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1. Introduction 

Mathematical models of many systems of interest, including 
very important continuous systems of Engineering and Science, 
Jead to a great variety of partial differential equations whose 
soJution methods are based on the computational processing of 
large-scale algebraic systems. Furthermore, the incredible expan
sion experienced by the existing computational hardware and 
software has made amenable to effective treatment problems of 
an ever increasing diversity and complexity, posed byengineering 
and scientific applications. 

Parallel computing is outstanding among the new computa
tional tools, especially at present when further increases in 
hardware speed apparently have reached insurmountable bar
riers. As it is well known, the main barriers for enhancing the 
efficiency of paraIlel computing are the difficulties associated 
with the coordination of the many processors that carry out the 
different tasks and also those associated with the information
transmission between them. IdealIy, given a tasI<, these difficul
ties disappear when procedures for carrying out that task are 
available such that the paralIel processors work independently of 
each other. Thus. we will say that a parallel-processing algorithm 
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fulfills the 'paradigm of paraUel computing' when the tasks 
assigned to different processors are independent of each other. 

The emergence of parallel computing during the last 20 or 30 
years, prompted on the part of the computational-modeling com
munity a continued and systematic effort with the purpose of 
hamessing it for the endeavor of solving boundary-value problems 
(BVPs) oC partial differential equations [1). Very early after such an 
effort began, it was recognized that domain decomposition methods 
(DDM) were the most effective technique Cor applying parallel 
computing to the solution of partial differential equations, since 
such an approach drastically simplifies the coordination ofthe many 
processors that carry out the different tasks and also reduces very 
much the requirements of information-transmission between them. 
Ideally, DDMs intend producing algorithms such that "the global 
solution is obtained by solving local problems defined separately in 
each subdomain of a coarse-mesh - the domain-decomposition"; in 
what folIows. such a condition is referred to as the 'DDM-paradigm'. 
When the DDM-paradigm is satisfied full paralleJization can be 
achieved by assigning each subdomain to a different processor. 

When intensive DDM research began rnuch attention was given to 
overlapping DDMs, but soon after attention shifted to substructuring 
methods in non-overlapping partitions, known as non-overfapping 
DDMs. This evolution seems natural when the DDM-paradigm is 
taken into account: it is easier to uncouple the local problems when 
the dornain decomposition is non-overlapping. At present, however, 
nurnerically competitive algorithms need to incorporate constraints. 
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such as continuity on primal-nodes [2-6]. This poses an additional 
challenge for fulfilling the DDM-paradigm [7], which has been difficult 
to overcome. 

Most of the work done in OOM refers to symmetric and 
positive definite problems. At present it is generally accepted 
that the most effective non-overlapping OOMs are BOOC and 
FETI-OP. The finite-element tearing and interconnecting method 
(FETI), was introduced by Farhat [8,9] and larer modified by the 
introduction of dual-primal constraints [10-12), which originated 
the FETI-OP method. As for the balancing domain decomposi
tion (BOO), ir was originally introduced by Mandel [13,14) and 
more recently modified by Oohrmann who incorporated con
straints in its formulation [3,4J: this resulted in BOOC (BOO with 
constraints ). 

To achieve full disconnection of the local problems, FETI is 
formulated in a product space of functions, W (see p.133 of [2)), 
which contains discontinuous functions. However, FETI does not 
work directIy in su eh a space: ínstead, it avoids working in it by 
resourcing to an indirect approach based on Lagrange-multipliers. 
On the other hand, BOOC is more direct and does not resort to 
Lagrange multipliers, but it does not work in a product-space 
either in spite of the fact that it is there where full disconnection 
of the local problems is achieved (in Section 10. this point is 
further discussed). Thus, until the line of research here reported 
started to appear a direct treatment in a product-space had not 
been presented. 

In standard approaches to ODMs two different processes can 
be identified: numerical discretization of partial differential 
equations and the design of strategies for achieving the OOM
paradigm: "solvíng the global BVP by solving local BVPs, exclu
sively". Standard DOM-frameworks generally do not separate 
these two processes and the difficulties assocíated with one and 
the other are combined. In particular, they work in linear spaces 
of functions. 

However, discretization methods are a particular topic of 
numerical methods for partial differential equations that has 
received intensive attention since the development of electronic 
computers started and, at present, effective discretization meth
ods are avaiJable almost for any well-posed BVP. Once a BVP has 
been discretized, parallelizing the processing of the resulting 
discrete system is essentially a purely algebraic problem. 

Several years ago, Herrera and a research group at the National 
University of Mexico (UNAM) started a line of research 115-20) 
whose goal has been to fully develop a direct approach in which 
the work i5 done in a product-space and, furthermore, the 
discretization process and the domain decomposition procedures 
are thoroughly separated. The present paper is part of that line of 
research and is devoted to explain briefIy (summarize) some of 
the most important results obtained so faro 

A purely algebraic product-space - the derived-vector space 
(DVS) - has been constructed, which contains "continuous and 
discontinuous vectors" (i.e., algebraic images of continuous and 
discontinuous functions, respectively) and is very suitable for 
treating the discrete systems obtained by discretization of BVPs of 
a single equation, or systems of such equations. The DVS con
stitutes a finite-dimensional Hilbert-space with respect to a 
suitable inner-product whose definition is independent of the 
algebraic system of equations to be parallelized. Therefore, this 
DVS-framework is applicable to any symmetric, non-5ymmetric 
and non-definite (positive) matrix. Furthermore, this setting is 
suitable for both direct (primal) formulations, without recourse to 
Lagrange-multípliers, and indirect (dual) formulations, with 
recourse to Lagrange-multipliers. Another finding has been that, 
in the OVS-framework, four domain-decomposition algorithms 
preconditioned and subjected to constraints are possible: corre
sponding to two primal and two dual formulations. One primal 

and one dual algorithm of that set can be interpreted as versions 
of BODC and of FETI-DP, respectively. However, nothing similar to 
the other two algorithms has been identified in the Iiterature, 
albeit in the DVS setting these four formulations are closely 
related and can be easily derived from each other. The nomen
dature adopted for the DVS-algorithms is DVS-BDDC DVS-FET1-DP, 
DVS-PRIMAL and DVS-DUAL. 

The DDM-paradigm is achievable using each one of the four 
DVS-algorithms and the numerical procedures that can be used to 
achieve it are explained in Section 8 of this paper. Work is 
underway to produce codes that can be used to operate efficiently 
sorne of the massively parallelized computers available today 
[21). The numerical efficiency has been tested comparing stan
dard FETI-OP with the OVS version of FETI-OP [16,17) and the 
results indicate that their performances are not significantly 
different. Comparisons presented in Section 9 of this paper 
between different OVS-algorithms also indicate that their numer
ícal performances are similar. The numerical equivalence 
between FETI-OP and BOOC is well-known by now 122,231. 

