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A truly general and systematic theory of finite element methods (FEM) should be formulated using, as trial
and test functions, piecewise-defined functions that can be fully discontinuous across the internal boundary,
which separates the elements from each other. Some of the most relevant work addressing such formu-
lations is contained in the literature on discontinuous Galerkin (dG) methods and on Trefftz methods.
However, the formulations of partial differential equations in discontinuous functions used in both of those
fields are indirect approaches, which are based on the use of Lagrange multipliers and mixed methods, in
the case of dG methods, and the frame, in the case of Trefftz method. This article addresses this problem
from a different point of view and proposes a theory, formulated in discontinuous piecewise-defined
functions, which is direct and systematic, and furthermore it avoids the use of Lagrange multipliers or a
frame, while mixed methods are incorporated as particular cases of more general results implied by the
theory. When boundary value problems are formulated in discontinuous functions, well-posed problems
are boundary value problems with prescribed jumps (BVPJ), in which the boundary conditions are
complemented by suitable jump conditions to be satisfied across the internal boundary of the domain-
partition. One result that is presented in this article shows that for elliptic equations of order 2m, with
m � 1, the problem of establishing conditions for existence of solution for the BVPJ reduces to that of the
“standard boundary value problem,” without jumps, which has been extensively studied. Actually, this
result is an illustration of a more general one that shows that the same happens for any differential equation,
or system of such equations that is linear, independently of its type and with possibly discontinuous
coefficients. This generality is achieved by means of an algebraic framework previously developed by the
author and his collaborators. A fundamental ingredient of this algebraic formulation is a kind of Green’s
formulas that simplify many problems (some times referred to as Green-Herrera formulas). An important
practical implication of our approach is worth mentioning: “avoiding the introduction of the Lagrange
multipliers, or the ‘frame’ in the case of Trefftz-methods, significantly reduces the number of degrees of
freedom to be dealt with.” © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 000–000,
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1. INTRODUCTION

A basic feature of finite element methods (FEM) and many other related numerical methods for
partial differential equations is the use, after a partition of the problem-domain has been
introduced, of trial and test functions that are piecewise-defined; i.e., they are defined separately
in each one of the partition subdomains. Here, it is remarked that the most general class of
piecewise-defined functions includes functions that are fully discontinuous (by this we mean that
the function itself has a jump discontinuity) across the internal boundary (i.e., that which
separates the partition subdomains from each other). This, because such functions are defined
independently in each one of the partition subdomains and, on the common boundary of two
subdomains, the limits from one and the other side need not coincide. Thus, a truly general and
systematic theory of FEM should be formulated in function spaces in which trial and test
functions can be fully discontinuous across the internal boundary. Such a theory would include
discontinuous Galerkin (dG) methods and should permit moving smoothly, without interruption,
from the standard FEM, based on continuous piecewise-defined functions, to the discontinuous
Galerkin methods.

Most FEM methods that exist at present use piecewise-defined functions with certain degree
of continuity; typically, for second-order elliptic equations the functions are taken from the
Sobolev space H1 (�), in which the functions are continuous with possibly discontinuous
first-order derivatives [1]. As for dG methods, they originally were introduced with the main
purpose of treating hyperbolic systems of equations, albeit their scope has expanded consider-
ably during the last few years (see [2]). Furthermore, it should be mentioned that the interior
penalty methods that were applied in the 1970s to treat elliptic and parabolic equations [3–7]
must be classified, using the present day terminology, as dG methods. Nevertheless, the recent
broadening of the interest on dG methods was heralded by works such as that of Bassi and
Rebay [8], on the numerical solution of the Navier-Stokes equations (see [9] for an updated
review of dG methods for elliptic problems). Other important contributions are: the local
discontinuous method (LDG) [10], the Galerkin/least-squares [11], stabilized methods
(SUPG/SD [12] and USFEM [13]), residual free bubbles (RFB [14–17]), variational multiscale
(VMS) [18], the partition of unity method (PUM) [19], and nearly optimal Petrov-Galerkin [20].
At present, some of the most popular procedures applied when formulating dG methods
combine hybrid and mixed methods with Lagrange multipliers using a procedure explained by
Brezzi and Fortin [21]. This yields several variants such as the three-field method [22] (see also
[23]), as well as the hybrid variational formulation with weak continuity on which the
discontinuous enrichment method (DEM, [24–28]) is based.

Formulating the basic problems in fully discontinuous functions and handling them system-
atically afterwards would be advantageous for many methods; among them: dG methods, Trefftz
methods [29–33], domain decomposition methods (DDM) [23, 34–38], and collocation meth-
ods, as well as matrix condensation. In this respect, a general theory of partial differential
equations in which fully discontinuous trial and test functions could be handled systematically
would be very valuable. Several of the dG methods formulations of the forgoing paragraphs
have yielded very relevant results. However, they are indirect approaches whose essential
ingredients are Lagrange multipliers and mixed methods. In others, the discontinuous functions
are introduced only after the dimensions of the function spaces have been reduced to a finite
number (see, for example [9]). This article is intended as a contribution to the development of
a theory of partial differential equations in which trial and test functions are piecewise-defined
functions that are fully discontinuous. The formulation to be presented is direct and systematic
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and, furthermore, it avoids the use of Lagrange multipliers, while mixed methods are incorpo-
rated as particular cases of more general results implied by the theory (see Section VII of [39]).

Trefftz methods [29–33] also make extensive use of discontinuous functions to build the
approximate solutions of partial differential equations. They need to do so because they apply
locally analytical solutions that do not fulfill any matching conditions across the inter-element
boundaries. At present, a convergence of interests of dG and Trefftz methods is taking place,
since some approaches of the former also use, locally, analytical solutions. Indeed, for instance,
Farhart and his collaborators have extensively treated Helmholtz problems using DEM that they
apply using, as the enricher, a complete system of plane waves, which constitutes an analytical
C-complete system [40] (also called T-complete or TH-complete) and that was first developed
by the author and his collaborators in [41, p 480]; for other similar systems of enrichers (see [42,
43]). Thereby, it should be mentioned that Trefftz method, which is extensively used by a large
community of practitioners [32], has deep connections with some dG methods, such as DEM;
in particular, the frame that was introduced by Jirousek in Trefftz method [29, 30], plays
essentially the same role as that of the Lagrange multipliers in DEM [33]. A frequent complaint
is the increased number of degrees of freedom that the incorporation of Lagrange multipliers
yields [28], and the same phenomenon occurs due to the frame in the case of Trefftz method
[33]. In this connection, an important practical implication of our approach is worth mentioning:
“The theory of partial differential equations formulated in function spaces in which trial and test
functions can be fully discontinuous permits avoiding the introduction of Lagrange multipliers,
in the case of dG methods, and the frame, in the case of Trefftz methods.” Naturally, any
implementation of our approach should not contain any such auxiliary functions, since the basic
formulation does contain them either. Anyway, to be more clear and specific, the basic ideas of
how to implement our procedures have been explained in [33], where also an illustration has
been thoroughly discussed.

When partial differential equations are formulated in discontinuous piecewise-defined func-
tions, the well-posed problems are boundary value problems with prescribed jumps (BVPJ), in
which the boundary conditions are complemented by suitable jump conditions, to be satisfied
across the internal boundary associated with the domain partition. One result that is presented
in this article shows that for elliptic problems of order 2m, with m � 1, the BVPJ satisfies
existence if and only if the standard smooth boundary value problem does. Thus, this result
essentially reduces the problem of establishing conditions for existence of solution for the
boundary value problem with prescribed jumps to that of the standard boundary value problem,
without jumps, which has been extensively studied. Actually, this result for elliptic problems is
only a particular case of a more general one (Theorem 8.3 of this article), which establishes that
the same is true for any linear differential equation, or system of such equations, independently
of its type and with possibly discontinuous coefficients. Thereby, an attractive feature of the
theory of partial differential equations in piecewise-defined functions here presented is exhib-
ited: its ability for establishing statements of broad applicability.

This generality is achieved by means of an algebraic formulation that has been developed
through a long time span ([40, 44–58]; see also [31, 33, 37–39]). It identifies and makes
extensive use of some algebraic properties of boundary value problems. In the first stages of its
development it was capable of supplying a general framework, which accommodated practically
all variational principles for boundary value problems known at the time [52–55]. It also
encompassed Trefftz methods [56, 57], biorthogonal systems of functions [58], and a criterion
for completeness [40] (originally introduced as C-completeness, but later known as T-com-
pleteness, or TH-completeness). This theory also yields a suitable framework for the develop-
ment of complete systems of solutions (see [59], Ch. II, where the exposition is based on
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Herrera’s T-completeness or TH-completeness, concept). Furthermore, according to Begehr and
Gilbert the algebraic theory [44] supplies the basis for effectively applying to boundary value
problems the function theoretic methods of partial differential equations. Indeed, in [59, p 115],
they state: “The function theoretic approach which was pioneered by Bergman [60] and Vekua
[61] and then further developed by Colton [62–64], Gilbert [65, 66], Kracht-Kreyszig [67], and
Lanckau [68] and others, may now be effectively applied because of this result of the
formulation by Herrera [44] as an effective means to solving boundary value problems.”

On the other hand, the algebraic theory has also been useful for establishing the theoretical
foundations of Trefftz methods. This time the citation comes from J. Jirousek, one of the most
conspicuous representatives of Trefftz methods [29, p 324]: “the mathematical foundations of
which [referring to Trefftz methods] have been laid mainly by Herrera and co-workers.” In
1984, the Pitman’s Advanced Publishing Program collected many of the results of the theory in
a book [44]. It was immediately afterwards that the study of differential equations in discon-
tinuous fields started with the introduction of a kind of Green’s formulas [46–49], sometimes
referred to as Green-Herrera formulas, which simplify many problems and have played a central
role in later developments [31, 33, 37–39, 50, 51, 69–76]. This more recent work phase of the
theory includes certain number of applications. Among them are the introduction of the
Localized Adjoint Method (LAM) [49] that in turn supplied the theoretical basis of the
Eulerian-Lagrangean LAM (ELLAM), a numerical method that has had considerable success in
treating advection-dominated transport [39, 69, 70]; more advanced applications to Trefftz
method [31, 33, 71] and studies of several aspects of domain decomposition methods [37, 38,
71]; and a general class of methods [72–78] that can be collectively denominated as “finite
elements methods with optimal functions (FEM-OF)” [78]. This latter kind of methods is more
general than LAM and has yielded some very effective procedures for applying orthogonal
collocation [72–77].

