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Abstract

In recent years, new and more effective procedures for applying collocation have been published. This article is devoted to present a
revision of this subject and complement its developments. From the general theory two broad approaches are derived, which yield the
direct and the indirect TH-collocation methods. The former approach had not been published before, and it is a dual of the indirect
approach. In particular, second order differential equations of elliptic type are considered and several orthogonal collocation algorithms
are developed for them. In TH-collocation, the approximations on the internal boundary and in the subdomain interiors are completely
independent. This yields clear computational advantages that are illustrated through the construction of such algorithms. In the imple-
mentations presented, three dimensional problems are included. In passing, single-point-collocation methods that have been the subject
of several recent publications are revised.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Collocation is known as an efficient and highly accurate
numerical solution procedure for partial differential equa-
tions; furthermore, its formulation is very simple. How-
ever, in its standard form, referred to as orthogonal
spline collocation (OSC) [1,2], which consists in applying
orthogonal collocation on cubic splines, such discretization
method suffers from several drawbacks. Among them, it
yields ill-structured matrices, which are non-positive and
non-symmetric even when the differential operators are
symmetric and positive. This produces difficulties for com-
bining efficiently OSC with domain decomposition proce-
dures (see also [3,4]). However, in previous papers [5–8]
the TH-collocation method was introduced and it was
shown to possess clear and important advantages over
OSC, such as:
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(1) Better structured matrices. They are symmetric and
positive when the differential operators have these
properties [6];

(2) Greater flexibility in selecting the approximating poly-

nomial spaces. This property stems from the fact that
in TH-collocation, the polynomials used on the inter-
nal boundary and in the interior of the partition sub-
domains may be different;

(3) The number of collocation points to be applied may be
reduced. This is due to the fact that the degree of the
approximating polynomials required for its imple-
mentation, in the interior of each one of the partition
subdomains, can be so reduced;

(4) It is easily parallelized. Indeed, when dealing with posi-
tive and symmetric differential operators, or systems of
such operators such as those of elasticity, the positive
definiteness of the matrices derived by TH-collocation
permits a direct application of the conjugate gradient
method (CGM) when combining TH-collocation with
domain decomposition methods (DDM) [7];

(5) Greater generality. The new TH-collocation method
can be applied to practically any linear partial
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differential equation or system of such equations,
occurring in science and engineering. It has already
been applied to elliptic and parabolic equations,
including the most general second order elliptic equa-
tion [6] and the bi-harmonic equation [8], among the
higher order equations.

All these results show that orthogonal collocation in its
new form constitutes a versatile and powerful methodology
capable of being effectively applied to a wide variety of
engineering problems, and this paper is devoted to further
its development.

The variety of such engineering applications is indeed
broad, including steady state and time dependent problems
of fluid and solid mechanics (such as elastostatics and
dynamical elasticity); transport by fluids (when they move
freely in the physical space or when they are restricted to
move in a porous medium) of energy and dissolved matter;
groundwater exploitation; petroleum engineering; and
many more. This is because the basic methodology is appli-
cable to any linear partial differential equation, or system
of such equations, independently of its type. However, to
be specific here the details of their implementation will be
presented exclusively for the most general second-order
elliptic equation that is linear and several algorithms will
be so derived. Anyway, the range of its applicability
remains wide even when attention is restricted in such a
manner because the steady states of many engineering sys-
tems are modeled by second-order elliptic equations.
Indeed, for example, Poisson equations govern the steady
states of: the electric potential; the piezometric head in an
aquifer; the temperature in thermal equilibrium; the distri-
bution of a pollutant in the atmosphere; etc. Furthermore,
the equations of elastostatics can be reduced to Poisson
equations when, for instance, the Boussinesq–Papkov-
itch–Neuber representation ([9], see also [10]) is used. Sim-
ilar representations, in terms of Poisson equation solutions,
exist for the solutions of the biharmonic equation [11],
which is fundamental in plate theory, and for the solutions
of Stokes equations [12], on which the treatment of a large
variety of fluid engineering problems is based.

If the fluid is in motion, the governing equations of the
steady states of heat and matter transport systems are not
Poisson equations any longer; however, they are (generally,
non-symmetric) second order elliptic equations anyway.
Furthermore, although in most cases elliptic equations are
not associated directly with the models of non-steady states,
nevertheless, when a step-by-step solution procedure is
adopted, elliptic equations have to be solved at each time
step. Of special interest is the case of advection-dominated
transport, a difficult problem for which the methods here
presented are especially effective and in previous stages of
their development, in which they were known as Localized
Adjoint Methods (LAM), motivated the well-known Eule-
rian–Lagrangian Localized Adjoint Method (ELLAM) [14].

Later developments of the theory have further increased
its flexibility and more fully clarified its foundations. The
basic theory of TH-collocation stems from Herrera’s uni-
fied theory of DDM [15,16]. Such a unified theory classifies
DDM approaches into two broad categories [15]; namely,
‘direct’ – or Steklov–Poincare – and ‘indirect’ approaches,
which correspondingly induces two classes of TH-colloca-
tion methods. Furthermore, there exists a parallelism – or
duality – between the direct and the indirect approaches,
which was announced in [13] and by now it is fully devel-
oped. This led to the unifying concept of ‘finite element
methods with optimal functions (FEM-OF)’ and in such
a framework a third approach, the Petrov–Galerkin
approach, is incorporated. The indirect collocation meth-
ods were already discussed in [5,6], where TH-collocation
methods were introduced, but the implementation of direct
collocation methods including 3D problems is here pre-
sented for the first time. A more thorough discussion of
the Petrov–Galerkin version of TH-collocation, together
with its implementation, is left for future publications.

