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Abstract 

For the application ofdiscontinuous fimctions in the area ofnumerical methods for partial 
differential equations (NMPDE), there are mainly two approaches: Trefftz methods and 
discontinuous Galerkin (dG) methods. The Theory of Dijferential Equations in 
Discontinuous Piecewise-Defined-Functions, introduced and developed by Herrera [5,6J, 
constitutes a un~fied framework for these procedures. On the other hand, nowadays the 
application ofhigh performance computing lO the solution ofPDEs is progressing at a ver y 
SW{ft pace. Among the new computational resources paraUel computing ls outstanding. In 
turn, the most eifective means for applying paraUel computing are domain decomposition 
methods (DDM). Since the 1980s paraUel computing has received considerable attention 
by the NMPDE community and at present it ls recognized lhat non-overlapping DDMs are 
most effective. Most ofthe work done up to recently for this latter kind ofmethods had been 
restrícted mainly to symmetric and positive definite problems. However, recently Herrera 
[5-11J has introduced a newformulation in which symmetric and nonsymmetrical problems 
are handled in a un!fied manner, thereby producing a systematic non-overlapping and 
preconditioned DDj\IJ for non-symmetric matrices. These procedures are carried out in 
vector-s paces whose elements are discontinuous, using a unifled theory of dijferential 
operators acting on discontinuous functions and of matrices aCling on disconlinuous 
vectors, lo which we devole this papero 
Keywords: Trefflz method, discontinuous Galerkin; domain decomposition methods; Steklov­
Poíncaré operator; multipliers-free DDM; Lagrange multipliers. 

1.- INTRODUCTION 
:; 

Nowadays the application of high performance computing to the solution of PDEs 

is progressing at a very swift pace. Among the new computational resources 

parallel computing is outstanding. In turn, the most effective means for applying 

parallel computing are domain decomposition methods (DDM). Since the 1980s 

such methods have received considerable attention by the NMPDE community and 

at present it is recognized that non-overlapping DDMs are the most effective. 
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On the other hand, many ideas of domain-decomposition-methods (OOMs) , when 

they are approached after discretization, have been inspired by concepts stemming 

from OOMs formulations of partial differential equations before discretization and 

correspondingly there have been efforts by many researchers and scholars to 

establish links between the concepts of differential equations and the discrete 

systems derived from them [1,2]. However, the parallelism between discrete-matrix 

theories and partial differential equation (POE) theories had been up to recently 

considerably limited. Perhaps ·the most important concept that originated in this 

manner is the Steklov-Poincaré operator at the discrete level. 

A shortcoming, which is apparent when one examines the efforts that had been 

done up to now, is that non-overlapping OOM formulations have been usually 

compared with POE formulations in continuous functions spaces. Taking into 

account that a very important goal sought by non-overlapping OOM formulations is 

disconnecting the partition subdomains from each other, in order to achieve 

independence in their processing, this does not seem to be the most appropriate 

POE formulation to be used for such a comparison. Indeed, it would be better to 

use a POE formulation in discontinuous functions. 

The best known theories of POE in discontinuous functions are discontinuous 

Galerkin (dG) and Trefftz methods. However, standard theories of dG methods do 

not address such formulations in a direct manner [3,4]. As for Trefftz methods' 

theoretical framework, -the "General theory of differential equations in 

discontinuous piecewise-defined-functions", due to Herrera [5, 6]- it is based on a 

direét approach that is developed without resource to Lagrange multipliers and 

which is better suited for our purposes. Also, this latter theory is equally applicable 

to symmetric and non-symmetric problems. 

Although in this article we draw extensively from previous work [5-11], tlle main 

goal here is to extend the "General theory of differential equations in discontinuous 

piecewise-defined-functions" to make it applicable to the algebraic systems that are 
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obtained after the PDEs have been discretized. Key elements in these 

developments are Green-Herrera formulas, which were introduced in 1985 [12, 13]. 

Among the results obtained in this manner an improved definition of the Steklov­

Poincaré operator has especial interest. 