The present article begins by recalling some elementary algebraic notions in Section 2 and
progressively introduces some more focused concepts that supply the basic structure of the
algebraic theory of boundary value problems with prescribed jumps. Section 3 is devoted to
auxiliary concepts that will be used in the sequel. An abstract and general concept of boundary
value problem is introduced in Section 4. The notions of Dirichlet and appropriate boundary
operators that play an important role in the theory are given in Section 5, while Sections 6 and
7 are devoted to formal adjoints and Green’s formulas. The abstract BVPJ, which is the main
subject of the present article, is introduced and discussed in Section 8. It is in this Section where
the general result mentioned before (Theorem 8.3) is derived. The class of piecewise-defined
functions considered in the theory is made precise in Sections 9 and 10. In particular the concept
of a Sobolev space of piecewise-defined functions is introduced in this latter Section, and the
manner in which they are related to standard Sobolev spaces is discussed in Section 11.
Piecewise-defined functions have been considered by other authors; however, the nomenclature
and the point of view adopted here differs somewhat. The general BVPJ for elliptic operators
in Sobolev spaces of piecewise-defined functions is introduced in Section 12 and Theorem 8.3
is applied to it. To do this, extensive use is made of results of the classical mathematical theory
of partial differential equations [1, 79]. Finally, the conclusions of the article are summarized in
Section 13.

Background material of the theory here presented has appeared in scattered publications;
many of them have already been mentioned and are included in the list of references given at
the end of the article. However, this is the first time that the question of developing a theory of
partial differential equations in discontinuous piecewise-defined functions has been addressed in
a systematic manner. To this end, a large number of new developments were required, while the
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material that was already available was thoroughly revised and reorganized. In particular, the
nomenclature was improved, making it more systematic. Furthermore, to make it more readable,
the present article is to a large extent self-contained.

2. PROBLEMS WITH LINEAR CONSTRAINTS

Many problems of partial differential equations may be formulated as problems with linear
constraints ([55]; see also [44]). So, in this section D, I1, and I2 will be a linear space and two
of its linear subspaces, respectively. Elements of D will be referred to as functions.

Definition 2.1. The problem with linear constraints (PLC). Given a pair of functions (u�,
u�) � D � D, the “problem with linear constraints” consists in finding u � D such that

u � u� � I1 and u � u� � I2. (2.1)

The pair (u�, u�) � D � D will be referred to as the data of this problem.

Definition 2.2. The subspaces DS and N. Define

DS � I1 � I2 � D and N � I1 � I2 � D. (2.2)

Definition 2.3. Consistency of the data. The data of the problem with linear constraints, (u�,
u�) � D � D, is said to be consistent when

u� � u� � DS. (2.3)

Theorem 2.1. The problem with linear constraints possesses a solution if and only if the data
are consistent.

Proof. We show first

�?u � D solution of the problem with linear constraints�f u� � u� � DS. (2.4)

Assume ?u � D solution of the problem with linear constraints. Then,

u� � u� � ��u � u�� � �u � u��� � I1 � I2 � DS. (2.5)

Conversely, next we show: u� � u� � DS f (?u � D solution of the problem with linear
constraints). Assume u� � u� � DS and let (u� � u�)i � Ii, i � 1, 2, be such that

u� � u� � �u� � u��1 � �u� � u��2. (2.6)

Then, it can be seen that the function u � D, defined by

u � u� � �u� � u��1 � u� � �u� � u��2, (2.7)
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is solution of the problem with linear constraints. Indeed

u � u� � ��u� � u��1 � I1 while u � u� � �u� � u�� � �u� � u��1 � �u� � u��2 � I2.

(2.8)

This exhibits u � D, as defined by Eq. (2.7), as a solution of the PLC. Thus, Eq. (2.3) implies
the existence of solution.

Corollary 2.1. The problem with linear constaints, with data (u�, 0) � D � D, possesses a
solution, if and only if, u� � DS.

Proof. Apply Theorem 2.1 with u� � 0.

3. AUXILIARY CONCEPTS

In this section we introduce some algebraic concepts, which supply a suitable framework for a
large class of weak formulations of partial differential equations. The notation D1 and D2 will
be used for two linear spaces, to be referred to as the spaces of “trial and test functions,”
respectively. Sometimes the terms “base and weighting functions” will be used instead.
Furthermore, P : D1 � D2 3 R1, B : D1 � D2 3 R1, . . . , will be bilinear functionals, while
P* : D2 � D13 R1, B* : D2 � D13 R1, . . . , will stand for their transposes. The value of any
bilinear functional P : D1 � D23 R1, on (u, w) � D1 � D2, will be denoted by 	Pu, w
 � 	P*w,
u
. The linear spaces D*1 and D*2 will be the “algebraic duals” of D1 and D2, respectively (i.e.,
the elements of D*1 and D*2 are linear functionals, real-valued, defined on D1 and D2, respec-
tively). Furthermore, with each bilinear functional of the type considered above, we associate in
a unique manner, a linear “functional-valued operator.” Indeed, given P : D1 � D2 3 R1, we
define P : D1 3 D*2 for every u � D1 the linear functional Pu � D*2 by

Pu�w� � 	Pu, w
, @w � D2. (3.1)

This establishes a one-to-one correspondence between bilinear functionals, P : D1 � D23 R1,
and functional-valued operators, P : D13 D*2, that are linear. Thus, in what follows, we identify
both.

Definition 3.1. TH-completeness for operators. A set E � D2 is said to be “TH-complete” for
P : D1 3 D*2 when

	Pu, w
 � 0, @w � Ef Pu � 0. (3.2)

The concepts that are introduced next are discussed more thoroughly in the Appendix.

Definition 3.2. Conjugate subspaces and TH-completeness for subsets. An ordered pair of
linear subspaces {I1, I2}, I1 � D1 and I2 � D2, is said to be “conjugate,” with respect to R :
D1 3 D*2, when

	Ru, w
 � 0, @�u, w� � I1 � I2. (3.3)
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i. Let {I1, I2} be a conjugate pair, while E1 � I1 � D1 and E2 � I2 � D2. Then E1 is said
to be TH-complete for I2 when

	Ru, w
 � 0, � u � E1f w � I2. (3.4)

Similarly, E2 is said to be TH-complete for I1 when
	Ru, w
 � 0, � w � E2f u � I1. (3.5)

ii. A conjugate pair is said to be “regular,” when in addition I1 � NR and I2 � NR*.
iii. A conjugate pair, {I1, I2}, is said to be “completely regular” when I1 is TH-complete for

I2 and, conversely, I2 is TH-complete for I1.

Remark 3.1. Notice the similarities and differences between the two concepts of TH-
completeness: one for subsets that has been just been introduced and one for operators that was
given in Definition 3.1. Observe also that a pair of linear subspaces {I1, I2}, I1 � D1 and I2 �
D2, is completely regular if and only if

	Ru, w
 � 0, @w � I2N u � I1 (3.6)

and

	Ru, w
 � 0, @u � I1N w � I2. (3.7)

It can be seen every completely regular pair is necessarily a regular pair. In particular, I1 � NR

and I2 � NR* when {I1, I2} is a completely regular pair.
Consider now a family of operators F � {Ri : i � 1, . . . , n}; Ri : D1 3 D*2. Given such a

family we associate with it a collection of pairs of subspaces, {(I1i, I2i) : i � 1, . . . , n}, defined
by

I1i � �
i�j

NRj
and I2i � �

i�j

NR *j. (3.8)

Definition 3.3. Operator decomposition. Let R : D1 3 D*2 be given. Then a family F � {Ri�i
� 1, . . . , n} of operators, Ri : D1 3 D*2, such that for each i � 1, . . . , n one has

I1i is TH-complete for R*i
I2i is TH-complete for Ri

� (3.9)

is said to be an operator decomposition of R (or, simply, a decomposition of R), when

R � �
i�1

n

Ri. (3.10)

4. THE ABSTRACT BOUNDARY VALUE PROBLEM

Definition 4.1. Boundary Operator. An operator B : D1 3 D*2 is said to be a boundary
operator for P : D1 3 D*2 when NB* � D2 is TH-complete for P.
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Lemma 4.1. Assume B is a boundary operator for P. Then for every pair (u, v) � D1 � D1,
one has

Pu � Bv � 0N Pu � 0 and Bv � 0. (4.1)

Furthermore,

NP�B � NP � NB. (4.2)

Proof. We prove

Pu � Bv � 0N Pu � 0 and Bv � 0. (4.3)

Clearly

Pu � 0 and Bv � 0f Pu � Bv � 0. (4.4)

To prove the converse, observe that the equation Pu � Bv � 0 means

	Pu � Bv, w
 � 0, @w � D2. (4.5)

When this latter equation holds, we have in particular

	Pu, w
 � 	Pu � Bv, w
 � 0, @w � NB*. (4.6)

Hence, by Definition 4.1, Pu � 0. When this latter equation holds, the equality Pu � Bv � 0
reduces to Bv � 0. Finally, Eq. (4.2) is equivalent to

�P � B�u � 0 N Pu � 0 and Bu � 0. (4.7)

And this is Eq. (4.1) when u � v.

Definition 4.2. The boundary value problem (BVP). Let B : D13 D*2 be a boundary operator
for P : D1 3 D*2. Then the (abstract) BVP consists in, given ( f, g) � P(D1) � B(D1), finding
u � D1 such that

Pu � f and Bu � g. (4.8)

Frequently, the equations occurring in Eq. (4.8) will be referred to as the “differential equation”
and the “boundary conditions,” respectively. We will say that the BVP satisfies existence when
it possesses at least one solution. Furthermore, when required for precision, the BVP just
defined will be referred to as the BVP associated with the pair (P, B).

Notice that the condition ( f, g) � P(D1) � B(D1) is tantamount to requiring the existence of
a pair (u�, u�) � (D1 � D1) such that

f � Pu� and g � Bu�. (4.9)
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Problems for which ( f, g) � P(D1) � B(D1) lack interest, since they do not possess any solution,
and Definition 4.2 excludes them.

Definition 4.3. Weak formulation of the abstract BVP (ABVP). The equation

	�P � B�u, w
 � 	 f � g, w
, @w � D2 (4.10)

or, equivalently,

�P � B�u � f � g (4.11)

will be referred to as the weak formulation of the ABVP. Notice that Eqs. (4.10) and (4.11) are
indeed equivalent, because an equality between two linear functionals defined in D2 is fulfilled
if and only if their values at each member of D2 are equal.

Lemma 4.2. A function u � D1 fulfills the weak formulation of the BVP, if and only if, u is
solution of the BVP.