In the present paper also a significant step forward is
made in the theoretical analysis of the error associated with
the algorithms derived from the TH-methodology. For this
purpose some basic formulas that are useful for the error
analysis, whose range of applicability is as broad as that
of Herrera’s theory, were established and were applied to
the six TH-collocation algorithms that are developed in
this article, having obtained very satisfactory agreement
between the theoretical predictions and the numerical
experiments results, which also corroborate the advantages
of TH-collocation over standard collocation procedures
(OSC). It is also concluded that from a FEM perspective,
TH-collocation supplies an effective tool for matrix con-
densation since it can be efficiently used to reduce the num-
ber of degrees freedom involved in the problems equations
systems (reductions of 67% and 74% are obtained in the
problems treated in this article).

On the other hand, recently there has been a significant
interest and expectations about the so called ‘single-collo-
cation-point methods’ [17,18], in which only one colloca-
tion point is used in each partition subdomain. For
second order elliptic problems in dimensions n-dimensions,
due to the high degree of spline smoothness that is required
by OSC, the lowest degree of the approximating polynomi-
als that can be used is 3 and, concomitantly, at least 2n col-
location points are required. Thus, single-collocation-point
methods cannot be constructed when OSC is applied in its
standard form; however, in our approach this can indeed
be done, as was pointed out in [6] and more thoroughly dis-
cussed in [13]. Since, Herrera’s theory supplies a very suit-
able framework for single-collocation-point methods in the
present paper this topic is briefly revised. Although single-
collocation-point methods possess several attractive fea-
tures [17,18], our conclusions are not as positive in this
respect; indeed, in the numerical experiments that were car-
ried out single-collocation-point methods did not offer
clear advantages over FEM.

Section 2 is devoted to a purely verbal description of the
basic ideas of Herrera’s method, while the notation to be



I. Herrera et al. / Advances in Engineering Software 38 (2007) 657–667 659
used is explained in Section 3. A brief presentation, sup-
ported wherever possible by suitable references to previous
work, of the required mathematical formalisms is made in
Sections 4 and 5, and their application to general second-
order elliptic-equations is made in Section 6. The concepts
finite element methods with optimal functions (FEM-OF)
are introduced in Section 7 and details of the numerical
implementation are given in Section 8, while the error anal-
ysis is done in Section 9. Section 10 is devoted to explain
the numerical experiments and the discussion of single-
point-colloction methods is made in Section 11. Finally,
the conclusions are presented in Section 12 and the basic
formulas used for the error analysis are contained in
Appendix.

2. An overview of TH-collocation

As discussed in the previous section the advantages of
TH-collocation methods over the standard OSC can pro-
vide benefits for the numerical treatment of a large class
of engineering problems (see also [19]). This is due to the
broad scope of Herrera’s theory [5,6,14–16,20–23], on
which TH-collocation is based.

Consider a partition P � {X1, . . . ,XE} of a domain X
(Fig. 1), where a boundary-value problem is formulated.
A first step that is made is to ‘localize’ the problem. To this
end, a procedure is established which permits constructing
the ‘global’ solution, defined in the entire domain, by solv-
ing exclusively ‘local’ problems in each one of the subdo-
mains. The general strategy to achieve this goal consists
in gathering information on the internal boundary R of
the partition, sufficient for defining well-posed problems
that are fulfilled by the exact solution in each one of the
partition subdomains, separately. Thus, a target of infor-
mation on R – the ‘sought-information’ – possessing this
property, is chosen and defined beforehand. Then a search
is conducted to obtain this sought-information.

There are two very broad categories of procedures for
carrying out such a search: ‘direct’ and ‘indirect’ localiza-
tion procedures. In the ‘direct localization method’, the local
solutions of the original differential operator are used to
establish compatibility conditions that the sought-informa-
tion must fulfill. These are derived from a very general
form of the Poincaré–Steklov conditions [15,24]. For this
purpose, special kinds of trial, or base functions, are used,
Σ

∂Ω

Ω

Fig. 1. The domain X and its partition.
referred to as ‘optimal base functions’; they are in fact local
solutions of the homogeneous equation associated with the
original differential operator. The global system of equa-
tions, derived in this manner allows the sought-information
to be obtained.

In the ‘indirect localization method’, on the other hand, a
system of weighting, or test functions of a special kind,
referred to as ‘optimal test functions’, with the property of
yielding the sought-information in the internal boundary,
exclusively, is developed and applied. These optimal test
functions are in fact local solutions of the homogeneous
equation associated with the adjoint differential operator.
The idea of constructing such optimal test functions stems
from the observation that, in the method of weighted resid-
uals, the information about the exact solution that the
approximate one contains, depends on the system of
weighting functions which is applied [21,22,25]. In order
to design, so to speak, such optimal test functions, it is nec-
essary to have a procedure for analyzing this dependence.
In the indirect localization method, the basic ingredients
of such analysis are Green–Herrera formulas, which were
originated by Herrera in 1985 [21,22] and can be applied
even when both trial and test functions are fully discontin-
uous [23]. These optimal test functions are then applied to
derive, as in the direct method, compatibility conditions
from which the sought information is obtained.