Although, two OVS-algorithms can be interpreted as OVS 
versions of BDDC and FETI-OP, at least two very important 
differences of the new versions should be highlighted: the DVS
versions are applicable to non-symmetric matrices and, also, they 
achieve the DDM-paradigm. As it is well-known, certain number 
of applications of FETI-OP and BOOC have been made to non
symmetric and indefinite problems (see, for example, [6,24-27]), 
but all them have been case specific, while the DVS-algorithms 
are generic algorithms that can be applied independently of the 
origin of the problem. As a matter of fact, once the discretized 
problem is known the very same matrix-formulas can be blindly 
applied (in the sense that the formulas indicate with precision the 
operations that have to be performed) to the discrete systems 
originated by a single partial differential equation, or a system of 
such equations. which in turo may be formally symmetric, non
symmetric or indefinite. Furthermore, this framework can be used 
to formulate and discuss in a systematic manner a general theory 
of ODMs fOf non-symmetric and indefinite problems, as it has 
been started to do in the work here summarized. 

About the other difference mentioned aboye, standard versions 
ofFETI-OP and BODC do not achieve the DDM-paradigm [7) and their 
applicability to operate efficiently the huge massively parallelized 
computers that exist today is hindered by this fact. On the other 
hand, because the DVS-algorithms do achieve the DDM-paradigm (as 
it is shown in Section 8) they are very suitable for that purpose. 

The organizatíon of the paper follows. In Section 3, the problem 
to be treated is introduced. Section 2 motiva tes derived-nodes, while 
Sections 4 and 5 are devoted to study them and derived-vectors, 
respectively. The equivalent problem in the derived-vector space is 
given in Section 6, and Section 7 is devoted to the (preconditioned) 
OVS-algorithms with constrains derived from it In Section 8, where 
the numerical procedures are explained. it is shown that the OVS
algorithms satisfy the DDM-paradigm. The numerical results 
reported in this paper are given in Section 9, while Section 10 is 
devoted to compare the OVS-framework with standard ODMs. 
Finally, the conclusions of the paper are presented in Section 11. 
To simplify the presentation, many of the definitions required have 
been collected in an Appendix at the end of the paper. 

2. A non-overlapping system of nodes 

The 'derived vector space framework (DVS-framework)' starts 
with the system of linear equations that is obtained after the 
partial differential equation or system of such equations has been 
discretized, independently of the discretization method used. This 
system of discrete equations is referred to as the 'original-problem' 



• • 

648 /. Herrera, AA. Rosas-Medina / Engineering Analysis with Boundary Elements 37 (2013) 646-657 

... .. 3 .. 4 .. 5
" 1 " 

.. 7 S 9 10
" G .. •" 

11 12 lJ 14 15
• .. .. .. • 

16 17 ,,18 ,,19 .20.. .. 
,,21 "O .23 J4 .. 25" .. 

Fig. 1. The 'original nades'. 

.. 1 .. 2 3 ,,4 .. 50 
2n1 

.. 6 .. 7 8 9 JO 

r~ 12 :13 14 J 5 

16 17 ]18 ..19 • 20 

,,21 <11 22 J4 .2L

°3 
" " 

j" °4 
Fig. 2. The original nodes in the coarse-mesh. 

and the nades used in this process are referred to as the 'original
nodes' (Fig. 1). In doma in decomposition methods (DDMs) it is 
standard to introduce a domain-partition, called coarse-mesh. 
Generally, sorne of the original-nodes belong to more than 
one partition-subdomain (Fig. 2). 50, although the domain
decomposition is non-overlapping the partitíon of the nodes is 
overlapping. 

It wouId be advantageous for achieving the DDM-paradigm, if 
each nade would belong to one and only one partition-subdomain, 
and in the DIIS-framework a new set of nades - the 'derived-nodes' 
that enjoy this property is intraduced. This new set of nades is 
obtained by dividing each original-nade (Fig. 3) in as many pieces as 
required to assign one and only one nade-piece to each one of the 
subdomains (Fig. 4). Then, such nade-pieces (called: 'derived-nodes') 
are identified by means of an ordered-pair of numbers: the label of 
the original-node, it comes from, followed by the partirion-subdomain 
labeI, it was assigned too A 'derived-vector' is simply defined to be 
any real-valued function l defined in the whole set of derived-nodes; 
the set of all derived-vectors constitutes a linear space: the 'derived
vector space (DIIS)'. Then, for each pair of derived-vectors an inner
product (the Euclidean inner-product') is defined in the usual 
manner: as the praduct of their components summed over aH the 
derived-nodes. The DV5 constitutes a finite-dimensional Hilbert
space, with respect to such an ¡nner-product. We observe that this 
inner-product definition is independent ofthe system-matrix, which 
has not even mentioned thus faro 

A new problem, the DIIS-problem, defined in the derived-vector 
space that is equivalent to the original problem, is intraduced. Of 
course, the matrix of this new problem is different to the original
matrix, which is only defined in the original-vector space, and 
the theory supplies a formula for deriving it [15). Prom there on, 
in the DV5-framework. al! the work is done in the derived-vector 
space and one never goes back to the original vector-space. In a 
systematic manner, this framework led to the construction of four 
preconditioned DVS-algorithms: two primal formulations (Le., direct 

Por the treatment of systems of equations. vector-valued functions are 
considered, instead. 
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Fig. 4. The derived-nodes distributed in the coarse-mesh. 

formulations that do not use Lagrange multipliers) and two dual 
formulations (Le., indirect formulations that do use Lagrange 
multipliers). 500n after [15). the first primal formulation was 
recognized to be a version of the BODe (the balandng domaín 
decomposition with constraints of Mandel and Dohrmann), while the 
first dual formulation was recognized to be a version of the FETI-DP 
(the dual-primalfinite element tearing and interconnecting of Farhat). 
Therefore, the notation that will be used for them here is: 

(a) The DVS-version 01 BDDC; 
(b) The DVS-version 01 FETI-DP; 
(e) DVS-primal algorithm; and 
(d) DVS-dual algorithm. 

AH these algorithms are preconditioned and are formulated in 
vector-spaces subjected to constraints; so, they are precondi
tioned and constrained algorithms. 

3. The original problem 

It will be assumed that the system of linear algebraic equa
tions: 

(3.1) 

is the discretized version of a boundary-value problem (BVP) 
corresponding to a (linear) partial differential equation. or system 
of such equations. We observe that the developments that follow 
are independent of both, the specific BVP considered and the 
discretization method used; so, both of them will remain unspe
cified throughout. Instead, we adopt a set of assumptions 
(axioms) under which our results (the DVS-framework) wil! be 
applicable. The system of algebraic equations of Eq. (3.1) will be 
referred to as the 'original problem' and will be the starting point 
of our discussions. In this system, the 'original matrix' A and the 
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'original vectors'!I and[ are: 

1= (A!i)' !I= (Uj)'[== (l;) with iJ 1,...,N (3.2) 

here, N is the number of 'original nodes·. 
Let a be the doma in of definition of the eontinuous problem, 

before discretization. Then. it is assumed that a coarse-mesh is 
introdueed. which constitutes a non-overlapping domain decorn
position of a. This is a farnily {al .... ,ad of sub-dornains of a that 
fulfills the relations 

(3.3) 

here. stands for the c10sure of a". Furtherrnore. it is assurned 
that the sets of nurnbers: 

N={l •...•N) and f={1 .....E} (3.4) 

labeJ the original nodes and the partítion-subdornains. respec
tively. The real-valued functions defined in N= {1 .....N} constitute 

a vector-s pace that will be denoted by W and referred to as the 

'original vector-space·. The notation Na. a = 1.....E. will be used for 
the subset of original-nodes that pertain to Qa. Original-nodes will 
be classified into 'interna/' and 'interface-nodes': a node is intemal 
if it belongs to only one partition-subdornain c10sure and it is an 
interface-node, when it belongs to more than one. Furtherrnore. 
for the developrnent of dornain deeomposition methods with 
constraints it will be necessary to choose a subset of interface
nodes: the set of primal nodes. Interface-nodes that are not primal 
are said to be dual-nades. 