Proof. Using the functions (u�, u�) � D1 � D1, Eq. (4.11) is equivalent to

P�u � u�� � B�u � u�� � 0. (4.12)

By Lemma 4.1, this equation is equivalent to Pu � Pu� � f and Bu � Bu� � g.
Introducing the pair of functions (u�, u�) � (D1 � D1), the BVP can be formulated as

follows: “Find u � D1 such that

u � u� � NP and u � u� � NB. (4.13)

Equation (4.13) reduces the BVP to the problem with linear constraints discussed in Section 2,
if we define

I1 � NP and I2 � NB. (4.14)

Then, the definitions and results presented in that section become available. In particular: the
BVP possesses a solution if and only if u� � u� � D1

S, where

D1
S � NP � NB � D1. (4.15)

Furthermore, the linear subspace D1
S is characterized by the fact that u� � D1

S, if and only if, the
BVP

Pu � Pu� and Bu � 0 (4.16)

possesses a solution. The following Definition introduces some additional subspaces that will
play significant roles in the theory.
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Definition 4.4. The subspaces D1
R � D1, N2

R � D2, N2
R � D2, and N2

S � D2. We define the
linear subspaces:

N2
R � N�P�B�* � �w � D2�	�P � B�*w, u
 � 0, @u � D1� � D2 (4.17)

D1
R � �u � D1�	Pu, w
 � 0, @w � N2

R� � D1 (4.18)

N2
R � �w � D2�	�P � B�*w, u
 � 0, @u � D1

R�

N2
S � �w � D2�	�P � B�*w, u
 � 0, � u � D1

S�. (4.19)

Remark 4.1. When w � N2
R, for every u � D1 one has 	Pu, w
 � 	Bu, w
, since 	(P � B)u,

w
 � 0. Therefore, Eq. (4.18) is equivalent to

D1
R � �u � D1�	Bu, w
 � 0, @w � N2

R� � D1. (4.20)

Thus the roles played by P and B in the definition of D1
R are symmetrical. Furthermore, if u �

NP, then 	Pu, w
 � 0 for every w � N2
R; and if u � NB, then 	Pu, w
 � 	Bu, w
 � 0 for every

w � N2
R. Hence, NP � D1

R, NB � D1
R, and NP  NB � D1

R. So

D1
S � D1

R � D1 and N2
S � N2

R � N2
R. (4.21)

5. DIRICHLET AND APPROPRIATE BOUNDARY OPERATORS

To avoid excessive repetitions, throughout this section it is assumed that B : D1 3 D*2 is a
boundary operator for P : D13 D*2 and the BVP associated with the pair (P, B) is the only one
to be considered.

Lemma 5.1. Write g � Bu� and f � Pu�. Then, u� � u� � D1
R if and only if

	 f � g, w
 � 0, @w � N2
R. (5.1)

Proof. Because

	 f � g, w
 � 	Pu� � Bu�, w
 � 	P�u� � u��, w
, @w � N2
R. (5.2)

Using Eq. (4.18) of Definition 4.4, Lemma 5.1 follows.

Theorem 5.1. Equation (5.1) is a necessary condition for the existence of solution of the BVP.
Proof. This theorem follows as a Corollary of Lemma 5.1, since D1

S � D1
R.

Recall that the subspaces N2
S, N2

R, and N2
R are nested [Eq. (4.21)]. When N2

S is as small as
possible, one has N2

S � N2
R � N2

R.

Definition 5.1. Let B : D1 3 D*2 be a boundary operator for P : D1 3 D*2. Then
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I. B is said to be a “Dirichlet operator for P” when
N2

S � N2
R � N2

R. (5.3)

II. B is said to be an “appropriate operator for P” when
D1

S � D1
R. (5.4)

Remark 5.1. Observe that, in view of Definitions 4.4 and 5.1, B is a Dirichlet operator for P,
if and only if, D1

S � NP  NB is TH-complete for (P � B)*.
The next theorem supplies a property that can be used as an equivalent alternative definition

of appropriate boundary operator.

Theorem 5.2. B is an appropriate boundary operator for P if and only if, Eq. (5.1) is a
necessary and sufficient condition for the existence of solution of the BVP.

Proof. When D1
S � D1

R, then by virtue of Lemma 5.1, Eq. (5.1) is a necessary and sufficient
condition for u� � u� � D1

S. Conversely, when Eq. (5.1) is a sufficient condition for u� � u� �
D1

S, then D1
S � D1

R, which in turn implies D1
S � D1

R.

Theorem 5.3. When B : D1 3 D*2 is a boundary operator for P : D1 3 D*2, one has

i. If NB is TH-complete for (P � B)*, then B is a Dirichlet operator for P; and
ii. P(NB) � P(D1

R), if and only if, B is an appropriate operator for P.

Proof. Recall D1
S � NP  NB � NB. Thus, the statement NB is TH-complete for (P � B)*

implies D1
S is TH-complete for (P � B)*. Hence, Proposition i. Next, we tackle ii. First, we

prove

P�NB� � P�D1
R� f D1

S � D1
R. (5.5)

Now, given any u � D1
R, choose uB � NB such that PuB � Pu, which is possible when P(NB)

� P(D1
R). Then, u � (u � uB)  uB, where (u � uB) � NP, while uB � NB. Thus, u � NP

 NB � D1
S. Hence, u � D1

R f u � D1
S; i.e., D1

S � D1
R. This establishes Eq. (5.5).

Second, we prove

NP � NB � D1
S � D1

R f P�NB� � P�D1
R�. (5.6)

Let any f � P(D1
R) � D*2 be given, which can be written as f � Pu with u � D1

R. When, NP

 NB � D1
R one can chose uP � NP and uB � NB such that u � uP  uB. Then, P(u) � P(uB) �

P(NB). Thus, u � P(D1
R) implies u � P(NB), and the relation P(NB) � P(D1

R) is clear. Hence, the
Theorem.

6. FORMAL ADJOINTS AND GREEN’S FORMULAS

Definition 6.1. Formal adjoints. Let P : D13 D*2 and Q : D23 D*1 be operators. Define R �
P � Q*. Then, P : D13 D*2 and Q : D23 D*1, are said to be “formal adjoints” of each other,
when R is a boundary operator for P, while R* is a boundary operator for Q.
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Numerical Methods for Partial Differential Equations DOI 10.1002/num



Definition 6.2. Green’s formula. Let {B1, . . . , Bn} and {C1, . . . , Cn} be two families of
operators, where Bi : D1 3 D*2 and Ci : D2 3 D*1, i � 1, . . . , n. Assume P : D1 3 D*2 and Q
: D23 D*1 are formal adjoints, while the family of operators is {B1, . . . , Bn, �C*1, . . . , �C*n}
a decomposition of R. Then, the equation

P � �
i�1

n

Bi � Q* � �
i�1

n

C*i (6.1)

is said to be a “Green’s formula.”
Only two possible values of n will be discussed in this article: n � 1 and n � 2. In the next

section we deal with the case n � 2. Here, we take B1 � B and C1 � C. Then, Eq. (6.1) yields

P � B � Q* � C*. (6.2)

Remark 6.1. When Eq. (6.2) is satisfied and it is a Green’s formula, then (see the Appendix):

B is a boundary operator for C*
C* is a boundary operator for B
C is a boundary operator for B*
B* is a boundary operator for C

�. (6.3)

This is equivalent to

NB is TH-complete for C
NC is TH-complete for B

NC* is TH-complete for B*
NB* is TH-complete for C*

�. (6.4)

Then

NP�Q* � NB � NC* and NP*�Q � NB* � NC. (6.5)

Theorem 6.1. When Eq. (6.2) is a Green’s formulas, then

1. B is a boundary operator for P;
2. C is a boundary operator for Q;
3. NB is TH-complete for Q;
4. NB is TH-complete for (P � B)* � Q � C;
5. B is a Dirichlet (boundary) operator for P; and
6. N2

R � NQ � NC.

Proof. In view of Remark 6.1, one has

NB* � NB* � NC � NR*. (6.6)
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This implies 1), since R � P � Q* is a boundary operator for P (Definition 6.1). A
symmetrical argument yields 2). Part 3) follows from NB � NB � NC* � NR since R* is a
boundary operator for Q. To prove 4), assume

	�Q � C �w, u
 � 0, @u � NB. (6.7)

Then

	�Q � C �w, u
 � 	Qw, u
 � 0, @u � NR � NB � NC* � NB. (6.8)

Equation (6.8) implies Qw � 0 and Eq. (6.7) reduces to

	Cw, u
 � 0, @u � NB. (6.9)

This equation implies Cw � 0 since NB is TH-complete for C (Remark 6.1), and the proof of
4) is complete. Part 5) follows from Part 4), since

	�P � B�*w, u
 � 	�Q � C �w, u
 � 0, @u � NB � D1
Sf w � NQ�C � N�P�B�*. (6.10)

That is, N2
S � N(P�B)* � N2

R, which implies N2
S � N2

R � N2
R, by virtue of Eq. (4.21). Finally, in

view of Eq. (4.2) (Lemma 4.1) one has NQ�C � NQ � NC; then Part 6) is clear since N2
S

� N(P�B)* � NQ�C.

Corollary 6.1. When Eq. (6.2) is a Green’s formula and B is an appropriate operator for P,
then the BVP posses a solution, if and only if

	 f � g, w
 � 0, @w � NQ�C � NQ � NC. (6.11)

Proof. Because N2
R � N(P�B)* � NQ � NC.

7. GREEN’S FORMULAS WITH TWO TERMS

Throughout this section it is assumed that P : D1 3 D*2 and Q : D2 3 D*1 are formal adjoints,
while R � P � Q* and Green’s formulas of the form

P � B � J � Q* � C* � K* (7.1)

are discussed. Equation (6.1) reduces to Eq. (7.1) when n � 2, B1 � B, B2 � J, C1 � C, and
C2 � K.

Lemma 7.1. When Eq. (7.1) is a Green’s formulas one has

I.
NK is TH-complete for P, B, and J
NJ is TH-complete for Q, C, and K�. (7.2)
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II. NR � NBJ�C*�K* � NB � NJ � NC* � NK*. (7.3)

III. NR* � NB*J*�C�K � NB* � NJ* � NC � NK. (7.4)

IV. NP�B � NP � NB and NQ�C � NQ � NC. (7.5)

V. NBJ � NB � NJ and NCK � NC � NK. (7.6)

VI. The system of operators {(B  J ), �(C*  K*)} decomposes R and
P � �B � J� � Q* � �C � K�* (7.7)

is a Green’s formula.
Proof. It is given in the Appendix. In Section 8, the results of Lemma 7.1 will be

extensively used.

Corollary 7.1. When Eq. (7.1) is a Green’s formulas, (B  J) is a boundary operator for P,
while (C  K) is a boundary operator for Q.

Proof. This is implied by Part 1) of Theorem 6.1, since Eq. (7.7) is a Green’s formula.