Once the sought information is known, on R, the local
boundary value problems can be individually solved to
obtain the solution in the interior of all the partition subdo-
mains. This latter process, referred to as ‘optimal interpola-
tion’, permits constructing the global solution everywhere
in the domain X. If each one of the steps that have been
described could be performed exactly, the function so
obtained would be the exact solution of the original prob-
lem. However, in general, this is not possible. TH-colloca-
tion is the numerical method that results when the local
approximations, in the subdomains of the partition, are
carried out by means of orthogonal collocation, as it is
explained in what follows.

3. Notations

A detailed explanation of the notation to be used is con-
tained in [23]. In this paper trial and test functions will be
taken from the same linear space of function, denoted by
D. The notation hPu,wi will be used when, for every
(u,w) 2 D · D, when hPu,wi depends linearly on u 2 D
and on w 2 D separately (i.e., hPu,wi is a ‘bilinear func-

tional’ on D · D). In such case we write hP*u,wi � hPw,ui
for the ‘transposed bilinear functional’. Also, Pu is the linear
functional whose values Pu(V) � hPu,Vi, and P:D! D*

the operator defined in D whose values are Pu for every
u 2 D. The null subspace of the operator P:D! D* will
be denoted by NP.

The notations X � Rn (n = 2 or 3) and oX will be used
for a domain [26] of the Euclidean space n and its bound-
ary, respectively. P � {X1, . . . ,XE} will be a partition of X,
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where Xi, i = 1, . . . ,E, are subdomains (Fig. 1). Given such
a partition, the boundaries of the subdomains are
oXi, i = 1, . . . ,E. Clearly, oX �

SE
i¼1oXi and the ‘internal

boundary’, R, is defined to be the closed complement of
oX relative to

SE
i¼1oXi. Furthermore, it is assumed that R

has been ‘oriented’; i.e., a positive and a negative side have
been defined at every point of R, except at corners. Then, a
unique unit normal vector n is taken pointing towards the
positive side, a.e. on R.

Trial and test functions will be taken from a linear space
D of functions, whose members are ‘piecewise-defined-func-

tions’ [23]; i.e., they are defined separately in each one of
the partition subdomains. Thus, any such a function is a
finite sequence of functions u � (ui, . . . ,uE), where each
ui, i = 1, . . . ,E, is taken from a linear space of functions
D(Xi) defined in Xi. In particular, Sobolev spaces of discon-
tinuous piecewise-defined-functions, denoted by bH SðXÞ,
with S is a nonnegative integer, were defined in [23]; for
them D(Xi) � HS(Xi). For any function u 2 bH SðXÞ, the
notation u+ and u� will be used for the traces on the posi-
tive and the negative sides respectively. Generally u+5u�
because functions of bH SðXÞ are usually discontinuous.
Thus, the ‘jump’ and the ‘average’ of any function u 2 D

are defined, respectively, to be

sut ¼ uþ � u� and _u ¼ ðuþ þ u�Þ=2 ð3:1Þ

Then

uþ ¼ _uþ 1

2
sut and u� ¼ _u� 1

2
sut ð3:2Þ

Let L and L� be a differential operator and its formal ad-
joint, respectively. Then, there is a vector-valued bilinear
form Dðu;wÞ, such that

wLu� uL�w ¼ r �Dðu;wÞ; 8x 2 X ð3:3Þ

Then it has been shown that (see for example [16])XE

i¼1

Z
Xi

ðwLu� uL�wÞdx ¼
XE

i¼1

Z
oXi

D � ndx

¼
Z

oX
D � ndx�

Z
R

sDt � ndx

ð3:4Þ

This relation is valid under very general conditions, includ-
ing the case when the operator coefficients have jump dis-
continuities across R.

Later on, the most general elliptic operator of second
order

Lu � �r � ða � ruÞ þ r � ðbuÞ þ cu ð3:5Þ

will be considered, where a is a positive and symmetric ten-
sor. When dealing with elliptic equations of second order
trial and test functions will be taken from bH 2ðXÞ; i.e.,
D � bH 2ðXÞ. For simplicity, we will write Lu ¼ fX, in X,
to mean

Lu ¼ fX; at each Xi; i ¼ 1; . . . ;E ð3:6Þ
Similarly, we will write
R

X wLudx instead of
PE

i¼1

R
Xi

wLudx. Furthermore, we adhere to the notation an � a Æ n.
It can be shown thatXE

i¼1

Z
oXi

wan � rudx ¼
Z

oX
wan � ru dx�

Z
R

swan � rutdx

ð3:7Þ
This relation is valid under very general conditions, includ-
ing the case when the coefficient an has jump discontinuities
across R.

4. Green–Herrera formulas and the BVPJ

These kind of formulas are extensions to the case of dis-
continuous functions of the standard Green’s formulas of
the theory of partial differential equations (see, for exam-
ple, Lions and Magenes [27]).