Using the notations thus far introduced. the followíng assurnp
tion is adopted: 

rx
Axiom 1. "When the indices pE N and q E N{J are intemal. then p 
and q are unconnected". We recall that uncannected rneans: 

Apq = O, whenever a"# f3 (3.5) 

4. Derived-nodes 

As saíd before. when a coarse-mesh ís introduced sorne of the 
nodes used in the original discretization belong to more than one 
partition-subdornain and to overcorne this inconvenience. in the 
DVS-frarnework, another set of nodes is introduced: the 'derived
nodes'. The general deveJoprnents are better understood, through 
a simple example that we explain first. 

Consider the set of 25 nodes used in the diseretización of a 
boundary-value problern shown in Fig. 1. We reeall that the 
developments that follow are independent of both. the BVP con
sidered and the discretization rnethod used. After such a discretiza
tion is carried out a coarse-mesh that consists of four subdomains. as 
shown in Fig. 2, is introduce<!. Thus. we have a set of nodes and a 
famíly of subdomains. which are numbered using of the index-sets: 
N {1 .....2S} and f= {1,2.3,4}. respectively. Then. the sets of nodes 
corresponding to such a non-overlapping dornain decomposition is 
actually overlapping. since the four subsets 

Ñ
l 

(1.2.3.6.7.8,11,12,13), El (3.4.5,8,9,10,13.14.15) 

Ñ
3 

Ñ
4

{11.12.13,16.17,18,21,22,23}. (13,14.15,18.19,20,23,24.25) 

(4.1) 

are not disjoint (see. Fíg. 2). Indee<!, for exarnple: 
• 1 ·2
N nN ={3,8.13} (4.2) 

In order to obtain a "truly" non-overlapping decornposition, 
we replace the set of 'original nodes' by another set: the set of 
'derived-nodes'; a 'derived node' is defined to be a pair of numbers: 

(P.IX), where p corresponds a node that belongs to Qo:. In symbols: 
a 'derived nade' is a pair of nurnbers (p.a) such that PE Nrx • We 
denote by X the set of all derived nodes 

X {(p.IX)la E Éand p E N"} (4.3) 

We observe that the total nurnber of derived-nodes is 36 (Fig. 3) 
while that of original-nodes is 25. In order to rninirnize repetitions 
in the developments that follow. where we deal extensively with 
derived-nodes. the notation (P.:x) is reserved for pairs such that 
(p,iX)EX; Then, we assign to each subdomain n", a unique 'local set 
01 derived-nodes': 

Xrx {(P.IX)} (4.4) 

Taking a successively as 1.2,3 and 4. we obtain a farnily of 
four subsets, {Xl. X2. X3 

, X4}. Fig. 4. which is a truly disjoint 
deeomposition of the set of derived-nodes X. in the sense that 
each one of the derived-nodes belongs to one and only one coarse
mesh subdornains: Le.. 

X 6 X(f. and XiX n xP = 0, when a #- f3 (45) 
rx 1 

Of course. the cardinality (Le.. the nurnber ofrnernbers) of each 
one of these subsets is 36/4 equal to 9. Given any P= 1 .... ,25. the 
set of derived-nodes that derive frorn pis given by (see. Fig. 3) 

Z(P) {(P.Cl:)lp EQiX } (4.6) 

The 'multiplidty' m(p) of any original-node p E N is defined to be 
the cardinality of the set Z(p). Aderived-node. (P.:x). is classified as 
intemal. interface. primal and dual. depending on whether p is 
intemal, interface. primal and dual. respectively. The notations: 
le X. r e X, 11: e X and A e X are adopted for the corresponding 
sets of deríved-nodes. respeetively. Furthermore, n ;;;;;lU11:. 

The aboye diseussion had the sole purpose of i1lustrating the 
role played by derived nodes. as well as sorne notation to be used. 
The formal developrnents were introdueed and discussed in detail 
in previous papers [15-20) (we draw mainly frorn [15]). 

5. The "derived vector-space (DVS)'" 

Bya 'derived-vector' we mean a funetion define<! in the set of 
derived-nodes. X. In general the values of sueh functions. at each 
derived-node. may be chosen to be vectors of IR"; the choice n= 1 
(real-valued funetions) permits treating single-equation problerns 
and n > 1 systems of partia) differential equations. 

The set of derived-vectors constitute a linear space W: the 
'derived-vector space'. Corresponding to each local subset of 
derived-nodes X Cl 

, there is a 'local subspace of derived-vectors'. 
W Cl e W. which is defined by the conditíon that vectors of W Cl 

vanish at every derived-node that does not be long to XX. An 
irnportant property of the subspaces W Cl should be observed: 

(5.1) 

In words: the space W is the direet sum of the family of 
subspaces {W\ ....W} 

For every pair of vectors, u W and ~ EW. the 'Euclidean inner 
product' is defined to be 

u·w L ~(P.iX)0~(P.Cl:) (5.2) 
(P.Cl)EX 

here. the syrnbol 0 stands for the standard inner-product of 
IR"-veetors; Le.. 

" ~(p.a) 0 ~(P.(X) == L ~(p.a.l) 0 !!:.(P.!X.l) (5.3) 
í=l 

http:P.iX)0~(P.Cl
http:13,14.15,18.19,20,23,24.25
http:3.4.5,8,9,10,13.14.15
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It shouId be observed that this definition of the Eue/idean inner 
product is independent of the original-matrix A , which can be 
non-symmetric or indefinite. When n=l, members of the 
derived-vector space are reaI-valued function. Then, Eq. (5.2) 
reduces to 

!:!.~ = L !:!(p,rx) ~(p,rx) (5.4) 
(p,<l) EX 

Another significant property of the derived-vector space W is 
that it constitutes a finite dimensional Hilbert-space with respect 
to the Euclidean inner product whose definition is independent of 
the original-matrix "1 ' which can be non-symmetric or indefinite. 