8. THE BOUNDARY VALUE PROBLEM WITH PRESCRIBED JUMPS

Throughout this and the next sections we consider linear spaces D1, D� 1, D2, and D� 2. It will be
assumed that D1 � D� 1 and D2 � D� 2. Functions u � D� 1 and w � D� 2 will be said to be “smooth.”
The operators P : D1 3 D*2, B : D1 3 D*2, J : D1 3 D*2, Q : D2 3 D*1, C : D2 3 D*1, and K
: D2 3 D*1 will be considered, together with P� : D� 1 3 D� *2, P� : D� 1 3 D� *2, Q� : D� 2 3 D� *2, and
C� : D� 2 3 D� *2. It is assumed throughout that B is boundary operator for P. Furthermore, the
following notations will be used:

N2
R � N�P�B�J �* � D2; N� 2

R � N� �P� �B�* � D� 2

D1
R � {u � D1�	Pu, w
 � 0, @w � N2

R} � D1;
D� 1

R � {u � D�1�	P� u, w
 � 0, @w � N� 2
R} � D1

D1
S � NP � NBJ; D� 1

S � NP� � NB�
�. (8.1)

Definition 8.1. The boundary value problem with prescribed jumps (BVPJ). Let f � P(D1),
g � B(D1), and u� � D1 be given. The BVPJ consists in finding u � D1 such that

Pu � f, Bu � g and u � u� � D� 1. (8.2)

The condition u � u� � D� 1 will be referred to as the “jump conditions.” Here, it is assumed that
boundary and jump conditions are “compatible.” By this we mean that there exists a function
u�� � D1, with the property that Bu�� � g and u� � u�� � D� 1.

Definition 8.2. Jump operator. J : D13 D*2 is said to be a “jump operator” for the BVPJ when

A. BJ is a boundary operator for P;
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B. NBJ � NB � NJ. (8.3)

C. NJ � D� 1. (8.4)

When J is a jump operator, we will write j � Ju� and Eq. (8.2), in Definition 8.1, is equivalent
to

Pu � f, Bu � g, and Ju � j. (8.5)

The assumption of compatibility of boundary and jump conditions is tantamount to the
condition that there exists a function u�� � D1 such that g � Bu�� and j � Ju��.

Three linear functionals ( f, g, j ) � P(D1) � B(D1) � J(D1), which will be referred to as the
“data of the BVPJ,” are then sufficient for defining the BVPJ.

When a jump operator is available, the BVPJ can be transformed into a BVP as stated in the
theorem that follows.

Theorem 8.1. Assume that J : D1 3 D*2 is a jump operator for the BVPJ. Consider the BVP
associated with the pair (P, B  J ):

Pu � f and �B � J �u � g � j. (8.6)

Then, u � D1 is a solution of this BVP, if and only if, it is a solution of the BVPJ of Eq. (8.5).
Proof. Clearly Eq. (8.5) implies Eq. (8.6). To prove the converse, we write the second

equality in Eq. (8.6) as (B  J )u � (B  J )u��. When J is a jump operator, this latter equation
implies Bu � Bu�� � g and Ju � Ju�� � j.

Corollary 8.1. Under the assumptions of Theorem 8.1, one has

i. The BVPJ has the weak formulation
�P � B � J �u � f � g � j. (8.7)

ii. NP�B�J � NP � NB � NJ. (8.8)

Proof. Part i ) is because Eq. (8.7) is the weak formulation of the BVP of Theorem 8.1 (See
Section 3). As for Part ii ), itself is a Corollary of Part i ). Indeed,

�P � B � J �u � 0 N Pu � 0, Bu � 0, Ju � 0. (8.9)

Definition 8.3. Extension of a Green’s formula to the BVPJ. Assume that each one of the
equations

P� � B� � Q� * � C� * (8.10)

and

P � B � J � Q* � C* � K* (8.11)
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is a Green’s formula. Then, Eq. (8.11) is said to be an ‘extension of the Green’s formula of Eq.
(8.10) to the BVPJ’ when

i. P� , B� , Q� *, and C� * are restrictions to D� 1 � D� 2 of P, B  J, Q* and C*  K*, respectively;
and

ii. NJ � D� 1 and NK � D� 2. (8.12)

Furthermore, such an extension is said to be “range invariant,” when

P�D1� � P�D� 1�. (8.13)

Lemma 8.1. Assume that Eq. (8.10) is a Green’s formula and Eq. (8.11) is an extension of it
to the BVPJ. Then

A.
D� 2 is TH-complete for P, B, and J
D� 1 is TH-complete for Q, C, and K�. (8.14)

B.
NP � NP� � NP � D� 1, NB � NB� � NB � D� 1

NQ � NQ� � NQ � D� 2, NC � NC� � NC � D� 2
�. (8.15)

C. Given any subsets E� � D� 1 and F� � D� 1, the following equivalence relation holds:
P�E� � � P�F� � N P� �E� � � P� �F� �. (8.16)

D. N2
R � N� 2

R � NQ� � NC� (8.17)

E. D1
R � D� 1

R (8.18)

F. NBJ � NB� . (8.19)

G. B � J is a boundary operator for P
C � K is a boundary operator for Q�. (8.20)

H. J is a jump operator for the BVPJ; and

I.
NP�B�J � NP � NB � NJ

NQ�C�K � NQ � NC � NK
�. (8.21)

Proof. Part A) of this Lemma follows from Theorem 7.1, since D� 2 � NK. Part B) follows
from Part A), because when u � NP� one has

	Pu, w
 � 	P� u, w
 � 0, @w � D� 2f Pu � 0. (8.22)

Then, Eq. (8.15) can be established. The relation

u � v � NP� N u � v � NP. (8.23)
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for every pair (u, v) � D� 1 � D� 1, is then clear. In turn, Eq. (8.23) can be used to prove C). In
view of Eqs. (8.10) and (8.11), one has (P � B � J )* � Q � C � K together with (P� � B� )*
� Q� � C� . Hence,

N2
R � N�P�B�J �* � NQ�C�K � NQ � NC � NK � �NQ � D� 2� � �NC � D� 2� � NQ� � NC� � N� 2

R.

(8.24)

This shows D). As for E), it follows from the fact that when u� � D� 1
R, one has

u� � D1 and 	Pu� , w
 � 0, @w � N� 2
R � N2

R. (8.25)

This, in turn, applying the definition of Eq. (8.1) implies that u� � D1
R. Hence, E) is established.

Furthermore, F) follows from Eq. (8.15), since

NBJ � NB � NJ � NB � D� 1. (8.26)

As for G), it is a restatement of Part VI), Lemma 7.1. Now, it is straight forward to see that the
conditions of Definition 8.2 are fulfilled; thereby it is shown that J is a jump operator for the
BVPJ. Then, the first relation in Eq. (8.21) follows from Corollary 8.1, Part ii), while the second
one is obtained by means of symmetric arguments, interchanging P, B, and J with Q, C, and K.

The results of Lemma 8.1 will be used extensively in the proofs of the following theorems.

Theorem 8.2. Assume the Eq. (8.10) is a Green’s formula and Eq. (8.11) is an extension of
it to the BVPJ. Then B  J is a (boundary) Dirichlet operator for P.

Proof. The equation

P � �B � J � � Q* � �C � K �* (8.27)

is a Green’s formula, by virtue of Lemma 7.1. Then, this theorem follows from Theorem 6.1,
Part 5).
The following theorem permits deriving the existence of the BVPJ of Eq. (8.5), which is
equivalent to the BVPJ of Eq. (8.2), from the existence of solution of the corresponding smooth
BVP: Find u� � D� 1, such that

P� u� � f� and B� u� � g� , (8.28)

where f� � P� u� � � P� (D� 1) and g� � B� u� � � B� (D� 1).

Theorem 8.3. Assume the Eq. (8.10) is a Green’s formula and Eq. (8.11) is a range invariant
extension of it, to the BVPJ, then, the following statements are equivalent:

1. The BVPJ of Eq. (8.5) possesses a solution, if and only if,
	f � g � j, w
 � 0, � w � NQ � NC � NK � D2. (8.29)

2. The BVP of Eq. (8.28) possesses a solution, if and only if,
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	f� � g� , w� 
 � 0, @w� � NQ� � NC� � D� 2. (8.30)

Furthermore,

NQ� � NC� � NQ � NC � NK. (8.31)

Proof. First a lemma that will be used in the sequel is established.

Lemma 8.2. Under the assumptions of Theorem 8.3, one has

P�NBJ� � P�D1
R� N P� �NB� � � P� �D� 1

R�. (8.32)

Proof of the Lemma. Observe P(NB� ) � P(D� 1
R)N P� (N B� ) � P� (D� 1

R), by virtue of Eq. (8.16),
since NB� � D� 1 and D� 1

R � D� 1. Recall now Eq. (8.18) and (8.19), to see that P(NB� ) � P(NBJ)
and P(D1

R) � P(D� 1
R). Therefore, P(DBJ) � P(D1

R) implies P(NB� ) � P(D� 1
R), which is equivalent

to P� (NB� ) � P� (D� 1
R). This establishes the implication f in Eq. (8.32). The relation

P�D1
R� � P�D� 1

R� (8.33)

will be used in the sequel. We proceed to establish it, under the assumptions of Theorem 8.3.
In view of Eq. (8.18), it is only necessary to show that P(D1

R) � P(D� 1
R). Now if l � P(D1

R) �
P(D1) � P(D� 1), there exists u� � D� 1 such that P(u� ) � l and therefore u� � D� 1

R, since u� satisfies
the conditions of Eq. (8.1). Now we proceed to prove the reverse implication d in Eq. (8.32).
Clearly, the relation P(NBJ) � P(D1

R) follows from P(NB� ) � P(D� 1
R), since P(NBJ) � P(NB� ) and

P(D1
R) � P(D� 1

R).
Proof of the Theorem. Applying Theorem 5.3, it is seen that the condition P(NBJ) �

P(D1
R) is necessary and sufficient for B  J being an appropriate operator for P, while the

condition P� (NB� ) � P� (D� 1
R) is necessary and sufficient for B� being an appropriate operator for P� .

Furthermore,

● B  J is an appropriate operator for P, if and only if, Eq. (8.29) is a necessary and sufficient
condition for the existence of solution of the BVP of Eq. (8.6), by Theorem 5.1, which in
turn is equivalent to the BVPJ of Eq. (8.5), by Theorem 8.5 and Part H) of Lemma 8.1,
while

● B� is an appropriate operator for P� , if and only if, Eq. (8.30) is a necessary and sufficient
condition for the existence of solution of the BVP of Eq. (8.28), by Theorem 5.1.

Finally, Eq. (8.31) is clear because

NP� � NB� � NP � D� 1 � NB � D� 1 � NP � NB � NJ. (8.34)

9. PIECEWISE-DEFINED FUNCTIONS

In what follows, � � Rn will be a domain, in the sense of Ciarlet [1], and � � {�1, . . . , �E}
a domain partition of �; i.e., it is assumed that
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i. ��, for � � 1, . . . , E is a subdomain of �.

ii. �� � �	 � 
, whenever � � 	. (9.1)

iii. � � �
��1

E

�� �. (9.2)

The notations �� and ���, � � 1, . . . , E, are adopted for the boundaries of � and ��,
respectively. Clearly, �� � ���1

E ���. In addition, � � ���1
E ��� is defined to be the closed

complement of ��, with respect to ���1
E ���, and will be called the internal boundary, while

�� is referred to as the outer boundary. Observe that the internal boundary is also characterized
by

� � �
��	

��� � ��	. (9.3)

The notation

��� � ����� � ���� and �� � ����� � � (9.4)

will also be used. Notice that in general ��� and ��� are different. Also, it is assumed that
except for a set of measure zero, every point x� � � belongs to the boundaries of two and only
two subdomians, ��� and ��	 say, with � � 	. Fruthermore, it is also assumed that � has been
oriented, so that the positive and negative sides of � have been defined, almost everywhere
(a.e.), on �.