They are obtained when each one of the functions
Dðu;wÞ � n and sDðu;wÞt � n, occurring in Eq. (3.4), is writ-
ten as the sum of two bilinear functionals:

Dðu;wÞ � n ¼ Bðu;wÞ � Cðw; uÞ; on oX

�sDðu;wÞt � n ¼ Jðu;wÞ �Kðw; uÞ; on R

�
ð4:1Þ

For differential operators with continuous coefficients, one
possible definition is

Jðu;wÞ � �Dðsut; _wÞ � n and Kðw; uÞ � Dð _u; swtÞ � n
ð4:2Þ

For every u,w 2 D · D, the following six bilinear function-
als are defined by:

hPu;wi �
Z

X
wLudx; hQw; ui �

Z
X

uL�wdx

hBu;wi �
Z

oX
Bðu;wÞdx; hCw; ui �

Z
oX

Cðw; uÞdx

hJu;wi �
Z

R
Jðu;wÞdx; hKw; ui �

Z
R
Kðw; uÞdx

ð4:3Þ

and Eq. (3.4) implies the following identity between such
bilinear functionals

P � B� J ¼ Q� � C� � K� ð4:4Þ
When discontinuous piecewise-defined-functions are used,
to obtain well-posed boundary value problems it is neces-
sary to complement the usual differential equation and
boundary conditions with suitable jump conditions that
have to be fulfilled across the internal boundary R [23].
Such problems are referred to as ‘boundary value problem

with prescribed jumps (BVPJ)’. Let uX, uo, uR 2 D be any
three functions which satisfy the differential equation, the
boundary conditions and the jump conditions respectively,
and define f � PuX,g � Buo and j � JuR. Then the BVPJ
can be formulated weakly as

ðP � B� JÞu ¼ f � g � j ð4:5Þ
or, equivalently, by virtue of Green–Herrera formula,

ðQ� � C� � K�Þu ¼ f � g � j ð4:6Þ
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We are only interested in problems that possess a solution
at least, in which case the boundary and jump conditions
are compatible. By this we mean that there exists a function
uoR 2 D such that BuoR = g and JuoR = j. When the bound-
ary the boundary and jump conditions are compatible, the
BVPJ possesses a solution if and only if the standard BVP
has a solution, as it has been shown in [23]. For simplicity,
it will be assumed that such a solution is unique and the
notation u 2 D will be reserved for it.

5. FEM with optimal test functions (FEM-OF)

Eqs. (4.5) and (4.6) are referred to as the weak formula-
tion, of the BVPJ, in terms of the data and the weak formu-
lation in terms of the complementary information,
respectively. The direct approach stems from the first
one, while the indirect approach stems from the second
one, and the concept of ‘finite element methods with optimal

test functions (FEM-OF)’, next explained, allows a unified
presentation of them.

To explain the FEM-OF method we introduce a ‘dual

decomposition’; i.e., we write

Jðu;wÞ ¼ SJ ðu;wÞ þRJðu;wÞ
Kðw; uÞ ¼ SKðw; uÞ þRKðw; uÞ

�
on R ð5:1Þ

Then, we define:

hSJ u;wi �
Z

R
SJ ðu;wÞdx; hSKw; ui �

Z
R
SKðw; uÞdx

hRJ u;wi �
Z

R
RJ ðu;wÞdx; hRKw; ui �

Z
R
RKðw; uÞdx

ð5:2Þ

In both the direct and indirect approaches ‘optimal func-

tions’ are applied, as it is explained next. To this end the lin-
ear subspaces:

OB � NP \ N B \ N RJ and OT � NQ \ N C \ NRK ð5:3Þ

are defined. Members of OB and OT will be referred to as
‘optimal base and test functions’, respectively.

The general class of methods referred to as FEM-OF
considers three approaches for deriving the sought infor-
mation. Here, they are given only for the case when
Bu � g � 0, since the more general situation of non-vanish-
ing boundary conditions can easily be reduced to this case.

1. Direct (or Steklov–Poincaré) approach. Assume OB �
D1 \ D2 and OB is TH-complete for SJ : D1 ! D�2. Then,
an optimal base function, û 2 OB, contains the sought
information, if and only if,

hðP � B� JÞû;wi ¼ hf � PuR;wi þ hðP � B� JÞðuR � upÞ;wi;
8w 2 OB ð5:4Þ

2. Indirect (or TH) approach. Assume OT is TH-complete
for S�K : D1 ! D�2. A function û 2 D1 contains the sought
information, if and only if,
hðP � B� JÞû;wi ¼ hf � PuR;wi þ hðP � B� JÞuR;wi;
8w 2 OT ð5:5Þ

3. Petrov–Galerkin approach. Assume OT is TH-complete
for S�K : D1 ! D�2. Then, an optimal base function
û 2 OB contains the sought information, if and only if,

hðP � B� JÞû;wi ¼ hf � PuR;wi þ hðP � B� JÞ
� ðuR � uP Þ;wi; 8w 2 OT ð5:6Þ

We recall the identity
P � B� J � Q� � C� � K� ð5:7Þ
which implies alternative expressions of the equations given
above. As for uP 2 D, it is defined as a solution of the sys-
tem equations

ðP � B� RJ ÞuP ¼ f � g � jR and S�KuP ¼ 0 ð5:8Þ

where

jR � RJ uR ð5:9Þ

By assumption, uP as well as the optimal functions can be
constructed by solving local problems exclusively. For a
definition TH-completeness see [23]; it is:

‘‘A subset E � D is said to TH-complete for an operator
S, when

û 2 D and �hSû;wi ¼ 0; 8 w 2 E) Sû ¼ 000 ð5:10Þ

A final comment is in order. The manner of expressing the
variational Eqs. (5.4)–(5.6) has been elaborated in such a
manner that in applications such equations can be ex-
pressed by means of linear and bilinear forms that involve
integrals over the domain interiors exclusively (see, for
example, Eqs. (6.11)–(6.15)). Then, the procedures derived
in this manner become a special class of Finite Element
Methods (FEM), which will be referred to as Finite Ele-
ment Methods with Optimal Functions (FEM-OF). Of
the three FEM-OF methods described above, only the
direct and indirect methods will be implemented in this
paper, leaving for the future the detailed study of the
Petrov–Galerkin approach.

