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Surnrnary. This is the third artide of the Minisymposium "The Multipliers-free 
Domain Decomposition Methods for Symmetric and Non-symmetric Matrices". In 
it, we apply the Multipliers-Free Domain Decomposition Method (MF-DDM) to 
isotropic problems of Static Elasticity. The purpose of the pape! is three-fold: to ex­
hibit the applicability of such methods to systems of equations, confirm some of the 
advantages that are concomitant to MF-DDMs and to establish simple procedures 
for developing effective codes for parallel-processing problems oí elasticity. Firstly, 
by means a FEM formulation for Static Elasticity we derive the system-matrix asso­
ciated with this kind of problems. Once this matrix is available, code development 
for parallel processing only requires a straightforward application of the MF-DDM 
matrix formulas that unify non-overlapping DDMs and were presented in paper 1 oí 
this Minisymposium: "An Overview". The general procedures that were explained 
in Paper 2, "Implementation Issues", are then applied for developing the parallel­
processing codeso Such procedures can be applied straightforwardly whenever the 
matrix-system is available. In conclusion, this paper supplies a simple manner of 
developing efficient parallel codes for static elasticity, thereby demonstrating the 
applicability of MF-DDMs to systems of partíal differential equations, and also cor­
roborates in this particular case sorne oí the many advantages that are concomitant 
to MF-DDMs. 

1 Introduction 

Thís is the third artide of the Minisymposium that in the framework of 
DD19 was devoted to present and diseuss a new methodology known as 
the "Multipliers-free domain decomposition methods: MF-DDMs", which is 
equally applicable to symmetríc and non-symmetric matrices. Such method­
ology is based on a direct approach, wíthout recourse to Lagrange multipliers, 
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boundary eonditions. Then, a weak formulation is obtained weighting Eq.2 
with a vector-valued functíon'!i!.. and integrating by parts: 

A(i, '!i!..) = k {(>' + ¡.t)('l • '!i!..)('l . i) + ¡.t'l'!i!.. : 'li}dili = k '!i!... todili (3) 

Next, a partition of the problem-domain is introduced, whose internal nodes 
are ili1'l P = 1, ... , N. Sometimes this partition wilI be referred to as the 'fine 
partítion' because later one more partitíon, the 'coarse partitíon', wilI be intro­
dueed. With each node ili1' we associate a 3D-vector-valued test function to be 

denoted by '!i!..1'i, í = 1,2,3. Furthermore, let ('!i!..1'í) j be the j - th eomponent 

of '!i!..pí. Then, we choose 

(4) 

Here, e1' (ili) is the Lagrange linear interpolate that is characterized by being 
a piecewise-Iínear sealar function with the property that 

(5) 

We observe that Eq.5 implies that al! the test functions vanish at the nodes 


located on the domain-external-boundary, {) ñ. 

The set of base functions ís taken to be the same as the set oí test íunctions. 

Thus) we define the approximate solution oí our boundary-value problem to 

be: 

N 3 

== L L Upi '!i!..1'i(ili) (6) 
1'=1i=1 

We also define: 

k'!i!..Pi.todili) p= 1, ... ,N andi 1,2,3 (7) 

Eqs.6 and 3 together imply that 

N 3

LL Aqj,PiUqj=/Pi (8) 
q=1 j=1 

Here: 

Aqj,Pi== k {(>.. + ¡.t)('l . '!i!..qj)('l . '!!t) + ¡.t'l'!i!..qj : 'l'!i!..Pi}d:f (9) 

Using Eq.4, it is seen that 
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" ~~ u (p, i, ex) w (p, i, ex) D- (i'\)\.1 
11< • 1!!. == L...,¿ L...,¿ L...,¿ , vYdil E Jt (14) 

uEZ(p)p=li=l m(p) 

Here Z (P) e {1, ... , E} is defined by the condition that (p, ex) E ti when 
ex E Z (P). When i,iQ E D (O) it can be seen that 

(15) 

The average matrix, Q, is the orthogonal projection, with respect to the Eu­
clidean lnner product, on the subspace D12 (ti) of continuous vectors. Its 
explicit expression is 

1 
a(p,i,u}(q,j,{j) m (P) 8pq 8ij (16) 

while the j1.1mp matrix, is :L == l g. Here, l is the identity matrix. 