In what follows, two functions defined in � are identified when the set of points where they
differ has Lebesgue measure zero. Given the partition � � {�1, . . . , �E}, by a piecewise-
defined function we mean a sequence of functions (w1, . . . , wE), such that for each � � 1, . . . ,
E, the function w� is defined a.e. in ��; the functions w� are said to be “locally defined.” When
a function w is defined a.e. in �, we can associate to it, uniquely, a piecewise-defined function
(w1, . . . , wE). Indeed, to this end the function w�, for every � � 1, . . . , E, is taken to be the
restriction of w to ��. The sequence (w1, . . . , wE) will be referred to as the piecewise
representation of w. Conversely, given any piecewise-defined function (w1, . . . , wE), there is
unique function, w, defined in �, such that (w1, . . . , wE) is the piecewise representation of w;
indeed, such a function is defined in � by the condition

w � w�; a.e. in ��, � � 1, . . . , E. (9.5)

Observe that Eq. (9.5) does not define the function w on �. However, the definition of w on �
is immaterial because the Lebesgue measure of � is zero, so, w can be arbitrarily defined on �.
This procedures establish a one-to-one correspondence between piecewise defined functions and
functions defined a.e. in �, that will be referred to as the natural immersion of one of these
spaces into the other. From now on we identify both, the function and the sequence.

When considering piecewise-defined functions, if the trace of w�, is defined a.e. on ���, for
every � � 1, . . . , E, then two functions (w, w�) are defined a.e. on the positive and negative
sides of �, respectively. This permits defining the jump and the average of w across �, by

DIFFERENTIAL EQUATIONS IN PIECEWISE-DEFINED FUNCTIONS 19

Numerical Methods for Partial Differential Equations DOI 10.1002/num



�w� � w � w� and ẇ �
1

2
�w � w�� (9.6)

respectively. Then, the following identities are fulfilled:

w � ẇ �
1

2
�w� and w� � ẇ �

1

2
�w�. (9.7)

It must be mentioned that in many applications the functions w� will be vector-valued; i.e., they
may take values in Rm.

10. SOBOLEV SPACES OF PIECEWISE DEFINED FUNCTIONS

Given a family of linear spaces, {D(�1), . . . , D(�E)}, such that D(��), for every � � 1, . . . ,
E, is a linear space of functions defined a.e. in ��, one can consider the space

D��� � D��1� � · · · � D��E�. (10.1)

Then, the elements of D(�) are piecewise defined functions, (w1, . . . , wE), with w� � D(��),
� � 1, . . . , E. An example of such linear spaces is the Sobolev space of piecewise defined
functions of order p, which is defined by

Ĥp��� � Hp��1� � · · · � Hp��E�, p � 0, 1, . . . . (10.2)

Here, Hp(��) is the Sobolev space of order p, of functions defined in ��. Only integer values
p � 0 will be considered. Every function w � Ĥp(�) is a sequence, w � (w1, . . . , wE), with
w� � Hp(��), � � 1, . . . , E.

Observe that when w � Hp(�), then the restriction, w�, of w to �� has the property that w� �
Hp(��). Therefore

Hp��� � Ĥp���. (10.3)

For p � 0 this is a proper inclusion. However, H0(�) � Ĥ0(�) � L2(�). Furthermore,

H0��� � Ĥ0��� � Ĥp���, @p � 0. (10.4)

Here, the functions defined in � have been identified with their piecewise representations, as
explained in Section 9. In view of Eq. (10.4), all the spaces Ĥp(�), for p � 0, 1, 2, . . . , are made
of functions which belong to H0(�) � L2(�).

Furthermore, for each p � 0, a function û � (u1, . . . , uE) � H0(�) belongs to Ĥp(�) if and
only if the norm

�v̂�p,�,� � ��
��1

E

�v��p,��

2 �1/2

. (10.5)
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is well defined. Here, the subscripts � and � have been included to emphasize the fact that such
norm depends not only on the domain � considered, but on the partition �, as well. When
Ĥp(�) is equipped with the norm of Eq. (10.5), it becomes a Hilbert space. The family of
subspaces {Ĥp(�)�p � 0, 1, 2, . . .} is a nested family of Hilbert spaces in the sense that

H0��� � Ĥp��� � Hq���, (10.6)

when 0 � p � q.
For greater clarity some special features, which are concomitant of observations already

made and are somewhat different of other authors’—such as Ciarlet [1]—notations, should be
emphasized. Due to the inclusion of Eq. (10.4), all functions considered are members of
H0(�) � L2(�) and as such they are not defined on point sets of zero Lebesgue measure. In
particular, it does not make any sense to talk about the value of a function u � H0(�) on the
outer boundary �� or on the inner boundary �. That notwithstanding, we consider the set of
functions C0(�) � H0(�), which is defined to be the natural immersion of C̃0(�) (the set of
functions that are continuous in �). More precisely, a function u � C0(�) if and only if there
exists a continuous function ũ � C̃0(�) such that u � ũ a.e. in �. The set C0(�� ) � H0(�) is
defined similarly, replacing � by �� above. On the other hand, if the trace of w� on ��� exists
and belongs to H0(���), for every � � 1, . . . , E, then the functions [w] � (w � w�) � H0(� )

and ẇ � 1
2
�w � w�� � H0���. Similarly, in such a case, the trace of u, on ��, belongs to

H0(��).
We recall that when u�, w� � H1(��) the following Green formula holds (see Ciarlet [1]):

	
��

u�

�w�

�xi
dx � �	

��

w�

�u�

�xi
dx � 	

���

u�w�nidx. (10.7)

Therefore,

�
��1

E 	
��

u�

�w�

�xi
dx � � �

��1

E 	
��

w�

�u�

�xi
dx � �

��1

E 	
���

u�w�nidx (10.8)

or, equivalently

�
��1

E 	
��

u�

�w�

�xi
dx � � �

��1

E 	
��

w�

�u�

�xi
dx � 	

��

uwnidx � 	
�

�uw�nidx. (10.9)

Here, the identity

�
��1

E 	
���

u�w�nidx � 	
��

uwnidx � 	
�

�uw�nidx (10.10)
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has been used. Thereby, Eq. (10.10) illustrates our notation; the outer normal to �� is being used
in each one of the integrals ����

u�w�nidx, which is specified by the subscript of the integral
symbol; on the other hand, to evaluate the integral �� [uw]nidx the unit normal is chosen
arbitrarily and at the same time such a choice defines the orientation of �. Then, of course, the
value of that integral is independent of that choice. Finally, as specified by the subscript ��, the
outer normal vector to � is used when evaluating ��� uwnidx. Finally, it should be noticed that
Eq. (10.9) can also be written as

�
��1

E 	
��

u�

�w�

�xi
dx � �

��1

E 	
��

w�

�u�

�xi
dx � 	

��

uwnidx � 	
�

�u̇�w� � ẇ�u��nidx, (10.11)

and, in particular, when w � �(�) Eq. (10.11) yields

�
��1

E 	
��

w
�u�

�xi
dx � �

��1

E 	
��

u�

�w

�xi
dx � �	

�

w�u�nidx. (10.12)

Here, as in what follows, � (�) stands for the space whose members are functions of ��(�)
with compact support contained in �.

11. RELATION BETWEEN DIFFERENT KINDS OF SOBOLEV SPACES

In the last section it was seen that Ĥp(�) � Hp(�), for every p � 0. A basic problem that is
addressed in this section is how to characterize the space Hp(�) as a subset of Ĥp(�). In
particular, necessary and sufficient conditions for members u � (u1, . . . , uE) � Ĥp(�) to be a
members of Hp(�), will be given.

When m � 1 and u � (u1, . . . , uE) � Ĥm(�), the traces of u�, on ���, for � � 1, . . . , E,
belong to L2(���) [1]. Then, as explained in Section 9, after having oriented the internal
boundary � the functions u � L2(� ) and u� � L2(� ), as well as the jump and the average
across �, are well defined.

Lemma 11.1. Let u � Ĥ1(�), then

i. For every 
 � �(�), one has

�
��1

E 	
��



�u�

� xi
dx � 	

�

u
�


� xi
dx � �	

�


�u�nidx. (11.1)

ii. u � H1(�), if and only if, [u] � 0 on �.

Proof. Let u � (u1, . . . , uE) � Ĥ1(�) � H0(�). Then, by the definition of the distribu-
tional derivative, u � H1(�) if and only if, for every i � 1, . . . , n, there is a function w � H0(�)
with the following property:

	
�

w
dx � �	
�

u
�


�xi
dx, @
 � ����. (11.2)
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When Eq. (11.2) is fulfilled, w � H0(�) is the distributional derivative of u � H1(�). Observe
that

	
�

u
�


�xi
dx � �

��1

E 	
��

u�

�


�xi
dx. (11.3)

But, in view of the fact that u� � H1(��) and 
���
� ��(�� �) � H1(��), for each � � 1, . . . ,

E, the following Green formula holds [1]:

	
��

u�

�


�xi
dx � �	

��



�u�

�xi
dx � 	

���

u�
nidx, (11.4)

with (�u� /�xi) � H0(��). Therefore,

�
��1

E 	
��

u�

�


�xi
dx � �	

�



�u

�xi
dx � �

��1

E 	
���

u�
nidx (11.5)

or

�
��1

E 	
��

u�

�


�xi
dx � �	

�



�u

�xi
dx � 	

�


�u�nidx. (11.6)

This equation implies Eq. (11.1). Furthermore, in view of Eq. (11.6), the function

w � ��u1

�xi
, . . . ,

�uE

�xi
� � H0���

fulfills

	
�

w
dx � 	
�


�u�nidx � �	
�

u
�


�xi
dx. (11.7)

Comparing Eq. (11.2) with Eq. (11.7), it is seen that Eq. (11.2) holds for every 
 � �(�)
and every i � 1, . . . , n, if and only if the function [u] � L2(� ) is the zero function. In particular,
if for some i � 1, . . . , n, [u]ni � 0, the functional associated with the term �� 
[u]nidx is not
continuous with respect to the norm � �0,�.

Lemma 11.2. Let u � Ĥ2(�) � H1(�). Then


 �u

�xi
� � 
�u

�n�ni, a.e. on �. (11.8)
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Proof. When u � (u1, . . . , uE) � Ĥ2(�) � H1(�), one has

	
�

u
�2


�xi�xj
dx � �	

�

�u

�xi

�


�xj
dx � ��

��1

E 	
��

�u�

�xi

�


�xj
dx � �

��1

E 	
��



�2u�

�xi�xj
dx � 	

�



�u

�xi
�njdx.

