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ABSTRACT

Nowadays paraliel computing is the most effective means for increasing computational
speed. In turn, the domain decomposition methods (DDM) are most efficient for
applving parallel-computing to the solution of partial differential equarions. The non-
overlapping class of such methods, which are especially effective, is constituted mainly
by the Schur complement and the non=-preconditioned FET! (or Neumann) methods,
here grouped genericallv as the one-way methods, together with the Newmann-
Neumarnn and the preconditioned FETI methods, here grouped generically as the
round-trip methods. More recently, such metheds have been improved by the
introduction of the dual-primal methods, in which a relanively small number of
comtinuity constraints across the terfaces arve enforced. However, the treatment of
round-trip algorithms up to new has been done with recourse to Lagrange multipliers
exclusively. Recently, however, Herrera and his collaborators have introduced a more
direct treatment, the “multipliers-free method ", in which the diffevential operators are
applied to discontinuous functions, and the matrices are applied to ‘discontinuous
vectors . The multipliers-free method possesses significant advantages, many of them
derived from the directness af tts approach; among them, it allows the development of
more explicit and general expressions of the algorithm matrices, which are here
reported. Such matrix-expressions in furn allow the development of more robust and
simple computational codes.

1.-INTRODUCTION

MNowadays parallel computing is the most effective means for increasing
computational speed. In turn, DDM is most efficient for applying parallel-
computing to the solution of partial differential equations [1]. Since the time
when the international community began to intensively study DDM, attention
has shifted from overlapping to non-overlapping methods, mainly because they
are very effective for many problems. At a first stage, the application of such an
approach produced the Schur-complement method, which corresponds to
formulating Dirichlet problems in each one of the subdomains, and the non-
preconditioned FET! method, which corresponds to formulating Neumann
problems at each one of the partition subdomains. The performance of these
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methods, however, is not satisfactory in many problems and can be drastically
improved by applying appropriate preconditioners [2].

Some of the most efficient preconditioned non-overlapping methods are
obtained by using the Neumann method as a preconditioner of the Schur
complement method, or, conversely using the Schur complement method as a
preconditioner of the Neumann method. In particular, when the Schur
complement method is preconditioned with the Neumann method, a procedure
that is known in the international literature as the Neumann-Neumann method is
obtained, while the preconditioned FETI is obtained when the Neumann method
is preconditioned with the Schur complement method. A feature that is common
to all these methods is that one goes from the space of continuous functions to
that with continuous normal derivatives and back; or the same, but in reverse
order. Thus, in this article they are generically called the ‘round-frip methods’
and, in order to make this terminology maore inclusive, we group the Schur
complement and the non-preconditioned FET| methods into the category of
‘one-way methods’,

More recently, the dualprimal Neumann-Neumann and FETI methods were
introduced [3, 4]; they are modifications that further improve the efficiency of the
algorithms described above. In them, a relatively small number of continuity
constraints across the interfaces are enforced. They have been very successful
because they enhance in a rather significant manner the condition number of
the matrices involved in the problems and accelerate the convergence rates [2).

The treatment of round-trip algorithms, until recently, had been exclusively done
with recourse to Lagrange multipliers. However, Herrera and his coworkers, in a
sequence of papers [5-8] have introduced a multipliers-free approach to all
these methods, including duakprimal methods. Actually, the whole series
constitutes a ‘general theory of partial differential operators acting on
discontinuous functions, and of matrices acting on discontinuous vectors’. The
theory of partial differential operators acting on discontinuous functions is based
on extensive previous work that was revised and integrated in the first article of
that series [5] (see this latter publication for extensive references to that work).