4 The matrices A t and 

For "Y 1, ... , E, we define the linear transformations :4 -¡ : D(ti) -+ D(ti) by 

Furthermore,4t 
: D(ti) -+ D(ti) is defined bY:4t == E!=l:4u

. Next, we 
define the matrix :4 : D(ti) D(ti). To this end we choose a set 011: e 
or e O and define the set of 'primal nades', 1[" e r e ti, to be defined by 
the condition that a derived nade, (p,ex), belongs to 1[" when pE 011:. Then, 
the 'dual-primal vectar subspace', DDP (ti) e b (ti), is definoo by requiring 
that its vector-members be continuous in the set 1[" of primal nades. Then, the 
transformation g1l: : D(ti) -+ D(ti) is defined to be the projection of D(ti) 
on (ti). It can be seen that [ J: 

a~,i,<>)(q,j,¡1) = {m~p) 8pqó;q + óa ¡1ópq (1 - 8;q) } 8ij (18) 

the symbol 8;q defined by 

811: = {1, if p,q E[}11: (19)
pq- O,ífporqiif.[}7r 

the matrix A is defined by A . It wil! be assumed in what 
follows that 1[", the;t of primal nod-;;s, is such that:4: DDP (ti) -+ DDP (ti) 
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The N eumann - N eumann method : aS- 1L12 and iU,6. O 
(28) 

The non - preconditioned FETI: g-ltU,6. = _g-ltQ- 1t,6.2 and = O 

(29) 

The preconditíoned FETI : g-ljillu,6. = -g-ljillQ-1l,6.2 and aSu,6. =O 
- - - - (30) 

To implement these algorithms in parallel, we simply apply the procedures of 
paper 2, on implementation issues. 

5 Conclusions 

By means a FEM formulation for Static Elasticity we derived the matrix sys­
tem corresponding to it and, by a straightforward application of the MF-DDM, 
a simple procedure for developing fully parallelizable computational codes for 
such problems was obtained. The computational codes so derived are very ro­
bust; in particular, using object-oriented programming techniques codes that 
are applicable to anisotropic materíals are easily constructed. Thereby, this 
paper confirms the applicability of the general MF-DDM matrix formulas 
and procedures to systems of partíal differential equations, as well as other 
attractíve features of the MF-DDMs. 

References 

[IJ Herrera 1. and R. Yates, Multipliers-Free Dual-Primal Oomain De­
composition Methods for Symmetric and Non-symmetric Matrices: An 
Overview, In this Volume. 

[2] Yates R. A. & Herrera, 1., Multipliers-free Domain Decomposítíon Meth­
ods for Symmetric and Non-symmetric Matrices: Computational issues, 
In this volume (Proceedings of OD19),(2009) 

[3J l. Herrera, Theory oí Differential Equations in Discontinuous Piecewise­
Defined-F\mctions, NUMER METH PART D E, 23(3), pp597-639, (2007) 

[4] 1. Herrera, New Formulation of Iterative Substructuring Methods without 
Lagrange Multipliers: Neumann-Neumann and FETI, NUMER METH 
PART D E 24(3) pp 845-878, (2008). 

[5J L Herrera and R. Yates, Unified Multipliers-Free Theory of Dual Primal 
Domain Decomposition Methods. NUMER. METH. PART D. E. 25(3) 
pp 552-581, (2009) 

[6J Herrera, I. & Yates R. A., The Multipliers-free Domain Decomposition 
Methods NUMER. METH. PART D. E. 2009 (Available Online DOI 
1O.1002/num.20462) 