(11.9)

Interchanging i and j and subtracting the resulting equation, one gets

	
�


�
 �u

�xi
�nj � 
 �u

�xj
�ni�dx � 0, @
 � ����. (11.10)

This implies


 �u

�xi
�nj � 
 �u

�xj
�ni, a.e. on �. (11.11)

Multiplying by nj and adding the resulting equations, for j � 1, . . . , n, one gets


 �u

�xi
� � 
�u

�n�ni, on �, i � 1, . . . , n. (11.12)

This is Eq. (11.8).

Lemma 11.3. Let u � Ĥ2(�) � H1(�), then

i. For every 
 � �(�), one has

�
��1

E 	
��



�2u�

� xi� xj
dx � 	

�

u
�2


� xi� xj
dx � �	

�



�u

�v�vivjdx. (11.13)

ii. u � H2(�) if and only if


�u

�n� � 0. (11.14)

Proof. Eqs. (11.9) and (11.11) together, yield Eq. (11.13). Once this has been shown, ii) is
clear.

Observe that

�2u

�xi�xj
� � �2u1

�xi�xj
, . . . ,

�2uE

�xi�xj
� � H0���,

when the jump of the normal derivative vanishes. In words, when u � Ĥ2(�) � H1(�) and jump
of the normal derivative across � vanishes, the second derivatives of u are obtained differen-
tiating at each �� (� � 1, . . . , E ), separately.
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In the following lemma the multi-index notation, which is essentially the same as that used
by Ciarlet ([1]; see also Lions and Magenes [54]) is adopted: Given a multi-index  � (1, . . . ,
n) � Nn, the norm of  is defined by �� � ¥i�1

n i.

Theorem 11.1. Let u � Ĥm(�) � Hm�1(�) and  � (1, . . . , n) � Nn, with �� � m. Then

i. For every 
 � �(�), one has

�
��1

E 	
��



�mu�

� x1
1· · ·� xn

n
dx � ��1�m 	

�

u
�m


�x1
1· · ·�xn

n
dx � �	

�



�m�1u

�nm�1�n1
1· · ·nn

ndx.

(11.15)

ii. u � Hm(�) if and only if


�m�1u

�nm�1� � 0. (11.16)

Proof. We prove this Theorem by induction over m. For m � 1 and m � 2, it reduces to
Lemmas 11.1 and 11.3, respectively. Assume it holds for �u� � � m, and let � � (�1, . . . , �n) �
Nn be such that ��� � m � 1, with �j � j, except for j � i in which case �i � i � 1. Here,
i is any integer such that 1 � i � n. Then

�
��1

E 	
��



�mu�

�x1
1· · ·�xn

n
dx � �

��1

E 	
��



�

�xi
� �m�1u�

�xj�x1
�1· · ·�xn

�n�dx � �	
�

�m�1u

�xj�x 1
 �1· · ·�xn

 �n

�


�xi
dx

� 	
�



 �m�1u

�xj�x 1
 �1· · ·�xn

 �n�nidx. (11.17)

Applying Lemma 11.2, one has


 �m�1u

�xj�x1
�1· · ·�xn

�n� � 
 �

�xj
� �m�2u

�x1
�1· · ·�xn

�n�� � 
 �

�n � �m�2u

�x1
�1· · ·�xn

�n� �nj. (11.18)

Then


 �m�1u

�xj�x1
�1· · ·�xn

�n�ni � 
�m�1u

�m�1n�n1
1· · ·nn

n (11.19)

by virtue of the induction assumption. Also

	
�

�m�1u

�xj�x1
�1· · ·�xn

�n

�


�xi
dx � ��1�m�1 	

�

u
�m


�x1
1· · ·�xn

n
dx, (11.20)
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since u � Hm�1(�). Replacing these expressions into Eq. (11.17), it is obtained

�
��1

E 	
��



�mu�

�x1
1· · ·�xn

n
dx � ��1�m 	

�

u
�m


�x1
1· · ·�xn

n
dx � 	

�



�m�1u

�m�1n�n1
1· · ·nn

ndx. (11.21)

Rearranging this equality, Eq. (11.15) is obtained. Proposition ii ) now follows as a corollary of
Proposition i). Even more, observe that when u � Hm(�) its derivatives are equal (a.e.) to those
of u� � Hm(��), at each one of the subdomains of the partition.

Theorem 11.2. Let m � 1 and assume u � Ĥm(�). Then, u � Hm(�) if and only if


���1u

�n��1� � 0, for � � 1, . . . , m. (11.22)

Proof. This is a corollary of Theorem 11.1. It can be derived from this theorem by
induction over m, starting with m � 1.

12. ELLIPTIC DIFFERENTIAL EQUATIONS WITH PRESCRIBED JUMPS

In this section, we mainly use Lions and Magenes’ notations [79]:
i. The domain of definition of the problem � � Rn, as well as the partition subdomains, will

be domains in the sense that they are assumed to be open, bounded, connected subsets with a
Lipschitz-continuous boundary �� [1, 80]. In the next paragraphs the notations are explained for
the whole domain �, but corresponding notations will used for each one of the patition
subdomains: �i, i � 1, . . . , E.

ii. �(�) will be the set of indefinitely differentiable functions in �, with compact support in
�; while �(�� ) is the set of infinitely differentiable functions in the closure of �;

iii. The elliptic differential operator L of order 2m, with m � 1, and its formal adjoint L*,
are defined by

Lu � �
�p�,�q��m

��1��p�Dp�apqD
qu� and L * w � �

�p�,�q��m

��1��p�Dp�aqpD
qw�, (12.1)

with apq � D(�� ) and it is properly elliptic in �� . Here

D� �
��1. . .�n

�x1
�1· · ·�xn

�n
, � � ��1, . . . , �n�, ��� � �1 � . . . � �n. (12.2)

iv. The “differential boundary operators” Bj
LM, of order mj, are defined by

Bj
LMu � �

�h��mj

bjhD
hu, (12.3)
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with bjh � �(��), 0 � mj � 2m � 1, the system {Bj
LM}j�0

m�1 being normal on �� and covering
L on ��.

v. The systems of boundary operators {Sj
LM}j�0

m�1, {Cj
LM}j�0

m�1, and {Tj
LM}j�0

m�1 are also normal
on ��, having infinitely differentiable coefficients and being of orders 0 � �j � 2m � 1,
2m � 1 � �j, and 2m � 1 � mj, respectively.

vi. Furthermore, each one of the systems {B0
LM, . . . , Bm�1

LM , S0
LM, . . . , Sm�1

LM } and {C0
LM, . . . ,

Cm�1
LM , T0

LM, . . . , Tm�1
LM } is a “differential Dirichlet system of order 2m” on �� (see [54]). This

assumption implies that the sets {m0, . . . , mm�1} � {�0, . . . , �m�1} and {0, . . . , 2m � 1} are
equal.

Modifying slightly the notation used in [79], let us define the “local” trace operator

�BLM : u 3 �BLMu � �B0
LMu, . . . , Bm�1

LM u�. (12.4)

Here, for each i � 0, . . . , m � 1 and each � � 1, . . . , E, Bi
LMu stands for the trace on ���, so

that �BLM is a transformation of functions belonging to H2m(��), and so defined in ��, into
functions defined on ���. In [79] it is shown that when the boundary ��� is an n � 1
dimensional infinitely differentiable variety, the image under this mapping of H2m(��) is given
by

�BLM�H2m����� � 
j�0

m�1

H2m�mj��1/2������. (12.5)

In the developments that follow, where we only are assuming that each one of the partition
subdomains �� � Rn is a domain with Lipschitz-continuous boundary ���, the weaker
condition will be used:

�BLM�H2m����� � H0����� � · · · � H0�����

m times

, (12.6)

and

span��BLM�H2m������ � H0����� � · · · � H0�����

m times

. (12.7)

Here, the closure operation is taken with respect to the metric of the product space

H0����� � · · · � H0�����

m times

.

When the relation ��� � �	�1
E ��	 � � � �� is taken into account and the natural embedding

of H0(���) into H0(� � ��) is applied, it is clear that H0(���) � H0(� � ��). Then
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�BLM�H2m����� � H0����� � · · · � H0�����

m times

� H0�� � ��� � · · · � H0�� � ���

m times

. (12.8)

In what follows, we will write span(�BLM{H2m(��)}) for the closure of �BLM{H2m(��)},
where the closure operation taken with respect to the metric of the product space

H0�� � ��� � · · · � H0�� � ���

m times

.

Then, Eq. (12.8) implies

span��BLM�H2m������ � H0�� � ��� � · · · � H0�� � ���

m times

. (12.9)

In an analogous manner to the definition of Eq. (12.4), we define the local mappings

�SLM : u 3 �SLMu � �S0
LMu, . . . , Sm�1

LM u�

�TLM : w 3 �TLMw � �T0
LMw, . . . , Tm�1

LM w�

�CLM : w 3 �CLMw � �C0
LMw, . . . , Cm�1

LM w�. (12.10)

Then, arguments that parallel those that led to Eqs. (12.7) and (12.9) permit writing

span(�SLM{H2m(��)}) � H0(���) � · · · � H0(���)

m times

span(�TLM{H2m(��)}) � H0(���) � · · · � H0(���)

m times

span(�CLM{H2m(��)}) � H0(���) � · · · � H0(���)

m times � (12.11)

and to

span(�SLM{H2m(��)}) � H0(� � ��) � · · · � H0(� � ��)

m times

span(�TLM{H2m(��)}) � H0(� � ��) � · · · � H0(� � ��)

m times

span(�CLM{H2m(��)}) � H0(� � ��) � · · · � H0(� � ��)

m times �. (12.12)

At this point, we define the spaces of trial and test functions to be

D1 � D2 � D � Ĥ2m���, (12.13)

while the subspaces of smooth functions are taken to be
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D� 1 � D� 2 � D� � H2m���. (12.14)

As explained in Section 9, the internal boundary has been oriented, taking the unit normal
vector n� pointing toward the positive side. In the outer boundary ��, the unit normal vector is
always taken pointing outward. Then, the differential expressions Bi

LMu, Si
LMu, Ti

LMw, and Ci
LMw

are computed using such normal vectors, and we introduce the following “global” trace
mappings:

�BLM
�� u � {B0

LMu, . . . , Bm�1
LM u} and �SLM

�� u � {S0
LMu, . . . , Sm�1

LM u}
�TLM

�� u � {T0
LMw, . . . , Tm�1

LM w} and �CLM
�� u � {C0

LMw, . . . , Cm�1
LM w} � on ��.