in the second paper [6], the general ideas and theoretical background that
allows the formulation of a very general class of substructuring methods without
recourse to Lagrange multipliers were introduced. The results of that article
were developed working in finite-dimensional function spaces. In the third paper
[7], on the contrary, the developments there were done directly in the matrices,
regardless of the function-spaces from which they derive, introducing for that
purpose a new approach to deal with matrices acting on ‘discontinuous vectors”.
The most conspicuous feature of this methodology permitted the development
of the matrices associated with the different algorithms in a more explicit
manner and also extending the procedures to include dual-primal methods. The
series culminates with a fourth paper in which general explicit matrix-
expressions of the different algorithms are given [8]. The following features of
such results should be highlighted: the different algorithms are expressed in
terms of Schur-complement matrices, § , which involve internal-boundary nodes

exclusively, such explicit matrix-expressions are given for all the algorithms
mentioned above: one-way and round-frip algorithms; the case when the null-
subspace of § is non-trivial is included in the fourth paper of the series [8]; they

equally apply to a single equation and to systems of equations; by simple
substitutions parallel-processing codes can be developed for a wide variety of
systems governed by differential equations or systems of such equations. Thus,
code-development is simplified and the effort required is significantly reduced.
As previously mentioned, the Laplace equation and the equations of static
elasticity are included, and many more.

2.- DUAL AND PRIMAL NODES Equation Section 2
Let the set of ‘original nodes'be Q={1_._d), while the family [0, . Q,lcQ is

acoverof Q;ie.,
K
a=| Jo, (2.1)
]
For the time being, we consider pairs p=(p.a), such that peQ and
a eil,.., E|. Then, we define

o' E]|£={P=“}|P Eﬂﬂ}m:d 7' (p)= [a € {1,...,E!I|}lp,u}eﬁ" :, (2.2)



and the total multiplicity of p, m' (p), is the cardinality of Z'(p). We shall
distinguish two classes of original nodes: when m"(p)=1, peQ is said to be

an ‘interior node’ and when m'(p)=1, it is said to be a ‘(internal-)boundary

node’, the sets of interior nodes and boundary nodes, which are disjoint, will be

denoted by @' and @' , respectively.

We choose a set 0, =)' that will be kept fixed in what follows: so, the all the
developments that follow are relative to it. Then, we define:
IE{EE{_p,ﬂ]IpEﬂ“:lcﬁ'r
HE{EE{p,{}HPEﬂ“} (2.3)
.ﬁE{EE{p1aj|p ey —ﬂu}cﬁ“
Together with
O=lurUAand I=lux (2.4)
Notice that 3=0)", when , =@ . The members of ) will be said to be the

denved nodes, which may be internal, primal or dual, depending on whether
they belong to I, = or A, respectively. For every pel}, we write

z(p)=laelol  El|(p.e)eq) (2.5)
the muiltiplicity m(p) of p is the cardinality of Z(p). in particular, m(p)=1 if

andonly if pell.

3.- VECTORS AND CONTINUOUS VECTORS Eguation Section 3
Notice that every real-valued function defined either in © or in Q, is a vector.

The linear spaces D(Q) and D(Q) will be constituted by the functions (i.e.,
vectors) defined in © and in 02, respectively. Similarly, D(1), D(x), D(11) and
D(A) will be the linear subspaces of D(02) whose functions vanish outside I,

x, IT and A, respectively. Then, it can be seen that
D(Q) = D(I1)Y@ D(A) = D(1)@ D7) @ D(A) (3.1)



Here, as in what follows, the symbol & stands for the direct sum of two linear

spaces. When p=(p,a)el), we write U, =ulp.a); here, u(p,a) stands for

the value of the function u at the derived node ( p.a).

The ‘Euclidean inner product’, which is the only one to be considered in this
Section, is defined to be

E'E’EEE (p)iv( p). Vi, we D(Q)
Z (p)u(p)=2 ¥ w(p.a)w(p.a)vu,weD(Q)

peibassip)
A proper treatment of the matrices that occur when dﬂallng with Ejl'ﬁtﬂms- of

(3.2)

g

partial differential equations, such as those of elasticity, requires introducing

vector-valued functions. In such cases, the values at nodes, u(p) and u(p.a),
are themselves vectors and Eq.(3.2) must be replaced by

i ﬁsza:pmamm Vi, we D(0)

- 3.3
u-u—;u{p}ﬁu{p u{p,a]DE{p,u],UE,EED{D] (39)
mlwlph

Here, the symbol © stands for the inner product of the vector space where the
vectors ii(p) and u(p.a) lie. The orthogonality relations to be used in this

Section are understood to be with respect to the Euclidean inner product.