6. Second order elliptic equations

For this kind of problems trial and test functions will
be taken from the space D � bH 2ðXÞ. The most general
elliptic operator of second order and its formal adjoint
are

Lu � �r � ða � ruÞ þ r � ðbuÞ þ cu and

L�w � �r � ða � rwÞ � b � rwþ cw ð6:1Þ

Here a is a positive and symmetric tensor. Then, Eq. (3.3) is
fulfilled with

Dðu;wÞ � a � ðurw� wruÞ þ buw ð6:2Þ
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The BVPJ to be considered is

Lu � �r � ða:ruÞ þ r � ðbuÞ þ cu ¼ fX ð6:3Þ

subjected to the boundary conditions

u ¼ uo ¼ 0; on oX ð6:4Þ
and jump conditions

sut ¼ suRt � j0
R and san � rut ¼ san � ruRt � j1

R; on R

ð6:5Þ
Suitable definitions for treating this problem are:

Bðu;wÞ � uðan � rwþ bnwÞ;

C�ðu;wÞ � wðan � ruÞ; on oX ð6:6Þ

Jðu;wÞ � �Dðsut; _wÞ � n ¼ san � rut _w�

K�ðu;wÞ � Dð _u; swtÞ � n ¼ san � rwþ bnwtu

� ð6:7Þ

Taking the sought information to be the average of the
solution at the internal boundary, we define

SJ ðu;wÞ � san � rut _w and RJ ðu;wÞ �

SKðw; uÞ � san � rwþ bnwt _u and RKðw; uÞ �
ð6:8Þ

As indicated in Section 4, we define f � PuX,g � Buo and
j � JuR.

The optimal functions spaces OB � N p \ N B \ N RJ and
OT � NQ \ NC \ NRK are characterized as follows:

1. A function v 2 D is an optimal base function, if and only
if,

LV ¼ 0; in Xa; a ¼ 1; . . . ;E

V ¼ 0; on oX

sV t ¼ 0; on R

8>><>>: ð6:9Þ

2. A function w 2 D is an optimal test function, if and only
if,

L�w ¼ 0; in Xa; a ¼ 1; . . . ;E

w ¼ 0; on oX

swt ¼ 0; on R

8>><>>: ð6:10Þ

3. The auxiliary function uP 2 D is characterized by

LuP ¼ fX; in Xa; a ¼ 1; . . . ;E

uP ¼ 0; on oX

ðuP Þ� ¼ � 1
2
suRt; on R

8>><>>: ð6:11Þ

Furthermore, if v 2 O � OB [ OT and w 2 O � OB [ OT,
then
hðP � B� JÞu;wi ¼
Z

X
ru � a � rwþ wr � ðbuÞ þ cuw
n o

dx

¼
Z

X
ru � a � rw� ub � rwþ cuw
n o

dx

¼ hðQ� � C� � K�Þu;wi ð6:12Þ

while

hðP �B�JÞuR;wi¼
Z

X
ruR �a �rwþwr�ðbuRÞþcuRw
n o

dx

ð6:13Þ
and

hf � PuR;wi ¼
Z

X
wðfX �LuRÞdx ð6:14Þ

In particular, for the positive-symmetric case (b � 0,
c P 0), the bilinear form

hðP � B� JÞu;wi ¼
Z

X
ru � a � rwþ cuw
n o

dx

¼ hðQ� � C� � K�Þu;wi ð6:15Þ

is positive definite and symmetric.

7. Optimal trial and test functions

TH-complete systems, in more than one dimension, are
infinite families. A first step towards the construction of a
discretization procedure consists in replacing such a family
by a finite system of optimal functions. Exact optimal func-
tions are uniquely determined by their traces on R. In this
article, using the direct and indirect approaches, several
algorithms will be explained in detail for the case when
the whole domain and the partition subdomains are rectan-
gles (Figs. 2 and 3). For each one of them, independently of
the approach followed, two kinds of optimal functions
families will be developed, to be referred as Classes 1 and
2, respectively. Class 1 of optimal functions is made of
those whose traces on the internal boundary, R, span the
linear subspace of piecewise linear polynomials that vanish
on oX and belong to C0(R); while Class 2 of optimal func-
tions is made of those whose traces on the internal bound-
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ary, R, span the linear subspace of piecewise cubic polyno-
mials that vanish on oX and belong to C0(R).

