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There are two approaches to multiscale modeling: information passing and concurrent, and the latter one is further
divided into overlapping and non-overlapping. This paper presents a general and systematic method for treating con-
current non-overlapping approaches to multiscale modeling that can be applied whenever both the coarse and fine
resolutions belong to the realm of continuum mechanics. These results are derived from an axiomatic formulation of the
mathematical models of continuum mechanics previously introduced by the author. Applications of such a method to
local events yield a bi-physical approach to them, which in turn permits deriving a new procedure for treating boundary-
layers and shock profiles associated with singular perturbations of partial differential equations. Some advantages of the
new procedure over standard methods are indicated in the paper.
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1. INTRODUCTION

Scientific behavior-prediction of nature and other systems of human interest is carried out by means of physicomath-
ematical and computational models. In the case of macroscopical physical systems of engineering and science, up to
now, such models have been based on continuum mechanics, which adopts a macroscopical point of view to treat phys-
ical systems. However, as Paul Dirac recognized when quantum mechanics was born (Dirac, 1929), The Schroedinger
equation is the ultimate basis of scientific prediction of nature-behavior and, therefore, continuum mechanics is only
an approximation in which the quantic response of the ultra-microscopic constituents of matter is incorporated in the
models by means of empirical constitutive equations. Although thus far this approach has been very successful, un-
surmountable barriers have been found for extending it to many other, more complex systems and at present intensive
international scientific research is being carried outmartiscale-modelingFish, 2013; Galvanetto and Aliabadi,

2009; Weinan, 2011), whose purpose is to establish procedures capable of incorporating the microscopic informa-
tion into the macroscopic models in a more effective manner thagdhstitutive-equations approacMultiscale

modeling represents a fundamental change in the manner of making science, whose effectiveness recently received a
recognition of first order; namely, the Nobel Chemistry Prize 2013 (Karplus, 2014).

In his 2013 Nobel Lecture (Karplus, 2014), Martin Karplus, referring to Paul Dirac’s 1929 statement (Dirac,
1929): The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads
to equations that are much too complicated to be solupténted out that a less familiar part of Dirac’s remark
states thalt therefore becomes desirable that approximate practical methods of applying quantum mechanics should
be developed, which can lead to an explanation of the main features of complex atomic systems without too much
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computation And this latter statement is what he considerslditenotif of the work that led him to obtain the 2013
Nobel Prize in Chemistry.

Therefore, we may say that Karplulsiureate work was in response to Dirac’s 1929 invitation to search for
simplifying quantum mechanical approaches and furthermore, paraphrasing him, we can also say that such a Dirac’s
invitation is theleitmotif of much of the multiscale-modeling research effort that is being carried out. This assertion
is more transparent when multiscale models are set in a hierarchical order, startinguaritium mechanic€lhe
Schroedinger equation) at the bottom and finishing wihtinuum mechanicat the top; albeit, it should be noticed
that at the continuum mechanics level itself there is also a hierarchy of models.

In spite of the significant progress already achieved in multiscale modeling, many questions are still opened and
this paper is intended as a contribution to that international scientific-research effort. According to Fish (2013), there
are two categories of multiscale approaches: information-passing (or hierarchical), and concurrent. In FisHis terms:
the information-passing multiscale approach, the fine-scale response is idealized (approximated or unresolved) and
its overall (average) response is infused into the coarse scale. In the concurrent approaches, fine and coarse-scale
resolutions are simultaneously employed in different portions of the problem domain, and the exchange of information
occurs through the interface. The subdomains where different scale resolutions are employed can be either disjoint or
overlapping In this paper a general classaincurrent non-overlapping approachissaddressed, such that both the
fine and coarse-scale resolutiobslong to the realm of continuum mechanics. Eancurrent multiscale approaches
of that class, an axiomatic formulation is developed that reduces their treatniaittaieboundary value problems
with prescribed jumps (bvpgf the type discussed by the author in Herrera (2007), which are explicitly given (i.e., the
basic system ddlifferential equationsndjump condition} by the general axiomatic mathematical-model previously
introduced (Herrera and Pinder, 2012).

