross

with the domain U. In addition, the set of functions

associated with corner nodes is void, because none of the

functions associated with such a node fulfills the

homogeneous boundary condition of Eq. (12). Observe

that the trace of each one of the members of the system

E3N fulfills the requirement of belonging to C1ðSÞ. As

mentioned in Section 4, this property is also enjoyed by

the trace of v. Thus, the use of E3N defined in this

manner, in the search for v2C1ðSÞ, is consistent and

reduces the number of degrees of freedom that are

required. Indeed, it can be seen that if v;C1ðSÞ then five

functions, instead of three, at each internal node have to

be introduced [5].

The above description defines uniquely a family of test

functions E3 ~N3N, which is a basis of ~N3N. A simple

counting—there are (ExK1) (EyK1) interior nodes, 2(ExC
EyK2) boundary nodes plus 4 corners—shows that the

dimension of ~N is (ExK1) (EyK1), for Algorithm 1, while it

is 3ExEyK(ExCEy)K1 for Algorithm 2. These same

numbers yield the number of degrees of freedom for each

case, since test functions are also used as base functions on

S. Here, Ex is the number of subintervals in the x-direction,

while Ey is the number of subintervals in the y-direction.



Table 1

Analytic solutions for each one of the examples

Example Exact solution

1 x2(xK1)2y2(yK1)2

2 sin2(2px)sin2(2py)

3 (x2K1)2eyC(y2K1)2ex

4 sin2(2px)sin2(2py)Cxy

5 sin2(2px)sin2(2py)Cexy

Fig. 4. Example 1: convergence rate of Trefftz–Herrera collocation method

using cubic weighting functions.
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7. The numerical experiments

Two sets of numerical experiments were carried out. The

first one consisted in applying Algorithm 1 of Section 6, for

solving the Poisson’s equations that occur when the splitting

method, of Section 3, is used to treat several examples of

the BVPJ of Eqs. (10) and (11). Exactly the same was done

in the second set of numerical experiments but Algorithm 2

was used instead of Algorithm 1. The analytical solutions of

each of these examples are given in Table 1. In all cases the

domain of definition is the unit square [0,1]![0,1]. The

imposed boundary values g0 and g1 and the right hand side

term fU are those implied by the analytical solutions.

Each one of the examples was solved in a uniform

rectangular partition of the domain using Algorithm 1 and,

subsequently, Algorithm 2, for which the weighting

functions are piecewise linear and piecewise cubic,

respectively, on S. In each of Figs. 3–12 the convergence

rate of the error—measured in terms of the norm k kN—is

shown at nodes (xi, yj), on the internal boundaries ðSijÞ and

on the elements (Uij).

Tables 2 and 3 summarize the numerical results for

Algorithm 1 and Algorithm 2, respectively. For each
Fig. 3. Example 1: convergence rate of Trefftz–Herrera collocation method

using linear weighting functions.
example, the constant C and the power a of the estimated

convergence error Cha based on least square log fits are

reported.
8. Conclusions

The new method of collocation introduced in [4,5], TH-

collocation, has been applied to the biharmonic equation
Fig. 5. Example 2: convergence rate of Trefftz–Herrera collocation method

using linear weighting functions.



Fig. 8. Example 3: convergence rate of Trefftz–Herrera collocation method

using cubic weighting functions.

Fig. 6. Example 2: convergence rate of Trefftz–Herrera collocation method

using cubic weighting functions.
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subjected to one class of boundary conditions, using the

splitting approach [13]. Two algorithms were developed in

this manner that enjoy two general properties of discretiza-

tion procedures, which are derived by means of Herrera’s

approach to domain decomposition; namely, the global

matrices are symmetric and positive definite, when the

original differential operators have these properties, and

their constructions require solving local problems exclu-

sively. These features are quite suitable for application of

parallel computation.
Fig. 7. Example 3: convergence rate of Trefftz–Herrera collocation method

using linear weighting functions.
One of these algorithms (Algorithm 1) uses piecewise

linear interpolation in the internal boundary and the other

one (Algorithm 2) uses piecewise cubic. The error behavior

of Algorithm 1 is O(h2) and the corresponding properties for

the global matrices follow:
I.
Fig.

usin
They are strictly nine-diagonal (i.e. with blocks 1!1);

and
II.
 The number of degrees of freedom associated with each

internal node is one.
9. Example 4: convergence rate of Trefftz–Herrera collocation method

g linear weighting functions.



Fig. 12. Example 5: convergence rate of Trefftz–Herrera collocation

method using cubic weighting functions.