Due to this property the algorithms derived in the DVS-framework 
are also applicable when the original-matrix"1 is non-symmetric 

or indefinite. 
A derived-vector, !:!' is said to be 'continuous' when !:!(p,rx) is 

independent of \L, for every (p,\L)EX. The subset of W12 e W, of 
continuous ve.ftors, cons.!itutes a linear subspace of W. The natural 
injection, R : \-1(--> W, of W into W, is defined by the condition that, 
for every ~ E W, one has 

(R~)(P,rx) = ~(P), V(p,rx) E X (5.5) 

Clearly, R~ E W so defined is c~ntinuous for every ~ E W. 
¡Yrthermore, it can be se en that R : \1' --> W defines a bijection of 
W in W 12 ; thus we write R-1 

: W12 --> W for the inverse of R, when 
restricted to W 12• 

The subspace W 11 e W is defined to be the orthogonal com
plement of W 12, with respect to the Euclidean inner-product. In 
this manner the space W is decomposed into two orthogonal 
complementary subspaces: Wll and W 12, which fulfill 

W=Wll EBW12 (5.6) 

Two matrices ~ : W --> W and l :W --> W are now introduced; 

they are the orthogonal-projection operators, with respect to the 
Eue/idean inner-product, on W12 and W11 , respectively. The first 
one will be referred to as the 'average operator' and the second 
one will be the 'iump operator'. If!:! E W11, then ~!:! = O; Le., vectors 

of W11 e W are 'zero-average vectors'. We observe that in view of 
Eq. (5.6), every derived-vector, !:! E W, can be written in a unique 
manner as the sum of a zero-average vector plus a continuous 
vector; indeed: 

(5.7) 

Next, we define several subspaces of W that will be used in the 
seque!. They are W¡, Wr , W", WA and Wn ; vectors that belong to 
ea eh one of these subspaces, vanish at every derived-node does 
not belong to I,r, n, ,1 and II, respectively. Furthermore, to specify 
the restrictions used in the algorithms here discussed, a subspace 
Wr e W is introduced, which is assumed to have the property: 

(5.8) 

a rhere, stands for the projection operator on Wr • The linear 
subspaces introduced aboye satisfy: 

(5.9) 

Thus far, only dual-primal restrictions have been implemen
ted. In that case, Wr is defined by Wr == WI+~W,,+WLl. 

6. The DVS-problem with constraints 

A proof, of the following result as well a definition of the 
matrix 1: wr --> Wr here used, is given in Appendix "A" of [15[. 

"A vectoru E W is solution of the original problem, if and only 
if, !:!' = R~ E Wfulfills the equalities: 

~1!:!'=1 and 1!:!'=O (6.1) 

The vector l == (Rl) E W12 e Wr , will be written asl ==ln+L, 
with In E Wnand L E WA. We recall the definition of the natural 
injection of Eq. (5.5). 

We remark that this problem is formulated in W: the derived
vector space. In what follows, the matrix 1, when restricted to Wr 

(Le., 1 : Wr --> Wr ), is assumed to be invertible. In many cases this 

can be granted when a sufficiently large number of primal-nodes, 
adequately located, are taken. Let !:!' E Wr be solution of it, then 
!:!' E W12 e W necessarily, since l!:!' = O, and one can apply the 

inverse of the natural injection to obtain 

(6.2) 

Thereby, we observe that the mapping R- 1 is only defined 
when !:!' is a continuous vector (Le., !:!' E W12). The condition 
!:!' E W12 can only be granted when no rounding errors are 
present. Due to this fact, in numerical applications Eq. (6.2) 
should be replaced by: 

(6.3) 

Indeed, when !:!' is not continuous, ~!:!' is the continuous vector 
closest to !:!' (here, 'closest' is with respect to the Eue/idean 
distance). 

Before finishing this Section we observe that Eq. (6.1) is a key 
element of the DVS-framework, because it supplies a formulation 
of the original-problem in the derived-vector space in which the 
nodes have been partitioned into disjoint packages of nodes, 
which in turn permit decomposing the matrix into fully indepen
dent sub-matrices that can be processed in different processors 
with negligible coordination and communication between them. 

7. The DVS-algorithms with constraints 

The matrix 1 of Eq. (6.1) can be written as (see [8,9[): 

~= (~nn~nA) (7.1)
=Lln =AA 

Using this notation, we define the 'Schur-complement matrix 
with constraints', by 

(7.2) 

Furthermore, in what follows: 

= (R~'f) -A A -1 (R~'f) (7.3)f-A - - Ll =An =nn - n 
Then, in a simple and direct manner Eq. (6.1) is transformed 

into 

~~!:!A =L and l!:!Ll =0 (7.4) 

together with 

~ = R-1~{(~-~;~ ~nJ!:!Ll +~;; (RI) n} (7.5) 

Generally, DDM-algorithms are classified into primal and dual 
algorithms. The first of these classes includes those that are direct, 
without recourse to Lagrange-multipliers, and the second one 
those that use such multipliers. However, the DVS-framework 
supplies a very general primal setting that permits including both 
classes in it, but to do that the guidelines for their formulations 
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are changed. Actually, each one of the algorithms is completely 
determined by the sought-information; i.e., the information that 
the algorithms seek for in an immediate manner. The sought
information may be chosen in several alternative manners; aH 
what is required is that the solution of the DVS-problem can be 
derived from it, in an inexpensive manner (computationalJy wise). 

7.1. The DVS version of the BDDC algorithm 

The sought-information is defined to be !:!.LI E W¿j. With this 
choice a version of the DVS-BDDC algorithm is obtained [8]: Fínd 
!:!.¿j E WJ such that 

.c!~-I.c!~!:!.¿j =.c!~ and =0 	 (7.6) 

Once !:!.,j E WJ has been obtained, ~ E W solutíon of Eq. (3.1) is 
given by 

(7.7) 

7.2. The DVS version of FETI-DP algorithm 

The sought-information is chosen to be ~ == -{~u. With this 

choice a version of the DVS-FETI-DP algorithm is obtained [15): 
Given L E ~WJ, find A. E W,j such that 

jSjS-1A. and =0 (7.8)
==== 

Once ;. E j W¿j has been obtained, !:!.¿j E .c! W¿j ís gíven by: = 	 
(7.9) 

Then, Eq. (7.7) can be applied to obtain !L E W solution of 
Eq. (3.1). 

7.3. The DVS primal-algorithm 

The sought-information is chosen to be ~Ll == ~-1¡~!:!.. This 

algorithm consists in searching for a derived-vector ~¿j E W¡J, 
which fulfills 

and .c!Sv LI =0 (7.10) 

Once ~¡J E has been obtained, then 

!:!.¡J =~(~-IL+~LI) (7.11) 

and Eq. (7.7) can be applied to obtain!L E W solution of Eq. (3.1). 

7A. The DVS dual-algorithm 

The sought-information is chosen to be !:!.. == ~!:!.. This algorithm 

consists in searching for a function I-! E W¡J, which fulfills 

and =0 (7.12) 

W¡J has been obtained, !:!.,1 E ~WLI is given by: 

u (7.13)-,1 = 


and Eq. (7.7) can be applied to obtain!L E W solution of Eq. (3.1). 


8. 	 Numerical procedures 

The numerical experiments were carried out with each one of 
the four preconditioned DVS-algorithms with constraints enum
erated in Section 7; they are: 

.c!~-1.c!~!:!.¿j = lL and {!:!.LI =0; DVS-BDDC (8.1) 

and aJ. =O; DVS-FETI-DP (8.2) 

and .c!~~Ll = O; DVS-PRIMAL-2 (8.3) 

and 

and jS-ll-! = O; DVS-DUAL-2 (8.4)
=-= 

8.1. Comments on the DVS numerical procedures 

The outstanding uniformity of the formulas given in Eqs. (8.1)
(8.4) yields dear advantages for code development, especially 
when such codes are built using object-oriented programming 
techniques. Such advantages inelude: 

1. 	 The construction of very robust codeso This is an advantage of 
the DVS-algorithms, which stems from the fact the definitions 
of such algorithms exclusively depend on the discretized 
system of equations (which will be referred to as the original 
problem) that is obtained by discretization of the partial 
differential equations considered, but that is otherwise inde
pendent of the problem that motivated it. In this manner, for 
example, essentially the same code was applied to treat 2-D 
and 3-D problems; indeed, only the part defining the geome
try had to be changed, and that was a very small part of it; 

11. 	 The codes may use different local solvers, which can be direct 
or iterative solvers; 

111. 	 Minimal modifications are required for transforming sequen
tial codes into parallel ones; and 

IV. 	Such formulas also permit to develop codes in which Uthe 
global-problem-solution is obtained by exclusively solving 
local problems". 