Axiomatic formulations are very effective for achieving three fundamental paradigms of mathematical thinking:
generality, clarity, and simplicity (Herrera and Pinder, 2012). Generality yields an enormous economy of effort in the
study and discussion of many subjects; in research, it is invaluable because models possessing it anticipate results
for many unforeseen situations. Clarity yields certainty of knowledge. As for simplicity: simplifying ideas permit
transforming complicated systems and phenomena into simple ones, which in turn upgrades efficiency and the level
of complexity of systems amenable to treatment. Of course, the beneficial and powerful properties of axiomatic ap-
proaches are not exhausted by the brief enumeration made above; the interested reader is referred to Herrera and
Pinder (2012) for a more extended discussion of that topic.

It is well known that the groundwork for establishing axiomatic approaches to continuum mechanics was done
in the second half of the 20th Century by a group of scholars and researchers, some of whose most conspicuous
leaders were C. Truesdell and W. Noll (Truesdell and Noll, 1965; Truesdell and Toupin, 1960). The author had the
privilege of participating in some of such developments; see Coleman et al. (1965). A fundamental stone of the theory
of mathematical models of continuous systems are the balance conditiomgdasive propertieor, equivalently,
for intensive propertiegHerrera and Pinder, 2012). For the axiomatic formulation referred to above, such balance
conditions—constituted bglifferential equationgndjump conditions—appeared in a general and rigorous form in
Allen et al. (1988). Based on such results I. Herrera developed a very general mathematical model for continuous
systems that has been applied as an effective tool in research (Herrera, 1996; Herrera and Camacho, 1997; Herrera
and Herrera, 2011) and teaching (Herrera and Pinder, 2012).

The general axiomatic model provides a systematic yet simple procedure for constructing the mathematical model
(i.e., the basic system dfifferential equationsand jump condition} of any macroscopic continuous system. This
paper constitutes a further application of it, besides those already mentioned. Indeed, the results here presented stem
from the application of such an axiomatic mathematical model for continuous systeorsciarrent approachewith
disjoint subdomains, and it always yieldtstial-boundary value problems with prescribed jumps (b\gfjthe type
discussed by the author in Herrera (2007).

After having developed the theory in the first part of the paper, in its second part the axiomatic formulation is
applied to treaboundary and internal layersbtaining in this manner a new method for treating them. Specifically,
the examples treated toundary layersefer to some that occur in advection-dominated transport and also some
that occur in incompressible-slightly viscous fluids, while those imternal layers correspond to shock
profiles.
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Systematic Formulation of Multiphysics Systems 137

2. THE GENERAL MATHEMATICAL MODEL OF MACROSCOPIC SYSTEMS

When models are built with the purpose of mimicking specific physical systems, probably due to this fact, the dis-
tinction between physical reality and such models is frequently blurred. However, in many instances it is healthier to
clearly distinguish between the physical objects and the mathematical models. This is what is done in this section,
using for this purpose thaxiomatic approacheferred to in the Introduction.

An essential assumption (or, axiom) of thisiomatic approaclis that each physical system is characterized by a

finite set ofextensive propertie@vhose cardinality will be represented Ny; or, equivalently, a finite set afitensive
properties because with evergxtensive propertyhere is associated uniquely artensive propertyFurthermore,
a fundamental stone of mathematical models of continuous systems araléimee conditionswhich have to be
satisfied by evergxtensive propertgf that set, or its correspondirgtensive propertyThen the governing equations
of each physical system is a sethpairs, each one constituted byldferential equatiorand ajump equationwhich
are the expressions in terms of théensive propertiesf such balances.

Therefore, the basic mathematical model is given by the following systetiffefential equations

or*
ot

+V-(T*)=¢g*+V-1%, a=1,...,N (2.1)
together with the system @iimp conditions
[T%w* —vg) —1%]]-n=0; a=1...,N; on X(t) (2.2)

Here, the square bracket stands for the jump of the function inside it [the reader is referred to Herrera and Pinder
(2012) for additional notation]. The problem consists of finding a finite sequence of fun@lo]ns. . \I/N} and a
surfacex(t), for eacht, which satisfy Egs. (2.1) and (2.2) together with suitable boundary conditions. In what follows,
we will use the notation

U= (vl ... o) (2.3)

Above,
v* =0z, t,¥,VY), ¢%=g%(z,t,¥,V¥) and 1% =1%(z,t,¥,VY) (2.4)

are given functions; such relations frequently are referred tmastitutive equationss for vy,, it is the velocity of
the surface(t), which is defined or(¢), exclusively. In general, this system of equations when complemented with
suitable boundary and, possibly, initial conditions yields a well-pdsglof the kind discussed in Herrera (2007).