The natural immersion of D(Q) into D(Q2) is denoted by r:D{Q)— D(D),
where rii e D((2) is defined, for every i e D(Q), by

(vi)(p.a)=ilp) YpeQand Va eZ(p) (34)
The subspace of continuous vectors, D,(Q)cD(Q), is defined to be the

image of D(Q) under the natural immersion. Continuous vectors ue 0, ()

are characterized by the fact that
u(poa)=u(p,f),¥Ya feZ(p) (3.5)



Two matrices a:D(Q)— D(Q) and j:DH(Q)— D(Q) are now Introduced,
which are defined by

EE=ijﬂEE'E"di=£_E (3.6)
Here, 1 is the identity matrix and the projection on 0, (03) is taken with respect
to the Euclidean inner product. Define 1}, (2) to be the orthogonal complement

of D, (81), then
and D(Q3)= D, (Q)® D, (D) (37)

Both a and ; are projection operators, the latter being the projection onto

D, (©2); they enjoy a good number of nice properties that we refrain from
describing in detail (such details can be seen in [ ]). The construction of the
matrix g is relatively simple; writing

2= {8y ) (3.8)

then,

(3.9)

As for j, itis easily obtained applying Eq.(3.6).

Equation Section 4
4.- THE DISCONTINUOUS MULTIPLIERS-FREE MATRIX-FORMULATION
In what follows we consider two symmetric matrices:

4:D(Q) - D(Q)and 4:D(8) - D(D) (4.1)
The matrix :4; will be referred to as the ‘orfginal matrix’. We write:
A=(A, ), where p.geQ (4.2)
It will be assumed throughout the paper that:
1. 4:D(Q)— H(Q) is positive definite; and
2.
jﬁ, =0, whenever pe Q' n0_ ge0) N0y, and a = f (4.3)



3. The matrices 4 and A are related by:
e i = (@) Ar (i), Vit e D(©2) (4.4)
This latter relation does not determine A uniquely when 3 is given, but a
convenient procedure for constructing one such matrix A is presented in [8].

Then, the matrix A is positive definite on the subspace of continuous vectors.

We write

=4l =—=A4

illltil!& 45
4 {4 1 (£

Where the notation is such that

A D(M)—D(M), 4, :D(A)—D(n) -
A _:D(M)—»D(A), A :D(A)—D(A) '
The ‘dual-primal Schur complement matrix', §: D(A)— D(A), is defined by
‘_izi.u _iaui:;nilm {—4?}

When A4:D(Q)- D(Q2) is positive definite, then S:D(A)— D(A) is also
positive definite. Then, the bilinear form associated with § defines an inner
product on f‘-‘{a}, referred to as the energy inner product The subspaces
Dy, (A)=D(A) and Dy (A)c D(A) are defined to be

b, (a)=Dj(A}and D,,(A)=Dy(A) (4.8)
Here, the orthogonal complements (as subspaces of D(A)) are taken with
respect to the energy inner product. We notice, for later use that

Dy(A)=|we D(A)asw=0] (4.9)

Furthermore, the image of the transformation §

'j:D(A)—> D(A) is Dyu(A),
since
aSs” j=0 (4.10)

This will permit us to introduce, in Section 5, the transformation



ﬁ-'i:”H (A)—= Dy, (A) (4.11)

Definition 4.1.- Let EE D(02) be given, and define /< D,(A) by

_._n'_m T{f] _-;ul_unriiln {412}
Then, the ‘onginal problem’ consists in searching for a function u e ﬁ{ﬂ] that

satisfies

e

ll‘::

(4.13)

|

While the ‘transformed problem’ consists in searching for a function u, € D(A)

such that
adu, =f  and ju,=0 {4.14)

Applying these definitions, the following result was shown in [ ]: The vector

i=r -'{{; Ar Ay s rad, Ao (F) l (4.15)

it solution of the original problem if and only if the vector u e D({3) is solution of

the transformed problem.