This last property must be highlighted, because it makes the 
DVS-algorithms very suitable as a tool to be used in the construc
tion of massively parallelized software, which is needed for 
efficiently programming the most powerful parallel computers 
available at present. Thus, procedures for constructing codes 
possessing Property IV are outlined and analyzed next. 

AlI the DVS-algorithms of Eqs. (8.1) to (8.4) are iterative and can 
be implemented with recourse to Conjugate Gradient Method (CGM), 
when the matrix is definite and symmetric, or sorne other iterative 
procedure such as GMRES, when that is not the case. At each iteration 
step, one has to compute the action on a derived-vector of one of the 
following matrices: ~-1, ~-1{~ or ~.c!~-I.c!, depending 

on the DVS-algorithm that is applied. Such matrices in tum are 
different permutations of the matrices S, S -1, a and j. Thus, to 

= 	 = ~ ::. 
implement any of the preconditioned DVS-algorithms, one only needs 
to separately develop codes capable ofcomputing the action ofone of 
the matrices ~, , .c! or { on an arbitrary vector of W, the derived

vector-space. Therefore, next we separately explain how to compute 
the applícation of each one of the matrices ~ and ~-1. As for .c! and {. 

as it will be seen, their application requires exchange of information 
between derived-nodes that are descendants ofthe same original-nade 
and that is a very simple operarion for which such exchange of 
information is minima!. 

8.2. Applícation of ~ 

From Eq. (7.2), we recall the definition of the matrix~: 

S 	 ~.~ 
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In order to evaluate the action of g: on any derived-vector, we 
need to successively evaluate the action of the followíng matrices 
A , A - 1. A and A ,Nothíng special is required except for 
=flJ =flfl =Jfl =LlLl 

A - 1, whích is explained next. 
=flfl 

We have 

A = =11 =In _A A ) ( (8.6) 
=flfl - ( ~"I ~'''' - ~r~~1 

Let ~ E W. be an arbitrary derived-vector. and write 

v""A- 1 w (8.7) 
- =flfl-

Then. ~1t E W(n) is characterized by 

(J",,,(A )v =w -A A- 1wl, subjected to j"v~ O (8.8)
=flfl _IT _1t =",1=11 - ::. -" 

and can obtained iteratively. Here. 

(8.9) 

and, with as the projection-matrix into W,(n), 

j" "" 1 (8.10) 
::. ::. 

We observe that the computation in parallel of the action of 
A-1 is straightforward because 
=11 

E -1 

= L (~~) (8.11) 
0:=1 

Once~" E Wr(n) has been obtained. to derive ~I one can apply: 

~I -1 (~I-~I1,~1t) (8.12) 

Thís completes the evaluation of~. 

8.3. Application of g:-1 

We define 

1:""luLl (8.13) 


A property that is relevant for the following discussion is: 


W r(1:) = W(1:) (8.14) 


Therefore, the matrix can be written as: 

(8.15) 
= 

Then. ~ : W LI -+ W.1 fulfills 

S-l = (A- 1) (8.16)= = LI.1 
For any ~ E W. let us write 

(8.17) 

Then, ~'" fulfills 

(J,,1t(~)~IT ~"-~"1.:(~~J -1~, subjected to f~" O (8.18) 

here, f l-~, where the matrix ís the projectíon operator on 

W r , while 
-1

(JIT" ( A ) ""A -A ( A
t 

) A (8.19) 
= =IT" =,,1.: =1.:1.: =1.:" 

Furthermore, we observe that 

(8.20) 

Eq. (8.18) is solved iteratively. Once ~IT has been obtained, we 
apply: 

~1.: (~1.:) -1 (~C~E"~) (8.21) 

This procedure permits obtaining A 1w in general; however, 
what we need only is (~-1) LI.1~' We observe that 

(~-ltLl~= (~-l~Llt (8.22) 

The vector ~-l~LI can be obtained by the general procedure 
presented abolle. Thus, take w ~.1 E WLI e W and 

A - 1 (8.23)~""= ~J 

Therefore, 

_vl+_v, v =_(A t )-lA V =_(A t )-lAt arv (8.24)
~ =-z: =EE =E,,-1! =';¡;E =E,,= _IT 

Using Eq. (8.20), these operations can be fully parallelized. 
However, the detailed díscussíon of such procedures will be 
presented separately [211. 

8.4. Application of!! and ¿. 

We use the notatíon 

a (CI¡¡.O:)(i./Jl) (8.25) 

Then [161: 

1 
a(i.aXi,/Jl = me!) ¿¡ij, 'rfrx E Z(O and 'rf{3 E Z(J) (8.26) 

While 

¡ = I-!! (8.27) 

Therefore, 

for every ~ E W (8.28) 

As for the right hand-sides ofEqs. (7.6), (7.8), (7.10) and (7.12), 
aH they can be obtaíned by successívely applying to L sorne of 
the operators that have already been discussed. Recalling 
Eq. (7.3), we have 

(8.29) 

The computatíon of Ri does present any difficulty and the 
evaluation of the actions OfA-1 and A were already analyzed. 

=flfl =.1fl 

9. Numerical results 

AH the partial differential equations treated had the form: 

-aV2u+~'Vu+cu=f(x), xEÍ¿ 

u =g(x), x E aQ 
d 

Q= rr (CI.;.{3¡) (9.1) 
i = 1 

where a,e are constants, while b = (b¡, ...,bdim ) is a constant vector 
and dim 2,3. In the applicatíons we present, n is equal to the 
number of degrees of freedom (do/) of the original problem; we 
use linear functions and only one of them is associated with each 
original node. As for the original problems treated, they have the 
standard form ofEq. (3.1): 

(9.2) 

They were obtained by discretization of three different differ
ential equations, in two and three dimensions. of the aboye 
boundary value problem with a= 1. The selection of the primal 
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TabJe 1 

Symmetric .2-D Eps=l e-6 

Subdomains Dof Primal 

(2 x 2) x (2 x 2) 4 9 1 
(4x4) x (4x4) 16 225 9 
(6x6) x (6x6) 36 1225 25 
(8 x 8l x (8 x 81 64 3969 49 
(10 x 10) x (10 x 10) 100 9801 81 
(12 x 12) x (12 x 12) 124 20.449 121 
(14 x 14) x (14 x 14) 196 38,025 169 
(16 x 16) x (16 x 16) 256 65.025 225 
(l8 x 18) x (18 x 18) 324 104.329 289 
(20 x 20) x (20 x 20) 400 159.201 361 
(22 x 22) x (22 x 22) 484 233,289 441 
(24 x 24) x (24 x 24) 576 330.625 529 
(26 x 26) x (26 x 26) 676 455,625 625 
(28 x 28) x (30 x 30) 784 613.089 729 
(30 x 30) x (30 x 30) 900 808.201 641 