The following nomenclature will be used* is thephase velocityg® is theexternal supplyandt® is theflux
(Herrera and Pinder, 2012). When a system of partial differential equations can be written in the form of Eq. (2.1),
for somev* = v*(z,t, ¥, VU), g% = ¢%(z,t,¥,V¥) and1* = 1t%(z,t, ¥, V) we refer to Eq. (2.1) as the
“canonical formi of such a system and Eq. (2.2) are ttencomitant jump condition#n the following developments,
it is assumed that theanonical differential equation®gether with theeoncomitant jump conditionsvhen subjected
to suitable boundary conditions yield a well-posed boundary-value problem with prescribed jumps (bvpj); see Herrera
(2007).

Remark: Here we have assumed that for eacandt, v*, ¢*, andt® are functions of andV¥ only. Such an
assumption may be changed and more general models can be obtained by doing so.

In relation with these latter conditions, tle®ncomitant jump conditionsome facts that are relevant for the
discussions of the following sections should be made. Firstly, when the funatfong*, and t> together with
their derivatives occurring in Eq. (2.2) are continuous,¢bacomitant jump conditionare satisfied at any surface
3(t) whenever the function$\lll, ce \I'N} together with their derivatives occurring in Eq. (2.2) are continuous.
Thus, when the functions®, ¢%, andt* are sufficiently regular in a domain, one only has to apply the system of
differential equations of Eqg. (2.1) when looking for solutions in a space of functions whose members are sufficiently
regular. When the functions®, ¢* andt* have jump discontinuities on a surfat#t) and the set of functions
{\111, cee \I/N} satisfies theconcomitant jump conditionshen at least one of the functions of such a set has non-
vanishing jumps at(¢).
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Remark: In previous work, unified formulations of EOR (enhaced oil recovery) models have been introduced
(Herrera and Herrera, 2011) and a general class of shocks (shocks with double discontinuities) that occur in petroleum
reservoirs was discovered (Herrera, 1996; Herrera and Camacho, 1997). To treat such shocks it was necessary to
introduce a more general form of jump conditions, in which the right-hand side of Eq. (2.2) is different than zero.
However, Eqg. (2.2) as it stands here is sufficiently general for the purposes of this paper.

3. AXIOMATIC FORMULATION OF MULTIPHYSICAL MACROSCOPIC MODELS

Consider a multiphysical macroscopic system such that its physical characteristics (or, properties) are piecewise-
defined; i.e., the domain occupied by the physical system is decomposed into a finite set of subdomains and the
system physical properties are defined separately at each one of such subdomains. Generally, for such a system the
physical properties change abruptly from one to another subdomain aimdtehsive propertieassociated with the

system are discontinuous across the boundaries that separate the subdomains from each other. When the physics at
each one of the subdomains belongs to the realm of continuum mechanics, the general axiomatic mathematical model
for continuous systems of Section 2 is applicable. In particular, its mathematical model is constituted by the system

of partial differential equation®f Eq. (2.1), to be satisfied at each subdomain, anjlitn@ condition®f Eq. (2.2) to

be fulfilled at the common boundaries that separate the subdomains from each other. Géherddly, (2.2) is the

union of the common boundaries.

3.1 Axiomatic Formulation of Multiscale Concurrent Approaches

Clearly, multiscaleconcurrent approachesf the class introduced in the Section 1 are characterized byintand

coarse resolutionbelong to the realm of continuum mechanics and the subdomains, where the different scale resolu-
tions are employed, are disjoint. In such cases, the mathematical model is constitutediffeteatial equation®f

Eq. (2.1) and thgump conditionf Eq. (2.2).