Only the case of a partition with rectangular elements
will be considered (see Fig. 2). For the numerical algo-
rithms to be presented the function families of exact opti-
mal functions will be replaced by approximations to them
and, for greater clarity, in what follows the exact optimal
function families will be denoted by E and F, while the lin-
ear subspaces spanned by them will be OB and OT, respec-
tively. Correspondingly, the approximate optimal function
families will be denoted by E and F, and the linear sub-
spaces spanned by them will be eOB and eOT, respectively.
Furthermore, the conditions eV ¼ V and ~w ¼ �w, on R, will
be imposed; then, this establishes a one-to-one correspon-
dence between the families of optimal and approximate
optimal functions. The approximate solution ~u 2 bH 2ðXÞ
is taken to be

~u � ~uP þ
Xn

a¼1

CaV a ð7:1Þ

where n is the common dimension of both eOB and eOT.
As mentioned in the Section 1, our approach permits

thoroughly separating the process of approximating the
differential equation in the interior of the partition subdo-
mains from that of approximating the solution on the inter-
nal boundary, R. Due to this fact, the approximate optimal
functions will be constructed by orthogonal collocation
using in each direction of the subdomain interiors, 1 or 2
Gaussian points; then, in each one of such subdomain inte-
riors the functions are taken to be bi-quadratic and bi-
cubic polynomials, respectively. Observe that the total
number of collocation points in each subdomain partition
is 1, in the first case, and 2d in the second one. Here, d is
the space dimension. When eV 2 eOB and ~w 2 eOT, recall that
LeV ¼ 0 and L�~w ¼ 0 at the Gaussian points of each one
of the partition subdomains.

The algorithms obtained by the procedures here
explained, are characterized by the kind of approach that
is applied (D or ID), since in this paper only the Direct
(or Steklov-Poincaré approach) and the Indirect (or TH-
approach) will be used; the class of optimal functions (1
or 2); and the number of Gaussian collocation points in
each direction 1 or 2. The notation adopted to identify each
one of these algorithms is such that, for example, the algo-
rithm derived using the indirect approach, C0 linear poly-
nomials on R (Class 1), and two collocation points in
each direction of the subdomain interiors, will be desig-
nated as Algorithm ID12.

8. Construction details

Only 2D applications are explained in detail. Given any
node n = (xi,yj), one or more optimal functions will be
associated to it; the exact optimal functions are V c

n 2 OB

and �wc
n 2 OT, while the corresponding approximate optimal

functions are eV c
n 2 eOB and ~wc

n 2 eOT. Then the systems of
optimal functions are obtained when n and c range over
the sets that are indicated next. When n = (xi,yj) is an inte-
rior node the support of each one of the optimal functions
is the union of the four neighboring rectangular subdo-
mains (see Fig. 3). Their construction by collocation is only
explained for the subdomain located upright of the node n,
which is denoted by Xn.

Algorithms ID11 and D11. In this case c takes only one
value and will be deleted. With each interior node n 2 X,
we associate:

~V nðx; yÞ ¼ lnðx; yÞ þ knqnðx; yÞ
~wnðx; yÞ ¼ lnðx; yÞ þ lnqnðx; yÞ

)
in Xn ð8:1Þ

Here, ln(x,y) is the C0(X) piecewise bilinear polynomial
which vanishes at every node, except at n = (xi,yj) where
it takes the value 1; and qn(x,y) is the unique continuous
piecewise bi-quadratic function, which vanishes on oXn

and takes on the value 1 at the Gauss point (the center)
x�n of Xn. Clearly, qn(x,y) is an affined translation of the
function 16x(1 � x)y(1 � y). In Eq. (8.1) the parameters
kn and ln are determined by collocating the differential
equations L~V n ¼ 0 and L�~wn ¼ 0, at the Gauss point of
Xn.

Algorithms ID12 and D12. First, we define a family of four
linearly independent cubic polynomials, denoted by
fqc

nðx; yÞg, where c � (m,s), m = 0,1 and s = 0,1, in a manner
that such a system of functions spans the space of bi-cubic
polynomials with the property of vanishing on oXn. It
can be seen that the system fq00

n ðx; yÞ; q01
n ðx; yÞ; q10

n ðx; yÞ;
q11

n ðx; yÞg is obtained by suitable affine translates of the
system of bi-cubic Hermite polynomials fH 1

0ðxÞH 1
0ðyÞ;

H 1
0ðxÞH 1

1ðyÞ;H 1
1ðxÞH 1

0ðyÞ;H 1
1ðxÞH 1

1ðyÞg. Then, the optimal
functions are defined by

~V nðx; yÞ ¼ lnðx; yÞ þ
P
c

k
c
nqcðx; yÞ

~wnðx; yÞ ¼ lnðx; yÞ þ
P
c

l
c
nqcðx; yÞ

9>>=>>; 8ðx; yÞ 2 Xn ð8:2Þ

For each n = (xi,yj), the four numerical coefficients k
c
n are

determined by collocation at the four Gaussian points of
the rectangle Xn.
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Algorithms ID22 and D22. In this case, for each node
n 2 X (interior or on the boundary), we write fh0

nðx; yÞ;
h1

nðx; yÞ; h2
nðx; yÞg for the system of bi-cubic polynomials

that are affine translations of the system of bi-cubic Her-
mite polynomials fH 0

0ðxÞH 0
0ðyÞ;H 1

0ðxÞH 0
0ðyÞ;H 0

0ðxÞH 1
0ðyÞg.

Then for each j = 1, 2, 3, one has

~V j
n ¼ hj

nðx; yÞ þ
P
j

k
jc
n qc

~wj
n ¼ hj

nðx; yÞ þ
P
c

l
jc
n qc

9>>=>>; 8ðx; yÞ 2 Xn ð8:3Þ

Again, as in the case of Eq. (8.2), for each n = (xi,yj) and
each j, the four numerical coefficients k

jc
n are determined

by collocation at the four Gaussian points of the rectangle
Xn.