Fig. 10. Example 4: convergence rate of Trefftz–Herrera collocation

method using cubic weighting functions.
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As for Algorithm 2, the error behavior is O(h4) and yields

global matrices with the following properties:
i.
Fig

met
They are block nine-diagonal, the blocks being at most

3!3; and
ii.
 The number of degrees of freedom associated with each

internal node is three.

Because of the above features, both algorithms can

be easily and effectively parallelized. Furthermore,
. 11. Example 5: convergence rate of Trefftz–Herrera collocation

hod using linear weighting functions.
the Conjugate Gradient Method is directly applicable, as

has been done in [3].

It is natural to compare these algorithmswith those derived

by means of OSC (Hermite bi-cubic orthogonal spline

collocation), which is the approach to collocation that has

been more extensively used up to now. Regarding Algorithm

1, it must be mentioned that using OSC it is impossible to

derive an algorithm that is strictly nine-diagonal. On the other

hand, Algorithm 2, which is fourth order, and OSC have the

same order of accuracy; so, they can be compared directly.

When OSC is applied for solving the Poisson equations
Table 2

Convergence rates of Algorithm 1

Example kuK ~ukN kuSK ~uSkN kuUK ~uUkN

C a C a C a

1 K1.87 2.00 K1.87 2.00 K2.08 1.99

2 K1.95 2.00 K1.91 1.86 K2.27 2.05

3 K0.86 2.02 K0.81 1.89 K0.94 1.83

4 K2.00 2.01 K1.96 1.88 K2.30 2.05

5 K2.01 2.02 K1.97 1.88 K2.31 2.06

Table 3

Convergence rates of Algorithm 2

Example kuK ~ukN kuSK ~uSkN kuUK ~uUkN

C a C a C a

1 K2.00 4.06 K2.19 4.10 K2.48 4.23

2 K3.01 3.96 K3.18 4.01 K2.93 3.80

3 0.53 3.99 K0.17 3.99 K0.46 3.96

4 K3.00 3.95 K2.91 3.83 K2.92 3.79

5 K3.01 3.96 K3.08 3.95 K3.23 4.02
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occurring in previous sections, the number of degrees of

freedom associated with each internal node is four, and the

global matrices are non-symmetric and non-positive. As

mentioned before, when the TH-collocation Algorithm 2 is

used instead, the number of degrees of freedom associated

with each internal node is only three and the global matrices

are symmetric and positive definite. Thus, a significant

reduction of the number of degrees of freedom is achieved

when TH-collocation is applied. Furthermore, because of the

features explained above the algorithms derived using OSC

cannot be easily parallelized and the Conjugate Gradient

Method cannot be directly applied, while the opposite holds

true when TH-collocation is used. This is probably the most

important advantage of TH-collocation procedures. Even so, a

method, which seems to be the most competitive one thus far

developed for the biharmonic equation using OSC, deserves

mention. It is due to Lou et al. [11], it is based on the splitting

approach and combines OSC with a fast solver previously

developed. However, because of the very special properties in

which this is based, it can only be applied to Poisson equation

in rectangular regions with rectangular meshes.

Here, for developing Algorithms 1 and 2, rectangular

elements were used, but linear and cubic interpolation can

also be applied in other kind of elements, such as triangles.

When this is done, the global matrices associated with the

resulting algorithms are sparse and enjoy the properties,

common to all procedures that are based on Trefftz–Herrera

domain decomposition approach, mentioned above: they are

symmetric and positive definite, and their construction

involves solving local problems exclusively. If rectangular

elements are used, as has been done in this paper, the

methods here presented can be applied in domains with

shapes of considerable generality, since the problem domain

does not need to be a rectangle, and many of the nice matrix

properties are preserved. However, the geometrical diver-

sity of the possible problem domains is enhanced if the

method is applied using rectangular meshes of the type

reported Barrera-Sanchez et al. (see [15,16]), or triangles.

As mentioned previously, it can be shown that Algorithm

2 yields exactly the same solution as the OSC. Therefore, our

method derives the same solution as OSC but using much

simpler matrices. In conclusion, the results of the present

article exhibit the versatility of Trefftz–Herrera domain

decomposition approach in onemore instance. Other types of

boundary conditions for the biharmonic equation can also be
treated bymeans of the splitting approach, but not all of them.

Observe that this limitation is shared by all procedures that

are based on the splitting approach, including Liu’s

algorithm. However, more general boundary conditions can

be dealt with applying TH-collocation directly to the original

biharmonic equation, without splitting, but they need some

special developments and the problem in its full generality is

being investigated at present.
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