A type of problem that has received considerable attention in multiscale studies and research atecedlled
events They correspond to cases in the subdomain wheegse-scale resolutioapplies covers most of the domain
while that corresponding to tHae-scaleis small. This kind of problems is suitable to applying a bi-physical model
(i.e, only two subdomains in the multiphysical model) and in what follows we present a general proceceselfang
local eventsfor the case when both physics, tfire-scaleone—governing thdocal-evert and thecoarse-scale
physics—which governs the remaining space—belong to the realm of continuum mechanics.

3.2 The Multiphysical Model in 1D

Several of the examples that will be discussed in what follows are formulated in a one-dimensional (1D) space. For
the sake of clarity, in this subsection we give explicitly the form that Egs. (2.1) and (2.2) adopt when the physical
space is one-dimensional. Then, Eq. (2.1) becomes

or*  J¥*p* «  01%

while the jump conditions of Eq. (2.2) are (for 1D probler$¢) consists of only one point:x (¢)):
[T*(w* —vg) —1*]] =0, a=1,...,N; at zx(¢) (3.2)

When deriving Egs. (3.1) and (3.2) from Egs. (2.1) and (2.2), we made use of the fact that in 1D problems the
vectorn is a scalar that can take the value$ and+1, exclusively, and the value +1 was chosen. This implies that
the positive side ofx(t) is the right-hand side of it.
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4. A BI-PHYSICAL APPROACH TO SINGULAR PERTURBATIONS

Generally, the solutions of perturbed partial differential equations, and systems of such equations, when the pertur-
bation is sufficiently small can be approximated adequately by means of the solutions of the unperturbed equations.
This, however, does not happen when the perturbation 8raytlar perturbatiofi (Kevorkian and Cole, 1981); in

such a case the convergence as the perturbation goes to zero is not uniform and boundary layers occur in which such
an approximation is unsatisfactory.

Standard approaches used to treat such boundary layers are matched asymptotic expansions and some other similar
procedures [see Cousteix and Mauss (2007); Cousteix (2005); Kevorkian and Cole (1981); Weinan (2011)]. In them
the domain of definition of the problem is decomposed into two subdomaing)rteedomainwhere the perturbed
equation has to be satisfied and tihe@er domainin which the unperturbed equation prevails. In each one of such
subdomains an asymptotic expansion is carried out and afterward they are matched, applying suitable criteria for that
purpose. Thereby, we mention that it is in the choice of such a criteria where different approaches of this general
framework differ most and it is also where the foundations of such procedures are less satisfactory (Cousteix and
Mauss, 2007; Cousteix, 2005; Kevorkian and Cole, 1981).

Here, these problems are treatedazsl eventsising the general framework ofultiscale modelingin this man-
ner we are led to propose an alternative bi-physical approaobundary and inner-layersvhich among some other
attractive features overcomes the weaknesses just mentioned of the matched-asymptotic-expansions methodology.
The basic idea of this bi-physical approach is to associate with such a problem, which is goversathojaaly per-
turbed differential equatiothroughout the whole domain,sairrogate local-event problefor which thefine physics
is governed by the perturbed differential equation while ¢barse physicgorresponds to the unperturbed one. It
should be mentioned that, as it will be seen through the examples here discussed, the solution clusdaie
problem satisfies a well-posédundary-value problem with prescribed jumps (b\gfj)he type discussed in Herrera
(2007).

5. ADVECTION-DOMINATED TRANSPORT: THE STEADY-STATE

As a first illustration, here we study the steady state of advection-dominated transport in 1D. This example has been
chosen mainly because of its simplicity, which permits analyzing it thoroughly with insignificant effort. The differ-
ential equations to be discussed depend on only one independent variable denatétbiwever, the problems also
depend on a parameter,and a significant part of our discussion objectives is to analyze the behavior of the problems
solutions whern varies. Therefore, the problem solutions are written explicitly as functions that depend andath
¢ whenever necessary for clarity.

Remark: If asymptotic expansion methods are applied to study the problem of this section—the boundary layer
that occurs in steady state of advection dominated transport—it yields nothing [see, for example Weinan (2011)].
However, when the bi-physical approach here proposed is applied to it the boundary layer can be effectively treated.