The theory here presented, just as the theory from which jt derives, is equally 

applicable to symmetric and non-symmetric matrices. Therefore, it constitutes a 

systematic non-overlapping and preconditioned domain decomposition 

methodology for non-symmetric matrices. The most commonly used domain 

decomposition methods are different versions of the fíníte-element tearíng and 

interconnecting (FETI) and the ba/ancing doma in decomposition (BDD) [14-19J. It 

is generally accepted that FETI formulations correspond to discrete formulations of 

Dirichlet problems [2], while BDD formulations correspond to discrete formulations 

of Neumann problems. These methods were originally developed for symmetric 

positive problems, but some extensions for non-symmetric matrices have been 

recently developed [20-22]. 

The results reported in the present paper supply a new and systematic manner of 

interpreting discrete formulations as boundary-value problems. In particular, the 

improved definition of the Steklov-Poincaré operator at the discrete level (first given 

in [9,10]) implies that, contrary to what is generally believed, FETI is also a 

formulation a Neumann problem. In summary, FETI is a formulation of a Neumann 

problem using Lagrange multipliers while BDD is also a formulation of a Neumann 

problem, but without resource to Lagrange multipliers. A well-known and 

celebrated result by Mandel, Dohrmann and Tezaur [16]. which shows that all but 

possibly two eigenvalues of the relevant operators of FETI-DP and BDDe are the 

same, constitutes an indirect confirmation of this fact. 

Since FETI formulations do not correspond to Dirichlet boundary value problems 

one must conclude that, up to now, no truly Dirichlet preconditioned formulations 

have been reported in the I iteratu re. Therefore, there exists an important gap that 
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should be fílled; it corresponds to two preconditioned non-overlapping methods. In 

[11 l, they have been obtained adopting a Dirichlet formulation of the problem that 

is addressed by domain decomposition methods and then approaching such a 

formulation in two different fashions: one with resource Lagrange multipliers and 

the other one without recourse to them. Furthermore, in [11 l. we have given explicit 

matrix formulas for each one of the corresponding non-overlapping-preconditioned 

algorithms. 

2.- DISCONTINUOUS PIECEWISE-DEFINED FUNCTIONS 

RJ1In this Section we draw from [6]. In what follows, n e will be a domain and 

n == {np".,nE } a domain partition of n. The notations an and an , a l, ... ,E Ia 

are adopted for the boundaries of n and na I respectively. The outer boundary is 

an. while 

\( " (2.1)r == ~anu j-an 

is the 'internal boundary' It will be assumed that r has been oriented. so that 

positive and negatíve sides have been defined on r [6]. 

Given a family of linear spaces, {D(n¡), ...,D(nH )}. such that D(n(J. for every 

a = 1, ... ,E, is a linear space of functions defined (a.e.) in na! we consider the 

space 

(2.2) 

Then I the elements of i> (n) are 'piecewise defined functions', (wp ... , w¡,;) I with 

Wa E D(na)' a =1, ..., E ! which in general may be vector -valued. It will be assumed 

that the trace of each w ! is defined on an so that two functions w+ and W_ areIa a 

defined on the positive and negative sides of r , respectively. This permits defining 

the jump and the average of W on r, by 

(2.3) 
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Then, the following identities are fulfilled: 

. 1 . 1 
w+ =w+ 2[w]and W =w-2[w] (2.4) 

Examples of such function-spaces are the 'Sobolev spaces of piecewise-defined 

functions' discussed in [3]; namely: 

f¡ p (O) == H P (01) El1 ... El1 H P (O[, ), p = 0,1, ... (2.5) 

3. GREEN-HERRERA FORMUALS ANO VARIATIONAL FORMULATIONS 

In this Section we draw from [5, 6]. By the definition of formal adjoint, there exists a 

vector-valued bilinear function, v(u, w), which satisfies 

wLu uL*w==V.V(u,w) (3.1) 

Integrating this equation over O, we get [3,4] 

L2 wLudx - L2 uL *wdx fun V(u, W)·fldx- fr[v(u, w)]·fldx (3.2) 