The construction of the auxiliary function uP 2 D is
quite similar, except for the fact that the differential equa-
tion is not homogeneous, and will not be explained. For
Algorithms D11, D12, ID11 and ID12, one optimal func-
tion is associated with each internal node. In the case of
Algorithms D22 and ID22 three of them are associated
with each internal node, one with each boundary node
and zero optimal functions are associated with corner-
nodes. Notice also that the bases for the optimal functions
spaces here presented are of local support (the support of
each one of them is contained in the union of four partition
rectangles, at most). Finally, the extension of these con-
structions to three dimensions offers no difficulty.

9. Error analysis

In this section, the following notation will be used:

e � u� ~u; ep � up � ~up; g � �w� ~w; ea � V a � eV a

ð9:1Þ

Furthermore, k kR is the L2(R)-norm while j j stands for the
absolute value and ‘‘r’’ will be a number of collocation
points, in each direction, used for the construction of the
approximate optimal functions; thus, the possible values
of r are 1 or 2.

For the direct approach, by construction and in view of
Eq. (7.1), one has

Le ¼Lep þ
Pn
a¼1

caLea

jLepj ¼ Oðh2rÞ and jLeaj ¼ Oðh2rÞ
jLej ¼ Oðh2rÞ

9>>>=>>>; ð9:2Þ

By construction, for the indirect approach one has

jgj ¼ Oðh2rÞ ð9:3Þ

On the other hand, Eq. (A.6) of Appendix, for the elliptic
equation under study, reads:

�
Z

R
esan � r�wtdx ¼

Z
gLe; 8�w 2 OT ð9:4Þ
When either of the Eqs. (9.2) or (9.3) holds, one has

�
Z

R
esan � r�wtdx ¼ Oðh2rÞ; 8�w 2 OT ð9:5Þ

To complete the proof of this result, the following ansatz
will be used: when the traces on R of the members of the
linear space OT span the piecewise polynomials of degree
‘‘p’’, then

�
Z

R
esan � r�wtdx ¼ 0; 8�w 2 OT ) kekR ¼ Oðhpþ1Þ

ð9:6Þ

Furthermore, when

�
Z

R
esan � r�wtdx ¼ OðhqÞ; 8�w 2 OT ) kekR ¼ OðhsÞ

ð9:7Þ

where s is the smallest number of the set {p + 1,q}.
The proof of this ansatz is being developed, but as it will

be seen next, its applications yield very satisfactory results.
To apply it, we notice that for functions of Class 1, p = 1,
while p = 3 for functions of Class 2. Then, in view of Eq.
(9.5), one has that Algorithms ID11, ID12, D11 and
D12, are O(h2), while Algorithms ID22 and D22 are
O(h4). This has been corroborated in the numerical exper-
iments that were performed with the new algorithms.

For Algorithm ID11, the number of Gaussian points is
one, independently of the dimension of the problem. Thus,
this is a single-point-collocation method. Another observa-
tion worth of mention is that for Algorithms ID12 and
D12, are O(h2) in spite of using two collocation points in
each direction. This exhibits the fact that profiting of the
increased accuracy in the subdomain interiors requires
increasing the degree of the polynomials used on R. The
error estimate kekR can be further reduced if the Petrov–
Galerkin approach, which was not implemented in this
paper, is used. However, in order to profit from this
increased accuracy piecewise cubic polynomials have to
be used on R.
10. Numerical experiments

The algorithms described before were implemented and
applied to the set of examples that follows:
10.1. 2D problems

Problem (1)

�uxx � uyy þ u ¼ ð1� x2 � y2Þexy ;

on X � ð0; 1Þ � ð0; 1Þ
uðx; yÞ ¼ exy ; on oX

Solution: uðx; yÞ ¼ exy ; on X

ð10:1Þ
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Problem (2)

�eyuxx � exuyy þ ux þ uy þ 2u ¼ �e�x � e�y ;

on X � ð0; 1Þ � ð0; 1Þ
uðx; yÞ ¼ e�x�y ; on oX

Solution: uðx; yÞ ¼ e�x�y ; on X

ð10:2Þ
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Fig. 5. Error results for the bi-dimensional non-symmetric Eq. (10.2).
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10.2. 3D problems

Problem (3)

�uxx � uyy � uzz þ u ¼ ð1þ 3p2Þ sin px � sin py � sin pz;

on X � ð0; 1Þ � ð0; 1Þ � ð0; 1Þ
uðx; y; zÞ ¼ 0; on oX

Solution: uðx; yÞ ¼ sin px � sin py � sin pz; on X

ð10:3Þ

The symmetric operators of Problems (1) and (3) yielded
positive definite global-matrices for the Dirichlet-type
boundary conditions, here considered. The differential
operator of Problem (2), on the other hand, is non-
symmetric.

As for the error, the results of the numerical experi-
ments, summarized in Figs. 4–6, agree well with the theo-
retical predictions of Section 9, in the 2D and 3D
examples here treated: the single collocation point methods
are O(h2), while the algorithms that use two collocation
points in each direction are O(h4). The nodes of the mesh
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Fig. 6. Error results for the three-dimensional symmetric Eq. (10.3).
were taken as control points for the definition of the error.
Observe that for the symmetric Problems (1) and (3) the
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numerical behaviors of the algorithms derived from the
direct and indirect approaches are very similar (Figs. 4
and 6). However, in the non-symmetric problem the error
behavior of the direct method is better (Fig. 5).