5.1 The Singular Perturbation

Consider the equation

Jdc 0%c

— =¢e¢——; with 0 5.1

o “ox2’ €= (5.1)
which is a normalized form of the equation governing the steady state of diffusive transport, since its transport velocity
is one. Furthermore, we impose the following boundary conditions:

c(0,e) =1 and ¢(l,e) =0 (5.2)
This defines a well-posed boundary-value problem, whose exact solution is

1 — e(l—2)/¢ e—1l/e _ o(1=m)/¢

1—el/e =1 1—elle (5-3)

clx,e) =
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5.2 Some Features Characteristic of Singular Perturbations

Whene <« 1, Eqg. (5.1) is asingular perturbatiorof the equation:

dc

— =0 54

ox (5.4)
We observe that the solutiefiz, €), as given by Eq. (5.3) converges in the interval [0,14 as 0 but its convergence is
notuniformin the semi-open subinterval [0,1). In the closed interval [0,1], it converges to the discontinuous function:

1, 0<z<l
c(x,0) = (5.5)
0, r=1

However, its convergence to the identically one constant functianifermin any closed subinterval 46, 1). Fur-
thermore, such a limit function fulfills Eq. (5.4), which is the unperturbed form of the differential equation we are
considering.

From the above discussion, we can draw the following conclusiart: 1§ a real number such that< 2* < 1
thenc(x, 0) is the unique solution of the boundary-value problem, posed in the closed-intenvgl and defined by
the unperturbed differential equation together with the boundary condition

¢(0,0) =1 (5.6)

5.3 The Bi-Physical Approximation

Motivated by the above discussion, we adopt the following bi-physical model. We divide the whole domain (i.e., the
unit interval|0, 1]) into two subdomains: theoarse-model domaiand thefine-model domairiTo this end we choose
a real number* such thad < z* < 1; then we definé0, z*) to be thecoarse-model domajrwhile (z*, 1] will be
the fine-model domainThe physics of theoarse-model-domaiis non-diffusive while at thefine-model domaits
diffusive with 0 < ¢ < 1. In both of such domains Eq. (5.1) prevails, except thjatmps from zero to non-zero when
x* is crossed. In conclusion, thee-physical modelve have just introduced is governed by a differential equation with
discontinuous coefficients and the theories of Sections 3 and 4 are applicable to them.

Comparing Eg. (5.1) with theanonical formof Eq. (3.1), it is seen that one obtains the former from the latter
when

1< N, ¢V, 0+«g, E%HT (5.7)
x

The physics occurring in these two subdomains are matched, at their common boundary:by the jump condi-
tions of Eq. (3.2), which for this case reduce to

Hch(l—vg)—aagz';P” =0, at z=2" (5.8)

The use of the sub-indexes, here as in what follows, is:
i. cgp ,Iisthebi-physicalsolution, defined in the whole domain;
ii. cgpc, isthecoarse-modetolution, defined in theoase-model-domajand
iii. cppy, is thefine-modebolution, defined in théine-model-domain

Furthermore, in Eq. (5.8)s = 0 sincez* is time-independent. Using this fact, we get

|:|:CBP - EaCBP:H =0, at z* (59)
Ox
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Equations (5.1) and (5.9), together with the boundary conditions:

CBP(O) =1 and CBp(l) =0 (510)
define a well-posetioundary-value problem with prescribed jumps (bypjhich governs theurrogate bi-physical
system

5.4 The Solution at the Coarse-Model Domain

The boundary condition:
CBP(O) =1 (511)

together with the differential Eq. (5.4) define a well-posed problem in the closed-inf@rv&], whose solution yields

cgp(r)=1, for 0<z<a* (5.12)

5.5 The Solution at the Fine-Model Domain
The latter equation, together with themp conditionf Eq. (5.9), imply

)
(chf - Cg";f) (@) = cppo(a™) =1 (5.13)

Here, the notationsg?. andz* refer to the limit from the right and from the left, respectivelyat= z*. Equa-
tion (5.13) yields a left-hand boundary condition for firee-scalephysical model, which together with the equation

CBpf(l) =0 (514)
defines a well-posed boundary-value problemdgp ¢ (), whose exact solution is