We introduce bilinear functions g>(u,w), 9(u,w), e(w,u), and ~(w,u), which 

satisfy 

V(u,W).fl g>(u,w)-e(w,u), on 80 
(3.3)

-[V(U,W)].fl 9(u,w)-~(w,u), on r 

For the case of continuous differential-operator-coefficients, and using a very 

compact notation, a suitable choice is 

9(U,w)==-V([u],~)and~(w,u)==v(~,[w]l on r (3.4) 

In what follows it will be assumed that the base and test functions are in 

Do (O) == {u E D(O)Ig>(u,.) =O} and D; (O) == {w E D(o)1 e(w,.) o}, respectively. 

Eq.(3.2) then implies: 

In w.4udx- Ir p(u, w)dx Jn u.4 *wdx Ir ~(w,u)dx, Vu E Do (n)and Vw E b; (n) (3.5) 

Eq.(3.5) is said to be a 'Green-Herrera formula' when: 

In wLudx- frP(u, w)dx = o, 'v'WE .o: (O) => 
(3.6)

In wLudx =Oand Ir P(u, w)dx = o, 'v'w E .o: (O) 
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As an example, when .tu == -V.(~Vu)+V'(lzu )+cu. In this case we can take: 

• 
{l( 1I. VI') == w[fL1 OYlf] - [u ]g/l 

(3.7)
•• 

~(w.u) == [a .Yw+b w]u-[w]a-n n -11 

Here, gil ==~!1 and b" == º-'!1 . Thus, Green-Herrera formula is: 

Jo w-!udx ~ J, (':h .v,,] - [.,],;: .~M. + I;-;"J dx = 
'\fu E Do (o) and '\fw E D; (o) (3.B) 

fnu-! *wdx ~ Je[h·"'" + b,wl':-["']"~'Jdx 

The 'boundary-va/ue problem wíth prescríbed jumps' is: "Fínd u E Do (O) such that 

Lu = lo.,inO 
(3.9)' 

[u] = J~ and [f!" -yu] = J~, in r 

The functions In, j~ and j~ are the data of this problem; each one of them is 

assumed to be in the range of the corresponding operator. The problem of Eq.(3.9) 

is said to be a Neumann problem when j~ O, and it is said to be a Dirichlet 

problem when j~ =O . 

Applying Green-Herrera formula a variational formulation of this problem is 

obtained [5, 6]; in view of Eqs.(3.5), (3.7) and (3.9), it is 

( . JSo wLudx- Srlv~[ªfI·Vu]1 [u]Iª>Vw+hl1lV dx 
, Vw E b; (n) (3.10)

f • \ 

Jo w/odx- Jrl v~j~ - j~ ª>\7w+ bl1 wJdx 

4. THE 'DERIVED VECTOR-SPACE' 
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When dealing with doma in decomposition methods, a shortcoming of standard 

domain partitions (Le., of standard non-overlapping domain decompositions) is that 

such a partition does not yield non-overlapping subsets of original nades of the 

discretized problem. Indeed, nodes are usually set in the intersection of the 

subdomains boundaries and therefore each one of such internal boundary nodes 

are shared by more that one subdomain. In our approach, such a property is only 

satisfied when derived nodes are considered [9, 10]. In our notation, the abstract 

representation of an original nade is natural number, while that of a derived nade is 

a number pair: the number of the node followed by the subdomain to which jt is 

associated. Thus, the set of original nodes is a set of natural numbers, while the 

set of derived nades is a set of number pairs .. 

A conspicuous feature of the approach we are discussing is that it is an axiomatic 

one; It starts with the matrix that is obtained after the problem has been discretized 

(referred to as the original matrix) and its application does not require any 

information about the partial differential equation from which it originated, it only 

requires that the basic axioms be fulfilled by the matrix considered. The vector 

space we work on is the derived vector-space, which is constituted by the functions 

defined in the set of derived nades; this, of course, is a finite set. Clearly, the 

original matrix is not defined on it, since such a matrix is defined on the vector­

space whose members correspond to functions defined in the original set of nodes. 