Table 2 

Non-symmetric 2-D Eps=l e-6 

Subdomains Dof Primal 

(2 x 2) x (2 x 2) 4 9 1 
(4x4) x (4x4) 16 225 9 
(6 x 6) x (6 x 6) 36 1225 25 
(8 x 8) x (8 x 8) 64 3969 49 
(lOdO) x (10xl0) 100 9801 81 
(12 x 12) x (12 x 12) 124 20.449 121 
(14 x 14) x (14 x 14) 196 38.025 169 
(16 x 16) x (16 x 16) 256 65,025 225 
(18 x 18) x (18 x 18) 324 104.329 289 
(20 x 20) x (20 x 20) 400 159,201 361 
(22 x 22) x (22 x 22) 484 233.289 441 
(24 x 24) x (24 x 24) 576 330,625 529 
(26 x 26) x (26 x 26) 676 455,625 625 
(28 x 28) x (30 x 30) 784 613.089 729 
(30 x 30) x (30 x 30) 900 808.201 641 

constraints is crucial for the performance of the algorithms. In the 
numerical examples they were chosen according to Algorithm "D" 
ofToselli and Widlund (p. 173 of [2)). Choosing!? O symmetric 
matrices were obtained, which corresponds to the choices c= 1 
and to c=O, respectively; in this latter case, the differential 
operator treated is the Laplacian. The choices b =(1,1) and 
b=(l,l,l), with c=O, yield non-symmetric matrices. As for the 
rlght-hand side, the following choices were made: 

• For the Laplacian operator 

f sin(nnx) sin(nny), in 2D 
(9.3){ f:: sin(nnx) sin(nny) sin(nnz), in 3D 

• Other differential operators 

f::exP(XY){1-X2_y2},in 2D 
(9.4){ f=exp(xYZ){yz(2+xyz)+x3(y2+ z2)}, in 3D 

Discretization was accomplished using central finite differ
ences, but streamline artificial viscosity was incorporated in the 
treatment when b .¡. O. The DQGMRES algorithm was implemen
ted for the iterative solution of the non-symmetric problems. The 
resmctions used were continuity on the primal nodes. The numer
ical results that were obtained are reported in six tables that 

DVS-BDDC DVS-primal DVS-FETI-DP DVS-dual 

2 1 2 1 
7 7 6 5 
9 9 7 6 

10 10 9 7 
11 11 10 8 
12 11 13 9 
12 12 13 12 
13 12 14 12 
13 13 15 13 
13 13 15 14 
13 14 15 16 
14 14 15 15 
14 14 15 15 
14 14 15 15 
15 14 15 15 

DVS-BDDC DVS-primal DVS·FETI·DP DVS-dual 

2 1 2 1 
8 6 6 6 

10 8 8 7 
12 10 9 9 
13 12 9 10 
14 12 10 11 
15 13 11 11 
15 14 11 12 
16 14 11 12 
16 15 12 12 
17 16 12 12 
17 16 12 13 
17 16 13 13 
18 17 13 13 
18 17 13 13 

follow. Tables 1-3 refer to 2D problems while Tables 4-6 to 3D 
problems. 

10. Comparisons with standard BDDC and FEJ1-DP 

The DVS-framework has been developed with the sole inten
tion of contributing to further the effective application of parallel 
hardware to the solution of partíal differential equations, espe
cially elliptic equations but order to evaluate the possible merits 
of the formulations discussed in this paper, it is mandatory to 
compare them with well-established algorithms such as BDDC 
and FETl-DP, as we do in this Section. As seen in previous pages, 
the DVS-framework yields, in addition to a non-standard setting 
for DDMs non-standard algorithms as well. Therefore, these two 
aspects will be included in the comparisons that follow. 

We think the relation between the DVS-framework and the 
FETI-DP setting is easy to understand, beca use it can be summar
ized as follows: 

"FETl is formulated in a product space of functions, W (see 
p.133 of [2)), which contains discontinuous functions. However, 
FETI does not work directly in such a space; instead, it avoids 
working in it by resourcing to Lagrange-multipliers. On the 
contrary, the DVS-framework precisely consists in constructing 
a product space called derived-vector space and denoted by 
W - in a discrete (finite-dimensional) setting, which contains 
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Table 3 


Laplacian 2-D Eps=l e-6 

SUbdomains Dof Primal DVS-BDOC DVS-primal DVS-FETI-DP DVS-dual 

«(2 x 2) x (2 x 2) 4 9 1 1 

(4x4) x (4x4) 16 225 9 4 3 5 5 

(6x6) x (6,,6) 36 1225 25 7 6 6 8 

(8 x 8) x (8 x 8) 64 3969 49 7 7 7 7 

(10 x 10) x (10 x 10) 100 9801 81 8 8 9 8 

(12 x 12) x (12 x 12) 124 20,449 121 8 9 10 9 

(14 x 14) x (14 x 14) 196 38,025 169 9 9 10 9 

(16 x 16) x (16 x 16) 256 65,025 225 9 9 10 9 

(18 x 18) x (18 x 18) 324 104,329 289 9 9 10 9 

(20 x 20) x (20 x 20) 400 159,201 361 9 9 10 10 

(22 x 22) x (22 x 22) 484 233,289 441 9 9 10 10 

(24 x 24) x (24 x 24) 576 330,625 529 10 9 11 10 

(26 x 26) x (26 x 26) 676 455,625 625 10 9 11 11 

(28 x 28) x (30 x 30) 784 613,089 729 10 10 11 11 

(30 x 30) x (30 x 30) 900 808,201 841 10 10 11 11 


Table4 

Symmetric ]-D Eps 1 e-S Number of iterations 

Partition Subdomains Dof Primals DVS-BDDC DV5-Primal DVS-FETI-DP DV5-dual 

(2 x 2 x 2) x (2 x 2 x 2) 8 27 7 2 2 2 2 

(3 x 3 x 3) x (3 x 3 x 3) 27 512 80 4 4 3 3 

(4x4x4)x(4x4x4) 64 3375 351 5 5 4 3 

(5 x 5 x 5) x (5 x 5 x 5) 125 13,824 1024 6 5 4 3 

(6 x 6 x 6) x (6 x 6 x 6) 216 42,875 2375 6 6 4 4 

(7 x 7 x 7) x (7 x 7 x 7) 343 110,592 4752 7 6 4 4 

(8 x 8 x 8) x (8 x 8 x 8) 512 250,041 8575 8 7 5 6 

(9 x 9 x 9) x (9 x 9 x 9) 8019 512,000 14,336 8 8 7 7 

(10 x 10 x 10) x (10 x 10 x 10) 10,000 970,299 22,599 8 8 8 8 


"continuous and discontinuous vectors" (Le.. algebraic images of 
continuous and discontinuous functions. respectively) and explor
ing the consequences of working directly in it. 

It is relatively straightforward to see that the conceptual 
framework is greatly simplified in this latter approach. In this 
respect it is important to distinguish. in the procedures for solving 
partial differential equations using highly parallelized hardware. 
two different aspects: discretization of partial differential equa
tions and designing strategies for achieving the DOM-paradigm: 
"solving the global BVP by solving local BVPs. exclusively". 
Standard frameworks gene rally do not separate these two pro
cesses and the difficulties associated with one and the other are 
combined. In the DVS-framework. on the contrary. these two 
processes are c1early separated and one works directIy with the 
finite system of discrete equations that has been obtained after 
discretization. 