(12.15)

Together with

�Ju � {�B0
LMu�, . . . , �Bm�1

LM u�, �S0
LMu�, . . . , �Sm�1

LM u�}
�Ku � {{{B0

LMu}}, . . . , {{Bm�1
LM u}}, {{S0

LMu}}, . . . , {{Sm�1
LM u}}}� on �,

(12.16)

and

�Jw � {{{T0
LMw}}, . . . , {{Tm�1

LM w}}, {{C0
LMw}}, . . . , {{Cm�1

LM w}}}

�Kw � {�T0
LMw�, . . . , �Tm�1

LM w�, �C0
LMw�, . . . , �Cm�1

LM w�} � on �.

(12.17)

Here, � � and {{ }} stand for the “jump” and the “average,” across �, of the functions that are
within. Thus, for example,

�Sj
LMu� � �Sj

LMu� � �Sj
LMu��

��Cj
LMw�� �

1

2
��Cj

LMw� � �Cj
LMw���. (12.18)

Then, Eqs. (12.7) and (12.11) imply

span(�BLM
�� {Ĥ2m(�)}) � H0(��) � · · · � H0(��)

m times

span(�SLM
�� {Ĥ2m(�)}) � H0(��) � · · · � H0(��)

m times

span(�TLM
�� {Ĥ2m(�)}) � H0(��) � · · · � H0(��)

m times

span(�CLM
�� {Ĥ2m(�)}) � H0(��) � · · · � H0(��)

m times
�, (12.19)

and
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span(�J{Ĥ2m(�)}) � H0(�) � · · · � H0(�)

2m times

span(�K{Ĥ2m(�)}) � H0(�) � · · · � H0(�)

2m times

span(�J{Ĥ2m(�)}) � H0(�) � · · · � H0(�)

2m times

span(�K{Ĥ2m(�)}) � H0(�) � · · · � H0(�)

2m times
�. (12.20)

Separately, in each one of the partition subdomains ��, for every pair of functions (u, w) �
H2m(��) � H2m(��), the equation:

	
��

w�udx � �
j�0

m�1 	
���

Bj
LMuTj

LMwdx � 	
��

u�*wdx � �
j�0

m�1 	
���

Sj
LMuCj

LMwdx

(12.21)

holds. Equation (12.21) can be written as

	
��

w�udx � 	
���

��u, w�dx � 	
��

u�*wdx � 	
���

��w, u�dx, (12.22)

if the definitions

��u, w� � � �
j�0

m�1

Bj
LMuTj

LMw and ��w, u� � � �
j�0

m�1

Sj
LMuCj

LMw (12.23)

are adopted. Adding up the Eqs. (12.21) corresponding to each one of the partition subdomains,
it is obtained

�
��1

E 	
��

w�udx � �
��1

E 	
���

��u, w�dx � �
��1

E 	
��

u�*wdx � �
��1

E 	
���

��w, u�dx. (12.24)

Furthermore,

�
��1

E 	
���

{�(u, w) � �(w, u)}dx � 	
��

{�(u, w) � �(w, u)}dx �

	
�

{�(u, w) � �(w, u)}dx �, (12.25)
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where

��u, w� � ����w��, �u�� � ���u�, ��w���

��w, u� � ����u��, �w�� � ����u��, �w��. (12.26)

For later use, we observe that Eqs. (12.23) and (12.26) together imply that

�(u, w) � �
j�0

m�1

�Sj
LMu�{{Cj

LMw}} � �
j�0

m�1

�Bj
LMu�{{Tj

LMw}}

�(w, u) � �
j�0

m�1

{{Sj
LMu}}�Cj

LMw� � �
j�0

m�1

{{Bj
LMu}}�Tj

LMw� � on �. (12.27)

for every (u, w) � D � D.
Using these results, Eq. (12.24) yields

�
��1

E 	
��

w�udx � 	
��

�(u, w)dx � 	
�

�(u, w)dx �

�
��1

E 	
��

u�*wdx � 	
���

�(w, u)dx � 	
�

�(w, u)dx � @�u, w� � D � D. (12.28)

Furthermore, it can be seen that

�
��1

E 	
��

w�udx � 	
��

��u, w�dx � �
��1

E 	
��

u�*wdx � 	
���

��w, u�dx, @�u, w� � D� � D� .

(12.29)

The operators P : D 3 D*, Q : D 3 D*, B : D 3 D*, C : D 3 D*, J : D 3 D*, and K :
D 3 D* are now defined, for every (u, w) � Ĥ2m(�) � Ĥ2m(�), to be given by

	Pu, w
 � �
i�1

E 	
�i

w�udx and 	Qw, u
 � �
i�1

E 	
�

u�*wdx

	Bu, w
 �	
��

�(u, w)dx and 	Cw, u
 �	
��

�(w, u)dx

	Ju, w
 �	
E

�(u, w)dx and 	Kw, u
 �	
�

�(w, u)dx
�. (12.30)

Then Eq. (12.28) is
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	Pu, w
 � 	Bu, w
 � 	Ju, w
 � 	Qw, u
 � 	Cw, u
 � 	Kw, u
, (12.31)

which holds for every (u, w) � Ĥ2m(�) � Ĥ2m(�). Equation (12.31) can also be written as an
identity between bilinear functionals:

P � B � J � Q* � C* � K*. (12.32)

Recalling that D� 1 � D� 2 � D� � H2m(�), we define P� : D� 3 D� *, Q� : D� 3 D� *, B� : D� 3 D� *,
and C� : D� 3 D� * as the restrictions to D� � D� of P, Q, B, and C, respectively. Then, Eq. (12.29)
is

P� � B� � Q� * � C� *. (12.33)

Theorem 12.1. Equation (12.33) is a Green’s formula and Eq. (12.32) is a range invariant
extension of it to the BVPJ.

Proof. In view of Definition 8.3, we need to prove that each one of the Eqs. (12.32) and
(12.33) is a Green’s formula, together with

NJ � H2m��� and NK � H2m��� (12.34)

and

��Ĥ2m���� � ��H2m����. (12.35)

Equation (12.35) is clear because

��Ĥ2m���� � H0��� � ��H2m����. (12.36)

Let us define the family of operators by

�R1, R2, R3, R4� � �B, J, �C*, �K*�. (12.37)

Then

I11 � �BLM{Ĥ2m(�)}; I12 � �J{Ĥ2m(�)}
I13 � �SLM{Ĥ2m(�)}; I14 � �K{Ĥ2m(�)}� , (12.38)

together with

I21 � �TLM{Ĥ2m(�)}; I22 � �J{Ĥ2m(�)}
I23 � �CLM{Ĥ2m(�)}; I24 � �K{Ĥ2m(�)}� . (12.39)

Then it is easy to verify, for every i � 1, . . . , n, that

	Riu, w
 � 0, @w � I2if 	Riu, w
 � 0, @w � D
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	Riu, w
 � 0, � u � I1i f 	Riu, w
 � 0, � u � D. (12.40)

This shows that the system of operators {R1, R2, R3, R4}, as defined above, decomposes R � P �
Q*. Now, it can be seen that

NJ � �u � Ĥ2�����Ju � 0� and Nk � �w � Ĥ2�����Kw � 0�. (12.41)

Furthermore, the condition �Ju � 0 is tantamount to

�Bi
LMu� � �Si

LMu� � 0, i � 0, . . . , m � 1, (12.42)

which in turn is fulfilled, if and only if,


��u

�n�� � 0, for � � 0, . . . , 2m � 1. (12.43)

Similarly, a function w � Nk if and only if,


��w

�n�� � 0, for � � 0, . . . , 2m � 1. (12.44)

When the functions u and w belong to D � Ĥ2(�), Eqs. (12.43) and (12.44) are fulfilled if and
only if they belong to D� � H2(�).

In what follows the “standard smooth elliptic boundary value problem” will be as follows:
“Given f� � H0(�) and g�

i , on ��, i � 0, . . . , m � 1, find u � H2m(�) such that

�u � f�; in �

Bi
LMu � g�

i ; on ��, i � 0, . . . , m � 1. (12.45)

Here, it is assumed that the boundary data are such that there exists a function u� � H2m(�) such
that g�

i � Bi
LMu� on ��, i � 0, . . . , m � 1.”

On the other hand, the elliptic BVPJ will be:
“Given f� � H0(�), g�

i , on ��, i � 0, . . . , m � 1, and j�
j , on ��, j � 0, . . . , 2m � 1, find

a u � Ĥ2m(�) such that

�u � f�; in �

Bi
LMu � g�

i ; on ��, for i � 0, . . . , m � 1


�ju

�nj� � j�
j ; on �, for j � 0, . . . , 2m � 1. (12.46)

Here, it is assumed that the boundary and jump conditions are compatible; i.e., there exists a
function u�� � Ĥ2m(�) such that g�

i � Bi
LMu��, on ��, and i � 0, . . . , m � 1 and
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�ju��

�nj � � j�
j ; on �, for j � 0, . . . , 2m � 1.” (12.47)

When considering the standard smooth elliptic boundary value problem, for each w � H2m(� ),
we define on �� the function

g��w� � ��u�, w� � � �
j�0

m�1

Bj
LMu�Tj

LMw, on ��. (12.48)

Correspondingly, when considering the elliptic BVPJ, for each w � H� 2m(� ) we define

g��w� � ��u��, w�, on ��, and j��w� � ��u��, w�, on �. (12.49)

Here, �(u��, w) is defined by Eq. (12.26). It can be verified that both g�(w) and j�(w) are
uniquely determined by the functions g�

i and j�
j occurring on Eqs. (12.45) and (12.46) (i.e., they

are well defined). Furthermore, the functions w � H2m(�) � Ĥ2m(�) that fulfill

�*w � 0; in �

Ci
LMw � 0; on ��, i � 0, . . . , m � 1 (12.50)

constitute a linear subspace contained in H2m(�) � Ĥ2m(�), which will be denoted by NR.

Theorem 12.2. The following statements are equivalent.

1. The standard smooth elliptic boundary value problem possesses at least one solution, if
and only if,

	
�

wf�dx � 	
��

g��w�dx � 0, � w � NR. (12.51)

2. The elliptic BVPJ possesses at least one solution, if and only if,

	
�

wf�dx � 	
��

g��w�dx � 	
�

j��w�dx � 0, � w � NR. (12.52)

Proof. In view of Theorem 12.1, one can apply Theorem 8.3.

13. CONCLUSIONS

In this article a theory of partial differential equations in discontinuous piecewise-defined
functions spaces has been presented, which is applicable to any differential equation or system
of such equations that is linear, independently of its type and with possibly discontinuous
coefficients. When finite element methods are formulated in this theory’s setting trial and test
functions can be fully discontinuous across the internal boundary and, so, dG methods are
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included. Such a formulation permits moving smoothly, without interruption, from the standard
finite element method, based on continuous piecewise-defined functions, to the discontinuous
Galerkin methods.

