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Summary. This is the third article of the Minisymposium “The Multipliers-free
Domain Decomposition Methods for Symmetric and Non-symmetric Matrices”. In
it, we apply the Multipliers-Free Domain Decomposition Method (MF-DDM) to
isotropic problems of Static Elasticity. The purpose of the paper is three-fold: to ex-
hibit the applicability of such methods to systems of equations, confirm some of the
advantages that are concomitant to MF-DDMs and to establish simple procedures
for developing effective codes for parallel-processing problems of elasticity. Firstly,
by means a FEM formulation for Static Elasticity we derive the system-matrix asso-
ciated with this kind of problems. Once this matrix is available, code development
for parallel processing only requires a straightforward application of the MF-DDM
matrix formulas that unify non-overlapping DDMs and were presented in paper 1 of
this Minisymposium: “An Overview”. The general procedures that were explained
in Paper 2, “Implementation Issues”, are then applied for developing the parallel-
processing codes. Such procedures can be applied straightforwardly whenever the
matrix-system is available. In conclusion, this paper supplies a simple manner of
developing efficient parallel codes for static elasticity, thereby demonstrating the
applicability of MF-DDMs to systems of partial differential equations, and also cor-
roborates in this particular case some of the many advantages that are concomitant
to MF-DDMs.

1 Introduction

This is the third article of the Minisymposium that in the framework of
DD19 was devoted to present and discuss a new methodology known as
the “Multipliers-free domain decomposition methods: MF-DDMs”, which is
equally applicable to symmetric and non-symmetric matrices. Such method-
ology is based on a direct approach, without recourse to Lagrange multipliers,
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boundary conditions. Then, a weak formulation is obtained weighting Eq.2
with a vector-valued function ¢ and integrating by parts:

A9 = [{0+ (T op)V-D+pVe: Vit = [[gesdz @)

Next, a partition of the problem-domain is introduced, whose internal nodes
are g, p = 1,...,N. Sometimes this partition will be referred to as the fine
partition’ because later one more partition, the ‘coarse partition’, will be intro-
duced. With each node z,, we associate a 3D-vector-valued test function to be

denoted by ¥, i = 1,2, 3. Furthermore, let (w”i) _be the j — th component
- — /3

of f’i; Then, we choose

(3?*"' (_x.))j = (2) 8i; (4)

Here, £, (z) is the Lagrange linear interpolate that is characterized by being
a plecewise-linear scalar function with the property that

by (24) =0pq» g =1,...,. N (5)
We observe that Eq.5 implies that all the test functions vanish at the nodes
located on the domain-external-boundary, & (2.
The set of base functions is taken to be the same as the set of test functions.

Thus, we define the approximate solution of our boundary-value problem to
be:

N 3
u(z) =Y ) U (@) (6)
pe=l ge=]
We also define:
?piaﬁgpi.indg,pzz}...,N andi=1,23 )
I
Eqgs.6 and 3 together imply that
N 3 _
ZZ Agjpitai=F pi (8)
qm==l j=1

Here:

Agipi= fa{(k + u)(V - UV - ) + p VY VY }da (9)

Using Eq.4, it is seen that
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N Eu i,e)w{p,i,a) -

wow = Z 3 @, PLY wweD(R)  (14)
eZ{(p)r=1i=1 m (p

Here Z (p) C {1,. E} is defined by the condition that {p,a) € {2 when

a € Z (p). When u, @ D (£2) it can be seen that

io@:r(ﬁ)o’r(ﬁ) (15)
The average matriz, g, is the orthogonal projection, with respect to the Eu-

clidean Inner product, on the subspace Di2 (2) of continuous vectors. Its
explicit expression is

1
Up,ia)q.d8) = m%@ﬁ (16)

while the jump matriz, is j = [ — g. Here, [ is the identity matrix.

4 The matrices A® and A

For v = 1, ..., E, we define the linear transformations A" : D (2) — D () b

ae,, oty 0e, 96,
Ale.i B i) = Sardoy ﬁ, {(,\_,, A= 7z, +ur= 2. 52 ém}d.n_: (17)

Furthermore, A' : D (2) — D ((-2) is defined by A* = S°7_| A*. Next, we
define the matrix 4 : D (£2) — D (£2). To this end we choose a set 27 C
2T ¢ 2 and define the set of ‘primal nodes’, # C I’ C 02, to be defined by
the condition that a derived node, (p, &), belongs to 7 when p € {27, Then,
the ‘dual-primal vector subspace’, DpP (2) € D (£2), is defined by requiring
that its vector-members be continuous in the set m of primal nodes. Then, the
transformation a” : D (£2) — D (£2) is defined to be the projection of D (£2)

n DPP (22). Tt can be seen that [ ]:

aa,i,a)(q,jﬁ) = { ) )51006;(1 + 8080pq (1 - 5;:9)} 0ij (18)
Here, the symbol &7 defined by
L fpgel”
6"‘7“{0, ifporqgg 27 (19)

Then, the matrix 4 is defined by 4 = g¢"4a". It will be assumed in what
follows that 7, the set of primal nodes, is such that A4 : DPF (2) — DPF (£2)
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The Neumann — Neumann method : g'l@A = g__&'lim and jus =0
)

The non — preconditioned FETI : §”11’QA = -é’lz‘;&"liAz and gSu, =0
) ) (29)

The preconditioned FETI : 87" jSjup = —-S7'jSjS™'f ., and aSup =0
T T (30)
To implement these algorithms in parallel, we simply apply the procedures of
paper 2, on implementation issues.

5 Conclusions

By means a FEM formulation for Static Elasticity we derived the matrix sys-
tem corresponding to it and, by a straightforward application of the MF-DDM,
a simple procedure for developing fully parallelizable computational codes for
such problems was obtained. The computational codes so derived are very ro-
bust; in particular, using object-oriented programming techniques codes that
are applicable to anisotropic materials are easily constructed. Thereby, this
paper confirms the applicability of the general MF-DDM matrix formulas
and procedures to systems of partial differential equations, as well as other
attractive features of the MF-DDMs.
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