Io ilIustrate in a more specific and direct manner the advan
tages that the DVS-framework yieIds. we compare next the 
standard version of BDDe with its DVS-version: 

10.1. The Standard Bddc 

The notation ofthe standard BODe 13-6.10) will be used here: 

M- 1Su M- 11 (10.1) 

where S and the preconditioner M- 1 are 

N -T - 1 N T 1

S= ¿R¡ S¡R¡ and M- = ¿R ¡S¡- R¡ (10.2) 

¡ = 1 i= 1 

respectively. Furthermore. N is the number of subdomains and for 
each i=1....,N 

(10.3) 

R¡:r -> r¡ is the restriction operator from r into r¡: when 
applied to a function defined in r. it yields its restriction to r¡. 
As for R¡. R¡ : r -> r i is given by R¡ == D¡R;. Here. D¡=diag{o¡} is a 
diagonal matrix defining a partition of unity. Substituting S and 
M- 1 in Eq. (10.1). we obtain 

(lOA) 

Ihis equation is to be compared with our Eq. (9.1 l. For the purpose 
of comparison. the vectors u and lof Eq. (10.4) can be identified with 
vectors !!, and l. of OUT original space, W. Furthermore. we apply our 

natural injection. R : W -> W. defined by Eq. (5.5). to Eq. (9.1) and pre
multiply the resulting equation also by the natural injeclion. with u 
and L replaced by R!!, and Rf.. respectively. In this manner we obtain 

(10.5) 

We have verified that indeed Eqs. (10.4) and (10.5) are 
equivalent. 
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Table 5 

Non-symmetric ]·0 Eps 1 e-6 Number of iterations 

Partition Subdomains Dof Primals DV5-BDDC DVS-PRIMAL DVS-FETI-DP DVS-dual 

(2 x 2 x 2) x (2 x 2 x 2) 
(3 x 3 x 3) x (3 x 3 x 3) 
(4)(4)(4)x(4x4x4) 
(S x 5 x S) x (5 x S x 5) 
(6 x 6 x 6) x (6 x 6 x 6) 
(7 x 7 x 7) x (7 x 7 x 7) 
(8 x 8 x 8) x (8 x 8 x 8) 
(9 x 9 x 9) x (9 x 9 x 9) 
(10x 10x 1O)x(10x 10x 10) 

8 
27 
64 

125 
216 
343 
512 

8019 
10.000 

27 
512 

3375 
13,824 
42,875 

110,592 
250,047 
512,000 
970.299 

7 
80 

351 
1024 
2375 
4752 
8575 

14,336 
22,599 

3 
6 
7 
8 

10 
11 
11 
12 
13 

2 
4 
6 
7 
7 
8 
9 

10 
11 

2 
4 
5 
5 
6 
6 
7 
8 
9 

2 
4 
S 
5 
6 
6 
7 
8 
9 

Table6 

Laplacian 3·D Eps 1 e-6 Number of iterations 

Partition Subdomains Oof Prirnals DVS-BDDC DVS-primal DVS-FETI-DP DVS-dual 

(2 x 2 x 2) x (2 x 2 x 2) 
(3 x 3 x 3) x (3 x 3 x 3) 
(4x4x4)x(4x4x4) 
(5 x 5 x 5) x (5 x S x 5) 
(6 x 6 x 6) x (6 x 6 x 6) 
(7 x 7 x 7) x (7 x 7 x 7) 
(8 x 8 x 8) x (8 x 8 x 8) 
(9 x 9 x 9) x (9 x 9 x 9) 
(10 x 10 x 10) x (10 x 10 x 10) 

8 
27 
64 

125 
216 
343 
512 

8019 
10,000 

27 
512 

3375 
13,824 
42.875 

110,592 
250.047 
512.000 
970.299 

7 
80 

351 
1024 
2375 
4752 
8575 

14,336 
22.599 

1 
3 
1 
5 
6 
6 
7 
8 

10 

1 
2 
1 
4 
6 
6 
7 
9 

10 

1 
2 
2 
S 
5 
6 
8 
9 

10 

2 
2 
4 
6 
6 
8 
9 

10 

10.2. Comparison of the Standard and DVS Versions of Bddc 

The DVS-framework, and therefore also the DVS-version of 
BDDC, starts with the matrix that is obtained after the problem 
has been discretized and for its application does not require any 
information about the system of partíal differential equations 
from whích it originated, Throughout al! the developments it is 
assumed that the dual-primal Schur-complement matrix ~ ,defined 

in Section 7, Eq. (7.2), is non-singular. 
When comparing the DVS-BDDC with the standard BDDC we 

encountered sorne substantial differences. For example, when the 
inverses of the local Schur-compJements exist, which is granted by 
choosing the primal-nades adequately, in the DVS framework the 
inverse of ~r is given by (see [5,6)): 

(10.6) 

A similar relatíon does not hold for the BDDC aJgorithm. 
Indeed, in this Jatter approach, we have instead: 

N 

5= LR~S"Ra 
,,~l 

(10.7) 

and 

(Sr1 :jo t (R!SaRcx) -1 
ti. 1 

(10.8) 

even when the inverses of the local Schur-complements exist 
and no restrictions are used. 

The origin of this problem, encountered in the BDDC formulation, 
may be traced back to the fact tbat the BDDC approach does not work 
directly in the product space. Indeed, one frequently goes back to 
degrees of freedom associated with the original nodes. This is done by 
means of the restriction operators Ri:r -> rí which can be interpreted 
as transformations of the original vedor-space into the prodUd vedor
space (or, derived vector-space~ If the algorithm oC Eq. (10.4) is 
analyzed Crom this point oC view, it is seen tbat it repeatedly goes 

Crom the original vedor-space to the product-space (or denved vector
space) and back. For example, consider the expression: 

(10.9) 

occurring in Eq. (lOA). Mer starting with the vector u in the original 
vedor-space, we go to the derived-vector space with R¡u and remain 
there when we apply Si. However, we go back to the original vedOr
space when R; is applied. A similar analysis can be made oC the term 

(D .-l1f)Ts.-1D.-1Ji. 	 (10.10)1 tI! l' 

Summarizing, in the operations indicated in Eq. (10.9) four trips 
between the original vedar space and the derived-vedor space were 
made, two one way and the other two in the way back. In the DVS
framework, on the other banIL from the start the original problem is 
transformed into one defined in derived-vedor space, where all the 
work is done afterwards. and then such trips become unnecessary. 
Thereby, the matrix formulas are simplified and so is code develop
ment The unification and simplification achieved in this manner, 
permits produdng more effective and robust software. This explains 
in part, why the DVS-BDDC algorithm achieves the DDM-paradigm in 
spite of the fact that standard versions of it do not 

In summary, sorne of the advantages of the DVS-framework as a 
setting for domain decomposition methods are: 

1. 	It constítutes a unique setting for noh-overlapping domain 
decomposítion methods that ís applicable to any well-posed 
boundary-value problem of an elliptíc partial dífferential 
equation, or system of such equations. AlI what is required is 
that, aCter discretization, the system matrix satisfy Axiom 1, 
Eq. (3.5). Hence, the conceptual unificatíon achieved is very 
significant; 
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2. Such 	a setting has permitted formulating a family of four 
algorithms of general applicability: the DVS-algorithms. For 
member of that family possesses the following properties: the 
very same algorithm is applicable to a single-equation and to a 
system of equations. When applied to a matrix, the condition 
of being symmetric positive-definite is not required; 

3. 	The DVS-framework can be applied independently of the 
methods and function-spaces used in the discretization. Also, 
the OOM-formulations may be primal-fonnulations (without 
Lagrange multipliers) and dual-fonnulations (with Lagrange 
multipliers). [n particular, both FETI-DP and BODe are formu
lated in the same setting; 

4. Furthermore. the fOUT OVS-algorithms can be implemented with 
codes that achieve the DDM-paradigm. To our knowledge this is 
the first time that the OVS-paradigm has been achieved (7). 