The theory is direct and systematic and, furthermore, it avoids the use of Lagrange multipliers
or a frame, while mixed methods are incorporated as particular cases of more general results
implied by the theory [39]. Some of the advantages of systematically handling discontinuous
piecewise-defined functions have been illustrated for methods such as discontinuous Galerkin,
Trefftz, and domain decomposition and collocation; among them, more efficient collocation
procedures have been exhibited [50, 72–77], as well as the elimination of Lagrange multipliers
and the frame, with the concomitant reduction of the number of degrees of freedom. This latter
feature has been illustrated in [33], where details of its implementation have been provided.

Another important motivation for writing the present article was to complete the theoretical
foundations of a line of research developed by the author and his coworkers, through a long time
span [31, 33, 37–58, 71–78]. In this respect, many of the results obtained in previous work have
been incorporated for the first time, in the framework of a systematic and rigorous theory of
partial differential equations in Sobolev spaces of discontinuous piecewise-defined functions. To
this end, a large number of new developments were required, while the material that was already
available was thoroughly revised and reorganized. In particular, the nomenclature was improved
making it more systematic.

APPENDIX
A1. Operators Decompositions

In this section a fixed operator R : D13 D*2 is considered; then, we are concerned with families
of operators F � {Ri : i � 1, . . . , n}, where R1 : D1 3 D*2. When any such a family is given,
we associate with it a collection of pairs of subspaces, {(I1i, I2i) : i � 1, . . . , n}, defined by

I1i � �
i�j

NRj
and I2i � �

i�j

NR*j. (A1.1)

Furthermore, we define

�1i � �
j�i

I1j and �2i � �
j�i

I2j (A1.2)

and

D̂1 � �
j�1

n

I1j and D̂2 � �
j�i

I2j. (A1.3)

The following properties should be noticed, because they will be used in the sequel.

I. For any functions u � D1 and v � D2, one has
u � I1i N Rju � 0, � j � i (A1.4)

and
v � I2iN R*jv � 0, � j � i. (A1.5)
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II. Write N � {1, . . . , n}, and let N� � N, N� � N be such that

N� � N� � N and N� � N� � A. (A1.6)

Then,

�
i�N�

�1i � �
i�N�

I1i and �
i�N�

�2i � �
i�N�

I2i

�
i�N�

�1i � �
i�N�

I1i and �
i�N�

�2i � �
i�N�

I2i�. (A1.7)

Definition A1.1. Operator decomposition. Let a family of operators, F � {Ri�i � 1, . . . , n},
where Ri : D13 D*2, be given. Assume each one of the pairs (I1i, NR*

i
) and (NRi

, I2i), i � 1, . . . ,
n is completely regular (with respect to R). Then, F is said to be an operator decomposition of
R (or, simply, a decomposition of R), when

R � �
i�1

n

Ri. (A1.8)

Remark A1.1. When the family of operators F is an operator decomposition of R, one has

I1i � NR; �1i � NR; I2i � NR*; �2i � NR*; i � 1, . . . , n. (A1.9)

The case when the family of operators F is a pair has special interest. In such a case Definition
A1.1, reads as follows.

Definition A1.2. Let R : D1 3 D*2 be given. Then a pair of operators F � {R1, R2} of
operators, is said to be a decomposition of R, when

R � R1 � R2 (A1.10)

and each one of the pairs of linear subspaces: �NR2, NR *1� and �NR1, NR *2� are completely regular.

Remark A1.2. When the pair of operators F � {R1, R2} decomposes R, then

R1 is a boundary operator for R2

R2 is a boundary operator for R1

R*1 is a boundary operator for R*2
R*2 is a boundary operator for R*1

�. (A1.11)

This is equivalent to

NR1 is TH-complete for R*2
NR2 is TH-complete for R*1
NR *1 is TH-complete for R2

NR *2 is TH-complete for R1

�. (A1.12)
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Furthermore,

NR � NR1 � NR2 and NR* � NR *1 � NR *2, (A1.13)

As can be seen using the fact that NR1
 NR2

� D1 and NR *1 � NR *2 � D2.

Lemma A1.1. When F � {Ri : i � 1, . . . , n} is a decomposition of R, the following properties
hold.

1.

NR � �
k�1

n

NRk
� �

k�1

n

�1k � �
k�1

n

I1k � I1i � I1j

NR* � �
k�1

n

NR*k � �
k�1

n

�2k � �
k�1

n

I2k � I2i � I2j
� @i � j (A1.14)

2. NRi
� �1i and NR*i � �2i. (A1.15)

3. Each one of the pairs, (I1i, �2i) and (�1i, I2i), is a regular conjugate pair (with respect to
R).

Proof. When the conditions of Definition A1.1 are fulfilled, and i � j, one has

NR � �
k�1

n

NRk
� I1i � I1j � �

k�1

n

I1k � �
k�1

n

�1k � NR. (A1.16)

So, the first part of Eq. (A1.14) is clear. To see property 2), observe that NRi
� I1j � �k�j NRk

whenever i � j. This, in turn implies that NRi
� �1i. The second part of Eq. (A1.15) can be

shown in a similar manner, to complete the proof of Property 2). As for Property 3), the pair (I1i,
�2i) is conjugate because the pair �I1i, NR *i � is comletely regular and NR*i � �2i. Furthermore, �2i

� NR* and I1i � NR, as indicated in Remark A1.1.
In the following theorem, we consider two subfamilies F� � F and F� � F of a decompo-

sition F � {Ri�i � 1, . . . , n} of R. It is assumed that

F� � F� � F and F� � F� � A. (A1.17)

Then, the notations N� � N and N� � N will be used for the sets of subindices spanned by the
families F� and F�, respectively. It can be seen that Eq. (A1.17), implies Eq. (A1.6).

Theorem A1.1. Assume F is a decomposition of R and let F� � F and F� � F fulfill Eq.
(A1.17). Define

R� � �
i�N�

Ri and R� � �
i�N�

Ri. (A1.18)

Then
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I.

NR� � �
i�N�

NRi
� �

i�N�

I1i and NR� � �
i�N�

NRi
� �

i�N�

I1i

N�R��* � �
i�N�

N�Ri�* � �
i�N�

I2i and N�R��* � �
i�N�

N�Ri�* � �
i�N�

I2i�. (A1.19)

II. Each one of the subspaces ¥i�N�, I1i, ¥i�N� I1i, ¥i�N� I2i, and ¥i�N� I2i is TH-complete
for N(R�)*, N(R�)*, NR�, and NR�, with respect to R, respectively.

III. Each one of the pairs of subspaces, (NR�, N(R�)*) and (NR�, N(R�)*), is a comletely regular
conjugate pair. Furthermore, the pair of operators (R�, R�) decomposes R.

Furthermore, for every i � N�, one has

IV. R� is a boundary operator for every Ri.
V. (R�)* is a boundary operator for every (Ri)*.
VI. Ri is a boundary operator for every R�, and

VII. (Ri)* is a boundary operator for every (R�)*.

Proof. Before proving this result, it is mentioned that the assertions of Theorem A1.1
remain valid if the primes and the bi-primes are interchanged. To start the proof, it is seen that
the definitions of Eq. (A3.8) imply

�
i�N�

NRi
� �

i�N�

I1i. (A1.20)

Furthermore, the relation

NR� � �
i�N�

NRi
(A1.21)

follows from Eq. (A1.18). On the other hand,

	R�u, w
 � �
i�N�

	Riu, w
 � 0, @w � D̂2 � D2f u � NRi
, @i � N�. (A1.22)

Hence,

NR� � �
i�N�

NRi
. (A1.23)

And the first of the equations (A1.19) is established. The remaining of the proof of Property I)
is similar. As for Property II), we only prove that ¥i�N� I2i is TH-complete for NR�. Assume

	Ru, w
 � 0, @w � �
j�N�

I2j. (A1.24)

Then, u � �j�N� NRj
� NR�. Next, we prove Property III). Clearly,

R � R� � R�. (A1.25)
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Now, assume (u, w) � NR� � N(R�)*; then,

	Ru, w
 � 	R�u, w
 � 	R�u, w
 � 0. (A1.26)

Thus, the pair (NR�, N(R�)*) is conjugate. Furthermore, N(R�)* is TH-complete for NR�, with respect
to R, since N(R�)* � ¥i�N� I2i. Similarly, NR� is TH-complete for N(R�)* and the pair (NR�, N(R�)*)
is completely regular. Additional arguments of the same kind yield Property III). Of Properties
IV) to VII), we only prove IV) and VI). To prove IV), we the fact that

	Ru, w
 � 	Riu, w
 � 0, @w � I2i � �
j�N�

I2j � N�R��*f u � NRi
� 0. (A1.27)

Then the result is clear. To prove VI), we use the fact that

	Ru, w
 � 	R�u, w
 � 0, @w � �
j�N�

I2j � N�Ri�*f u � NR� � 0. (A1.28)

Then the result is clear.

Corollary A1.1. Let F � {Ri�i � 1, . . . , n} be a decomposition of R and let F� � {Rj�j � N�
� N} be any subfamily of F. Assume Ri � F�, then

�
j�N�

	Rju, w
 � 0, @w � NRi
(A1.29)

implies Rju � 0 for every j � N�.
Proof. Let N� � N be the complement of N� relative to N. Then i � N�. Therefore Ri �

F� is a boundary operator for ¥j�N� Rj and the Eq. (A1.29) implies that

� �
j�N�

Rj�u � 0. (A1.30)

This equation in turn implies that Rju � 0 for every j � N�, by virtue of Eq. (A1.19).

A2. Derivation of the Results Used in the Article

First, we prove Remark 6.1 of Section 6. When Eq. (6.2) is a Green’s formula, then the pair of
operators {B, �C*} decomposes R � P � Q* and Eq. (6.3) is obtained from Eq. (A1.12), while
Eq. (6.4) is obtained from Eq. (A1.13). Next, we prove Lemma 7.1 of Section 7, with the
addition of Corollary 7.1.

Proof of Lemma 7.1 of Section 7. Part I) (of Lemma 7.1) is implied by Theorem A1.1
(Parts VI) and VII)). As for Parts II) and III), they are implied by Part 1) of Lemma A1.1. The
equation

	�P � B�u, w
 � 0, @w � D2 (A2.1)

implies
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	Pu, w
 � 0, @w � NR* � NB*. (A2.2)

Hence, Pu � 0 and 	Bu, w
 � 0, @w � D2, since NR* is TH-complete for P. Therefore, NP�B

� NP � NB and the relation NP�B � NP � NB is clear. The second part of Eq. (7.5) is similar.
This establishes Part IV). As for Part V), the relations in Eq. (7.6) correspond to two particular
cases of Part I) of Theorem A1.1. To prove Part VI) it is enough to show that pair of operators
{(B  J ), �(C  K )*} decomposes R. In view of Definition A1.2, we need to prove that each
one of the pairs {NBJ, NCK} and {N(CK )*, N(BJ )*} is a completely regular conjugate pair,
with respect to R. And this is implied by Part III) of Theorem A1.1.
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