Therefore, another matrix has to be introduced, which as it is usual in DDM 

procedures is never constructed, in terms of which the problem is formulated in the 

derived vector-space. From there on, in our theory, all the work is done in the 

derived vector-space. This is a novel approach, to our knowledge this is the first 

time that non-overlapping domain decomposition methods have been formulated 

and treated in the derived vector-space. So, we describe the procedure with some 

detall. 

Consider the set of nodes of the "non-overlapping" domain decomposition shown in 

Fig.1, assuming a left-to-right nodes numbering as well as a downwards rows 
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ordering. The total set of "original nodes", to be denoted as º, can be taken to be 

{1, ...,2S}. Then, the set of original nodes º = {1, ... ,2S} corresponding to such a 

°1 @~ ~ ® ® Q2 
(t ® 

® • 
Or~ 

~ 

"- :'$'C'"'" "'" 

• @ @ ®
® 

°3 ® ® @ @) ®Q 
4 

Figure 1. The 'original nades J 

"non-overlapping" domain decomposition is actually overlapping, since the family of 

subsets 

ºI 
º3 

{1,2,3,6,7,8,11,12,13} º2 == {3,4,S,8,9,lO,13,14,lS} 

{11,12,13,16,17,18,21,22,23} º4 == {13,14,15,18,19,20,23,24,25} 
(4.1 ) 

:; 

is not disjoint. Indeed, for example: 

º1 (\ º2 ={3,8,13} (4.2) 

However, it is advantageous to work with a "truly" non-overlapping decomposition 

of the set of nodes and, to this end, we replace the set º of original nades by 

another set, the set of "derived nodes" (see Fig.2), which will be denoted by n. 
Each derived nade is defined to be a pair of numbers, (p,a), such that p is an 

8 




original node, while a E {1,2,3,4} is such that PE Qa' Then the set of deríved 

nodes is given by 

(4.3) 


-
(ijJ!) ® ® ® 

r 
® 

n- 2nI @ 

@ ®
® ® ® @ 

® ® i@
i!ii} ~ !'iIil !'iIil 

@ (J ® i@ ® ® 

® e ® i@ @ el? 

- ® @ ® ® (ijJ!) @ ­
Q3 n4 

Figure 2. The 'derived nodes' 

If, for each a = 1,2,3,4, we define the subsets 0a e O by 

(4.4) 


Then the family of subsets {Op02,03,04} is a truly non-overlapping decomposition 

of the set Q, in the sense that 

4 

O=UOa whileO {)Of3 =0whena-:;:.f3 (4.5)a 
a=l 

Motivated by the above discussion, in the general theory we are discussing [9, 10], 

the set of 'original nodes' is defined to be a set of natural numbers Q == {l, ... ,d} , 

where d is the total number of nodes that occur in the discretized version of the 

differential equation (or system of equations) that is being treated (generally, nodes 
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that lie on the domain's external boundary are not included). The 'domain 

decomposifion' is a collection {Ql, ... ,QN} of subsets of Q, usually not disjoint, 

such that 

(4.6) 

The original infernal boundary is, by definition, the subset Qr of original nodes that 

occur in more than one subdomain of the domain decomposition; in particular, we 

observe that in the example of Fig.1 the cardinality of Qr is 9. The set of "derived 

nodes" is defined by Eq.(4.3), and observe that the cardinality of n is always 

greater or equal than that of Q. In the particular case of Fig.1 these cardinalities 

are 36 and 25, respectively (see Fig.2). For the sake of brevity, in what follows, 

the word node will be used as a synonymous of derived node. 

The family of subsets of {np ... ,nN } is: 

(4.7) 

It constitutes a truly non-overlapping partition of the set Q, since 

N 

n= Una and na (ln p = 0 whena =F f3 (4.8) 
a=l 

When applying doma in decomposition techniques this property is very important. 

As it was mentioned previously the main goal of DDM strategy is to process each 

subdomain in a different processor and the degree of independence of each 

subdomain is greater when they are fully disjoint. 