Equation Section 5

5.- GREEN-HERRERA FORMULA FOR MATRICES

For differential operators acting in discontinuous functions, this kind of formulas
were introduced by Herrera, in 1983 (see, [5] for a recent review of this subject).
However, their extension to matrices acting in discontinuous vectors discussed
in this Section, is very recent [7].

To this end, the following definitions are introduced

A A 00
£5[=uu=|uJ miﬂriz[ ] {5.1)
0 0 - r-
And write the identity:
B=ak+ 8 62

This implies, since 4= 4", that

L+aR+jR=L"+R'a+R’j (5.3)



We notice that the ranges of L and R are contained in O(I1) and D(A),

respectively, while those of aR and ;R are contained in D (A) and D, (A),

also respectively; so, they are linearly independent. The identity:
L+gR-R'j=L'+R'g-jR (54)

which follows from Eq.(5.3), will be referred to as ‘Green-Herrera formula for
matrices’.

Taking [  e0D,(A) to be the vector that was introduced when defining the
transformed problem, the following problem formulation was introduced in [7]:
“Find a u € D(D)) that satisfies

(LraR-E jJu=1,, (5.5

Applying F to this equation it obtained
JR ju=jRju=j4,  ju=0 (5.6)
Recalling that the ranges of L and aR are in D(I1) and D,(A), respectively, it
seen that Eq.(5.5) implies that

Lu=0 (5.7)

The ‘harmonic functions space’, is defined to be
DE{EEE’{ﬁ]lLE=U} (5.8)

Some important properties of harmonic functions are listed next.
A. Harmonic functions are characterized by their dual values. Indeed, if

ue D, then
un=—A A u, (5.9)
B. When ueD,
Au=Ru=5Su (5.10)



C. The matrix § defines a transformation, §:D0(A)— D(A), of D(A) into
itself, which is symmetric (and positive definite, when A: 5{Q)— D(G)

is positive definite).

Thus, our solution-search can be restricted to the subspace D. When ue D,

the problem farmulation of Eq. (5.5) reduces to the condition that
(ar-E jJu=1,, (6.11)

For harmonic functions Eq.(5.11) can be replaced by

(

Now, the matrix §:D(A)— D(A) transforms the subspace of internal-boundary

=]

S-Sjjua=1,, (6.12)

vectors into itself. Furthermore, f e D(A). Hence, Eq.(5.12) can be used
directly for obtaining u, e D(A), as we do in the next Section. Once, u, is

constructed other part (u,, f:r{ﬂ}}l of the harmonic vector u=(u, +u, e D is

given by Eq.(5.9).
Equation Section &
6.- DUAL-PRIMAL METHODS
The following dual-primal algorithms are formulated using the results of Section
5. They cover a wide variety of non-overlapping DDMs.
1. One-way methods.
1.1. Schur-complement method.- “This problem consists in searching for a
function u, € D, (A) such that it satisfies

g =/, ©.1y

1.2. Non-preconditioned FETI method.- “This problem consists in searching

for a function u, € D,,(A) such that

s ju, =878, 6.2y

2. Roundtrip methods.

2.1. Neumann-Neumann method.- “Find a u e D, (A) such that




aS™aSu, =aS™ f (6.3)

2.2 The preconditioned FETI method - “Find a u, e D, (A) such that

S iSju=-5"i8is" 1., )

Equation Section 7

7.- DISCUSSION

The algorithms of Section 6, except for the Algorithm 1.1 of the one-way
methods (the Schur-complement method), require that the matrix 4 be positive

definite since they use the inverse of 5. In [8], it is shown how to modify the
matrix § to make it positive definite, which also permits the application of all

these algorithms when the null-subspace of S is non-trivial.