In Figs. 4 and 5 TH-collocation was also compared with
standard FEM, using linear elements. Clearly, the behavior
of TH-collocation with cubic interpolators on R (Algo-
rithms D22 and ID22) is much better. However, a similar
error behavior can be expected if FEM is applied with bi-
cubic functions, in which case the number of degrees of
freedom increases to be approximately 9h�2, in 2D prob-
lems, and 27h�3, in 3D problems. On the other hand, for
Algorithms D22 and ID22 this number is only 3h�2, in
2D problems, and 7h�3, in 3D problems. Thus, the use of
TH-collocation produces a FEM algorithm with only
33% and 26%, for 2D and 3D problems respectively, of
the number of degrees of freedom of standard FEM; i.e.,
a reduction of 67% and 74%, respectively. These are very
important reductions whose significances increase as h

decreases. In conclusion: ‘‘TH-collocation supplies an effec-

tive tool for carrying out matrix condensation’’.
As for single-collocation-point methods, according to

Figs. 4 and 5 they do not offer any real advantage over FEM.

11. Single-collocation-point methods

This kind of methods cannot be developed in the frame-
work of the standard OSC. However, in 1999 [5] it was
thereby mentioned that as a result of the relaxed smooth-
ness conditions required by the TH-collocation methodol-
ogy it was possible to develop single-collocation-point
methods in its framework. A few years after the first imple-
mentation of orthogonal-collocation with a single colloca-
tion point appeared [17,18], which were done by means of
an ingenious scheme that allows applying only one colloca-
tion point in each partition sub-domain, in spite of using
C1 cubic polynomials as base functions. Albeit, the algo-
rithms so obtained are only O(h2) and suffer from several
drawbacks, such as too complicated matrices, as was dis-
cussed in [13] where Herrera’s theory was exhibited as a
natural framework for the formulation and analysis of sin-
gle-point-collocation methods. Furthermore, such methods
possess several attractive features mainly associated with
the simplicity of their implementation; for example, for sin-
gle-point-collocation methods the number of collocation
points is minimal (1) independently of the dimensionality
of the problem while for other orthogonal collocation pro-
cedures that number grows exponentially with the dimen-
sion (2d, where d is the dimension). Also, when they are
formulated in Herrera’s framework the associated global-
matrices are as simple and effective as those of linear finite
elements. This created some expectations with respect to
their potentiality. Nevertheless, the results of the present
paper indicate that single-point-collocation methods do
not offer any real advantages over standard FEM, as can
be seen in Figs. 4 and 5.
12. Conclusions

In previous papers the TH-collocation method was
introduced and it was shown to possess clear advantages
over the standard orthogonal collocation (OSC) [5–8]. This
paper has been devoted to further develop and analyze
such methodology; its conclusions can be summarized as
follows:

1. TH-collocation has been incorporated in the class of
Enhanced Finite Element Methods, nowadays under
study by many authors [28], and in particular it
belongs to a broad kind of methods known as Finite
Element Methods with Optimal Functions (FEM-
OF);

2. Formulating orthogonal collocation as a special class
of Finite Elements has many computational advanta-
ges since in this manner collocation can profit from
software and procedures that are available for FEM;

3. In this framework three versions of TH-collocation
can be distinguished:
(a) Direct (or Steklov–Poincaré) approach;
(b) Indirect (or Herrera’s) approach; and
(c) Petrov–Galerkin approach;
4. Such TH-collocation formulations can be used to
treat a very broad variety of engineering problems,
since they can be applied to any partial differential
equation, or system of such equations (e.g., the equa-
tions of elasticity or Stokes Problem [14]), which is
linear, including the case of equations with discontin-
uous coefficients;

5. Some basic formulas that are useful for the error
analysis were established;

6. Six algorithms based on the Direct and Indirect TH-
collocation formulations were implemented (the Pet-
rov–Galerkin version of TH-collocation was not,
since it is the subject of current research) for the most
general second order elliptic equation;

7. By application of the basic formulas mentioned
above, theoretical error estimates were derived that
were verified experimentally;

8. In the numerical experiments, the advantages of TH-
collocation over standard collocation procedures
(OSC) were corroborated by the Algorithms D22
and ID22,

9. The single-point-collocation procedures of Algo-
rithms D11, D12 and ID11 and ID12, did not offered
a real advantage with respect to standard FEM; and

10. From a FEM perspective, TH-collocation supplies an
effective tool for matrix condensation since it reduces
efficiently the number of degrees freedom involved in
the equations systems. Furthermore, this procedure
can be equally used in the very broad variety of engi-
neering problems to which TH-collocation formula-
tions, in the manner explained in this paper, are
applicable.
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Appendix A. Auxiliary results for error analysis

Notation

e ¼ u� ~u ¼ �eþ ~e; �e ¼ u� �u; ~e ¼ �u� ~u; g ¼ �w� ~w

ðA:1Þ
Our constructions are such that

e;�e;~e 2 NB \ NRJ ; g 2 NC \ N RK and S�J �w ¼ S�J ~w

ðA:2Þ
Observe

�hS�Ke; �wi ¼ hPe; �wi � hSJ e; �wi ðA:3Þ
Now

hðP �B� JÞ~u; ~wi ¼ hðP �B� JÞu; ~wi or hðP �B� JÞe; ~wi
¼ 0; 8~w 2 eOT ðA:4Þ

In view of Eq. (A.2), this equation implies

hSJ e; �wi ¼ hPe; ~wi ðA:5Þ
which in turn, by virtue of Eq. (A.3), implies

�hS�Ke; �wi ¼ �hS�Ke; �wi ¼ hPe; gi ðA:6Þ
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