Given any original node, PE Q, the set Z(p) en, is made of the (derived) nodes 

that can be written as (p, a), for some 1~ a ~ N . When (p, a) E n is a node, its 

mulfiplicity is defined to be the cardinality of the set Z(p) e n and it is denoted by 

m(p). Such a node is said to be an internal or boundary node depending on 
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whether its multiplicity is one or greater than one. The subsets 1 en and ! e n of 

internal and boundary nodes, respectively, decornpose n, in the sense that 

n =1u! and 0 =1n r (4.9) 

The family of subsets {r p ...,!N} decomposes !, when they are defined by 

r a == r n na' far each a = 1, ... , N (4.10) 

Any real-valued 1 function defined in each one of the sets considered thus far 

defines uniquely a finite-dimensional vector, because they are finite sets. The 

vector space corresponding to functions defined in n will be denoted by ñ(n), 

while the vector-space of functions defined in n will be ñ(n) and this latter space 

will be referred to as the 'derived vector space'. The set ñ(n) constitutes a finite 

dimensional Hilbert-space with respect to the Euclidean inner product, which is 

defined by 

~·w== ¿ ~(p,a)!1:(p,a),V~Eñ(n)and!1:Eñ(n) (4.11) 
(p,a)Eñ 

As for notation, when $ e n is a subset of n, we write ñ($) e ñ(n) for the 

linear subspace of ñ(n) whose functions vanish at every node that does not 

belong to $. With this notation we have: when 2 e $ en, ñ(2) is a subspace of 

ñ($); i.e., 

ñ(2) e ñ($) (4.12) 

Furthermore, if {$p ... , $M} decomposes $, in the sense introduced before, then 

(4.13) 


Here, the symbol $ is used for the direct sum of vector spaces; i.e., Eq.(4.13) 

holds, if and only if, 

ñ($) = ñ($1) + ... + ñ($M) and {O} =ñ($J n ñ($ f3)' whenever a -::j; f3 (4.14) 

1 When considering systems of equations, as in elasticity problems, such functions are vector-valued. 
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Then, it is clear that 

D(r) = D(r¡)EB ... EB D(rN) 

D(O) = D(I)EB D(r) (4.15) 

D(O) = D(O¡)EB ... EB D(ON) 

A function (vector) of D(O) is saíd to be 'contínuous' when its value at any node, 

(p,a), depends on p exclusively and it is independent of a. The vectors of D(O) 

are generally discontinuous; the subspace of contínuous vectors will be denoted by 

D¡2 (O), while the orthogonal complement of this subspace is D¡1 (O). The average 

and jump matrices, ~ and L' are the projectíons on D¡2 (O) and on DI¡(O) , 

respectively. Therefore, L=~+L· 

5. GREEN-HERRERA FORMULAS FOR MATRICES 

Given a matrix A: D(n) -+ D(n), generally non-symmetric, the 'original problem' 

consists in searching for a function Ji E D(n) that satisfies 

(5.1 ) 


with 1E D(n) given. As said in Section 4, in order to formulate an equivalent 

problem in the derived vector space another matrix, A:D(O)-+D(O), is 

constructed such that Eq.(5.1) is fulfilled if and only if 

(5.2) 


This latter problem is referred to as the transformed problem. Details of the 

construction of A and , when A and 1 are given, can be found in [9-11]; when 

::i is non-symmetric, so is A. The manner in which i1 and u are related is also 

explained in [9-11]. 