The solution searches in Algorithms 1.1 and 2.1 are carried out in D, (A) and
the transformations

aS:D,(A)—> D, (A)and aS™'aS: D, (A)— D, (A) (7.1)
are transformations of D, (A) in itself, and in this respect they are suitable for
applying an iterative procedure. Furthermore, when restricted to fl,z{ﬁ}. as

equals aSa, so the associate bilinear form is symmetric and positive definite.

As for a8™'a$ , it is self-adjoint and positive definite with respect to the energy
inner product, indeed, when such an inner product is used the associated
bilinear corresponds to that of the matrix: Sa5™aS, which is symmetric and

positive definite.

The solution searches in Algorithms 1.2 and 2.2 are carried out in D,,(A) and
the transformations

57 j:Dy(A) = Dy(A)and 57 j5j: Dy (A)— D (A) (7.2)

are transformations of D.,(A) in itself, as was shown in Section 4, and suitable

for applying an iterative procedure in D,,(A). Also, the matrices ™ and
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Ls'" 4§ are both positive definite and self-adjoint with respect to the energy inner
product, since the associated bilinear forms correspond to such matrices

S(8™j)=jand $(87jS5) = jSi (7.3)

All the matrix-formulations here presented are adequate for applying the
conjugate gradient method (CGM) directly and suitable for its implementation
fully in paraliel [7, 8].

8.- CONCLUSIONS

A general formulation of non-overlapping domain decomposition methods
(DDM) has been presented. Contrary to standard formulations in which
discontinuous functions are treated as an anomaly that requires remediation by
means of Lagrange multipliers, the formulations here are developed without
recourse to such multipliers. To this end “a general theory of parfial differential
operators acting on discontinuous functions, and of matrices acting on
discontinuous vectors, has been developed [5-8], which yields a more direct
approach to DDM.

This theory possesses great generality and it is here applied to develop explicit
formulas for the algorithm matrices that can be applied to any symmetric and
positive differential equation, or systems of such equations. The matrix-formulas
presented in this paper include the main non-overlapping DDMs, which we here
group in two large categories: one-way (Schur-complement and non-
preconditioned FETI methods) and round-frip approaches (Meumann-Neumann
and preconditioned FETI).

The greater generality and simplicity of the multipliers-free method here
presented must be high-lighted. Some of the advantages of its use are listed
next:
+ The significant simplification of the computational codes required for the
algorithms implementation;



The algorithms are derived directly from the problem-matrices,
independently of the partial differential equations that originated them
and the number of dimensions of the problem; thus, codes developed for
its application to 2D-problems can be easily modified for its application to
3D-problems. In standard treatments the dimensions of the space are
defined from the start:

The use of the average and jump matrices a and j, respectively, which

are a conspicuous feature of the multipliers-free method, exhibits
superior computational properties. In particular, the ; operator is the

optimal choice for the B operator of the FET| methods [7]. In numerical
experiments that have been carried out, very significant reductions in the

number of iterations were achieved when the matrix ; was used instead

of standard B operators;

These matrices are generalizations of the ‘average' and jump’ of a
function, which can be effectively applied at the discrete level (i.e., to
vectors) not only at internal-boundary nodes but at edges and comers,
as well. They are symmetric and non-negative projection matrices, on
complementary subspaces. Furthermore, their construction is very

simple; indeed, a is the average over each node and, once g is

available, j derives from it. Other useful property is aj = ja=0;

The parallelism of standard formulations, using Lagrange multipliers, is
impaired by the introduction of dual-primal preconditioners. In the
multipliers-free method, on the contrary, the dual-primal preconditioners
are introduced in a manner that is implemented fully in parallel;

The unified theory implies a new expression for the Steklov-Poincare
operator for matrices that is completely akin with the meaning of the
Steklov-Poincaré operator for differential operators [7.8)], wining thereby,
in theoretical consistency.

Furthermore, in the numerical experiments thus far performed they
exhibit better convergence properties than other formulations [7,8].
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