1 — e(l_"‘v)/8 6_1/5 — e(l—l‘)/&

copy(e) = —— =1+

5.6 The Solution of the Bi-Physical Model

In summary, putting together the results for dwarse-scalandfine-scale domainthe solution of thévpjin the
whole domair0, 1] is obtained:

1 , 0<x<za®
cpp(r) = (5.16)
1— 6(1793)/5 efl/s o 6(171)/5

1_61/5 - 1_61/E

5.7 Error of the Surrogate Model

Comparing Egs. (5.3) and (5.16) an interesting property becomes appgheesiutions of the original problem and
surrogate problem coincide, in the fine-scale subdomgire error associated with the bi-physical model is

ef(lfac)/a _ e*l/& o< .
=VF , <z<z

(@) = |e(z) - cpp(o)] = (5.17)
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The maximum error occurs at tltearse-model domaiside ofz*; i.e., the point that separates it from tiiree-model

domain Its value is
e—(l—x*)/s _ e—l/s

1—e1/e
Notice thatl — z* = § is the thickness of thtne-model domairi.e., theboundary layerin terms ofs, E,, .. is given
by:

Enaz = (5.18)

ed/e _ =1/ ed/¢ (1 _ e671/5)
Ermaz = 1 e-1/¢ = 1 _e—1/¢ (519)
Assume that theddmissible errot h is a real number such that< h < 1, while0 < ¢ < 1. Then, it can be seen
that the condition®,,,,,, < h is granted when

§ > —clog(2h) (5.20)

This exhibits a condition that tha-physical surrogate modeleeds to satisfy in order for the error introduced by its
use be bounded by. Thereby, we see that another necessary condition (although weaker) is that

5= 0(e) (5.21)

6. ADVECTION-DOMINATED TRANSPORT: THE TRANSIENT-STATE

As a further example, in this section we extend the previous analysis to the time-depHddaitection-dominated
transport As the physical space we keep the unit interval of the real line. To avoid complicating unnecessarily the
notation, we will drop any reference to the parametekcept in cases when such a reference is essential.

The example here considered was taken from Weinan (2011). In particular, we consider the differential equation

dc  Oc 0%
subjected to the boundary conditions:
c(z,0) =co(t) and c(1,t) =c1(t), —oco<t< oo (6.2)

6.1 The Bi-Physical Model

The case oadvection-dominated transpocbnstitutes aingular perturbationof Eq. (6.1) around the value = 0,

in which aboundary layeroccurs at the right-hand-side boundary of the physical domain, since the velocity, +1,
is positive. For this problem theoarse-model physiasorresponds tmon-diffusive transportwhile thefine-model
physicsis diffusive transportBoth of these physics are governed by Eq. (6.1) withk 0 ande > 0, respectively.
Therefore, this is a problem governed by a differential equation with discontinuous coefficients whose systematic
formulation was presented in Section 4.

6.2 The Concomitant Jump Conditions

The bi-physical formulation is similar to the steady-state case. In general, for a time-dependent problem one can
choosez*, the point where the physical model exhibits an abrupt jump of the physical properties, to be also time-
dependent. However, hesg¢ will be time-independent. Thereby, we notice that for the application of the results of
Section 3xx = z*.

In order to identify the canonical form of Eq. (6.1), and through it obtaijuh® conditionsequired to formulate
the bi-physical model, we notice that such equation is obtained from Eq. (3.1) when the following replacements are
made:1 « N, 1 « o', 0 « g', e(0c/0x) « T' andc « Wl Therefore, applying Eqg. (3.2) it seen that the
concomitant jump conditiornsf Eq. (6.1) are

Hch—eacBP” =0, at x=2" (6.3)
ox
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In conclusion, the exact solution of the physical modeis determined by a well-posed boundary-value problem with
prescribed jumpsdvpw see Herrera (2007)] defined by Egs. (6.1) to (6.3).
The jump conditions of Eq. (6.3) are tantamount to

0
CBpf — & C;;f =cppo, at z=2zx" (6.4)

Here, it is recalled that the notationsp, czpc, cgpy Were introduced in Section 63 p is thebi-physicalsolution,
defined in the whole domairpc is thecoarse-modesolution, defined in theoarse-model domajrandcgpy is
thefine-modekolution, defined in théne-model domain

6.3 The bvpwj

In summary, we can say that théphysical regularization methottansforms the original singular boundary-value
problem into aoundary-value problem with prescribed jumps (bvpWmXhe case that we are treating, the solution of

this bvpwj is facilitated because it can be obtained by solving successively two boundary-value problems, the first one
in the coarse-model domajrand the second one in tfiee-model domainThe procedure consists of firstly defining

the boundary-value problem satisfied bypc in [0,2*) and, afterward, the boundary-value problem satisfied by
cppy in (x*,1].