The matrix A: D(O) -+ D(O) is written as: 
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-- - -

A A ] " == A1J~Jf so that Al == (5.3)
( 
=fl=ff 

Here, 

:ñ(1) -+ ñ(1), ~lf : ñ(r) -+ ñ(1) 
(5.4) 

:ñ(1) -+ D(r), Arr : ñ(r) -+ D(r) 

We define 

(5.5) 

] 

Therefore, 

(5.6) 


This is equivalent to 

u·L*w=w·Ru-u·R* WE ñ(o) (5.7) 

or 

(5.8) 


Here, we define 

. . 
D(?i,kI:) == w.R?i - ?i. R * w=[wJI·.&i+ ~.[!i?i] - [?i].:k *;- ~.[E*wJ], V?i, wE ñ(o) (5.9) 

Where we have used the following notation: whenever P = R or P = R *, and 

?i E ñ(o), we write 

[?i] j?i, ~ == ~?i, [f?i] == ~P?i and --- == LP?i (5.10) 

From Eq.(5.8); it follows that 

This equation is said to be a 'Green-Herrera formula for matrices' when 
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In particular, when 

one this latter condition is granted. We observe, comparing Eqs.(5.11) and (3.8), 

the following correspondences 

[u] ~ [g] and [ª" .\7u] ~ [Rg] == f!Rg (5.13) 

We observe that the second of these correspondences imply that the Steklov­

Poincaré operator, at the discrete level, should be defined as ~R. 

The 'problem wíth prescribed jumps, tor matrices', is defined to be: 

Lu = in Q.! 

(5.14) 
[ u] =l and [ Rg] 

The data of this problem satisfies 

E15 (1) ,l E1511 ( .Q ) and l EDIl ( .Q ) (5.15) 

When / = O, we say that the problem is a 'Neumann problem' and if}' O then 

the problem is said to be a 'Dirichlet problem'. We observe that the 'Transformed 

problem', Eq.(5.2), is a Neumann problem. When Eq.(5.11) is a Green-Herrera 

formula, a variational formulation of this problem is 

(5.16) 

6.- CONCLUSIONS 

As this paper's title indicates, a 'unified theory of differential operators acting on 

díscontínuous tunctíons and operators actíng on discontinuous vectors' has been 

presented, which is equally applicable to symmetric and non-symmetric matrices. 

The main motivation for its development has been domaín decomposition methods 

(DDM). In previous articles it has been shown that this theory yields very 

systematic procedures for applying parallel processing to the algebraic systems 

that are obtained after the partial differential equations have been discretized. 
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A fundamental element on which the theory is based are Green-Herrera formulas 

that, for differential operators, are given by Eq.(3.5) and (3.10), while Eq.(5.11) 

yields them for matrices. These formulas have permitted us to establish very 

precise correspondences between the concepts of the theory of partíal dífferential 

equations and those concerning discretized versions of such equations. In this 

light, in particular, we have introduced an improved definition of the Steklov­

Poincaré operator, which is more appropriate than the standard one, which is 

referred to by many authors working in DDM [2]. 

The concept of 'problems with prescribed jumps' has been extended to include 

matrix equations. In a previous paper [11], we have shown that each problem with 

prescribed jumps can be treated with resource to Lagrange multipliers (the LM 

procedure) and without resource to them (the MF procedure). Also, each problem 

can be formulated as a Neumann problem and also as a Dirichlet problem; or, 

more generally, as a Robin problem. If attention is restricted just to Neumann and 

Dirichlet formulations, then one obtains four preconditioned algorithms that can be 

applied to each problem with prescribed jumps; two for each one of these 

formulations. 

The most commonly used non-overlapping doma in decomposition methods are 

different versions of FETI and BDD [14-19]. BDD is a direct formulation of a 

Neumann problem that does not use Lagrange multipliers. Although it is generally 

believed that FETI formulations correspond to discrete formulations of Dirichlet 

prob'lems [2] (in particular, see Subsection 1.3.5 of [2]), in the light of our theory it 

has been shown that it actually corresponds to a Lagrange multipliers formulation 

of the same Neumann problem as BDD. AII this implies that, up to now, no truly 

Dirichlet preconditioned formulations had been reported in the literature. Therefore, 

until recently an important gap has existed, since two formulations as significant as 

FETI or BDD have not received any attention at all; we refer to two formulations of 

DDM procedures as a Dirichlet problem, one using Lagrange multipliers and the 
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other one without them. In [11], as a contribution to fill this gap, Herrera et al. have 

given matrix formulas for the corresponding non-overlapping-preconditioned 

algorithms. 
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