11. 	Conclusions 

In this papero the main purpose of domain decomposition 
methods has been summarized by means of the DDM-paradigm: 
"to solve the global BVP by solving local boundary-value problems 
(BVPs). exclusively". Also, arguments have been presented sus
taining the view that in order to achieve it. it is necessary to 
completely disconnect the local problems from each other. This 
requires formulating the problems in a product space that con
tains discontinuous functions. 

At presento of the two most effective ODMs, FETI-OP method is 
indeed formulated in a product function space. However. FET[ 
does not work directly in such a space of discontinuous 
functions. beca use it avoids doing so by recourse to Lagrange
multipliers. As ror BODe. although it is a more direct formulation 
its setting is not a space of discontinuous functions, as it was 
explained with sorne detail in Section 10. On the other hand. 
standard formulations of DOMs address simultaneously the 
problems of numerical discretization and parallel processing. in 
spite of the fact that effective discretization methods are available 
for almost any BVP. 

In view of the aboye. a line of research has been cartied out to 
explore an approach in which non-overlapping DDMs are formu
lated in a purely algebraic space that contains both "continuous and 
discontinuous vectors" (Le., algebraic images of continuous and 
discontinuous functions) and the most important results so far 
obtained in it are summarized in the present papero They are: 

• 	A purely algebraic setting - the derived-vector space - has been 
constructed. which contains "continuous and discontinuous 
vectors" (Le.. algebraíc images of continuous and discontin
uous functions. respectively); 

• 	The derlved-vector space is a finite dimensional Hilbert space with 
respect to an inner product whose definition is independent of the 
system-matrix considered. In particular, the (non-singular) 
system-mattix may be any; i.e.• symmetric. non-symmetric and 
indefinite (non-positive-definite). Therefore, this finite dimen
sional Hilbert space supplies a unified setting for non
overlapping ODMs that simplifies much not only their formulation 
but the methods themselves. Furthermore. this framework can be 
used to formulate and discuss in a general and systematic manner 
the theory of ODMs for non-symmetric and indefinite problems. 
as it has been started to do in the work here summatized; 

• The processes of numerícal discretization and parallel algo
rithms construction, which in standard settings are mixed. 
have been thoroughly separated; 

• A unified theory of non-overlapping ODMs has been obtained, 
which permits treating single-partial-differential-equations 

and systems of such equations that may be non-symmetríc or 
indefinite (non-positive-definite); 

• 	 In the setting of the derived-vector space four algorithms 
(the DVS-algorithms) of general applicability have been devel
oped. For each one of them. the following is true: the very 
same algorithm is applicable a single-differential equation and 
to a system of differential equations independently of whether 
it is symmetric. non-symmetric or indefinite; furthermore, 
independently of the method used in the discretization of 
the BVP; 

• 	 Each one of the DVS-algorithms achieves the DDM-paradigm, in 
the sense that, for its implementation, codes can be developed 
that solve the global BVP by solving local BVPs. exdusively 
(this is shown in Section 8). [n particular. standard versions of 
FETI-OP and BODe do not achieve the DDM-paradigm (7) and 
their applicability to operate efficiently the huge massively 
paralJelized computers that exist today is hindered by this fact. 
On the other hand, because the DVS-algorithms do achieve the 
DDM-paradigm (as it is shown in Section 8) they are very 
suitable for that purpose. 
A further remark is timely; at present effective discretiza

tion methods are availab[e for almost any well-posed BVP, 
while domain decomposition methods are a more specialized topic 
whose study has not been as extensive. Therefore. the availability 
of DDMs that can be applied to the discrete system independently 
of the discretization method used is especially valuable. 

The answers to the questions opened by the line of research 
here presented are. however. far from exhausted. Much more 
numerical experiments and analysis are being carried out to 
answer many of the questions still opened. 

Algorithm nomencIature 

• 	 Primal #1 .... DVS-BODC. 
• 	Primal #2 .... DVS-Primal. 
• 	Dual #1 .... DVS-FETI-OP. 
• 	 Dual #2 .... OVS-DuaL 

Appendix:. On Notations 

General 

1. Original-problem. the original discretized version of the problem; 
2. 	Original-node is any node that was used to obtain the original 

discretized version of the boundary-value problem; 
3. 	Original-vector is any function defined in the whole set of 

original-nodes; 
4. N P .....N} and É"" {l,...•E} sets of natural numbers used to 

label the original-nades and the subdomains of the coarse
mesh, respectively; 

5. 	N" eN. CL=l •...•E. the subset of N corresponding to nodes of 
D,,; 

6. 	Derive-node is an ordered pair of numbers such that the first 
one labels an original-node and the second one labels any of 
the subdomains of the coarse-mesh to which the original-node 
pertains; 

7. X is the whole set of derived-nodes; 
8. X" c:X. 0(= 1, ....E. the set of derived-nodes associated with Da:; 
9. 	For each original node P. Z(p) c: X, is the set of derived-nodes 

that derived from p; 
10. 	I c:X. r c:X. 1t X and ,1 c:X, represent sets of derived-nodes; 

namely. they are internal. interface. primal and dual deríved
nodes. respectively; 
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11. Iha/un; 
12. A derived-vector is any function (scalar or vector-valued) 

defined in X; 
13. The 	derived-vector space. W. is the whole set of derived

vectors: 
14. 	For every pair of vectors. u E W and w E W. the 'Eue/idean 

inner product' is defined to be 

~..~= L.: !!(p.a)~(p.IX) 
(p.ct)eX 

In applications to systems of equations, u(p.a) itself is a vector 
and this equation is replaced by 

!!.~ = L.: !!(p.a) 0 ~(p.a) 
(P."') EX 

here. u 0 w means the inner product of the vectors involved; 
15. The 	DVS-problem. is a problem formulated in the derived

vector space. which is equivalent to the original-problem: 
16. 	W'" e W. a= 1.....E. the set of derived-vectors. which vanish at 

each derived-node that is not associated with na; 
17. A derived-vector 	u. is continuous when its value u(p.a) is 

independent of a. at every derived-node (p.a); 
18. W12 e W is the linear subspace constituted by continuous 

derived-vectors; 
19. !! is the orthogonal-projection matrix on the subspace of 

continuous vectors; 
20. A derived-vector !!. has zero-average when ~!! = O and the 

linear subspace W11 e W is constituted by aH zero-average 
derived-vectors; 

21. j is the orthogonal-projection matrix on the subspace of zero
average derived-vectors. 
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