6.4 The Boundary-Value Problem in the Coarse-Model Domain

The functioncg p¢ is determinated by the differencial equation

Oc Oc . N
5 Ty =0 in 0,2%) and —oo <t < oo (6.5)

and only one boundary condition (the condition at the left-hand side afdaese-model domajn
c(0,t) =co(t), —oco<t< o (6.6)
In particular, for such a boundary condition the solution is

cppo(x,t) = co(t — x) (6.7)

6.5 The Boundary-Value Problem in the Fine-Model Domain

As for the functioncgry, it is determined by a parabolic boundary-value problem formulated ifirileemodel do-
main Sincee > 0, the equation

dcgps | Ocppy  Peppy .
ot =t e (@] and —co<t<oo (6.8)

is a parabolic equation. The boundary conditions in the intémv/all] are

Ocppy

or

cppf(x*,t) —¢ (z*,t) = co(t — z*)

, —oo<t<oo (6.9)

CBpf(l,t) = Cl(t)
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7. BOUNDARY LAYERS IN INCOMPRESSIBLE FLUIDS

In this section, we consider two-dimensional incompressible flow of a slightly viscous fluid. We write the system of
governing Navier—Stokes equations as

ou dp s

E%—K-VU—F%—EVU

ov dp s (7.1)
5 +V-VV+ay—sV 1%

V- V=0

where thedynamic viscositye > 0, is a constant. In particular, the flow of such a fluid past the half-plane:

o= {e- (oo

with a no-slip boundary condition will be discussed.
V=0 at y=0 (7.3)

Above,V = () is the velocity ang is the pressure.

When the fluid isslightly viscougdi.e.,0 < ¢ < 1) the system of equations (7.1) issagular perturbationof
the system of equations that governs the flovinefscid fluid which is obtained setting = 0 in the same system of
equations. Due to the no-slip conditionbaundary layemoccurs next to the horizontal boundayy= 0.

7.1 The Bi-Physical Approach

From the bi-physical framework perspective, twarse physicss non-diffusive while theine physicss diffusive.
The treatment of this problem using tbearse-model physids satisfactory everywhere, except dbaal event the
boundary layerthat needs to beesolvedin order to obtain théoundary-layer profile Thus, in what follows we
assume that thine-model domairwhich corresponds to such a boundary layer, is the subdomain Where< ys,
while thecoarse-model domaiis the remaining of the half-plane.

7.2 The Concomitant Jump Conditions

To obtain the system of jump conditions that asmcomitantwith the system of Eq. (7.1), it is necessary to find the
canonical formof this latter system of partial differential equations. For the sake of clarity, here we write Eq. (2.1) in
a more explicit form takingv = 3:
owt
(Uil = ot

5 TV (V'v')=g +
This equation becomes the first of Egs. (7.1) whén= u, v! = V, ¢' = 0, andt!
The secondanonical equatioris:

<

-t (7.4)

eVu — pel; heree! = ((1))

o2
. \:[12 2y
- TV (Uv®) =g~ +
It becomes the second of Egs. (7.1) wheh= V, v? = V, ¢* = 0, andt? = eVV — pe?; here,e? = (V). Finally,
we observe that the thircknonical equation

<

.2 (7.5)

3
V- (¥ = ¢ + V-2 76)
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is transformed into the third of Egs. (7.1) whéd = 0, v2 = V, ¢% = 0, andt® = 0. Therefore, for this particular
case, theoncomitant jump conditions

[T —vg) —1¥]] - n=0, «=1,2,3 (7.7)
are
uV -n= Hsgz—pel n”
VV'“:H£§2_7’62'”” at y=uys (7.8)
V-n=0

7.3 The Well-Posed Problem of the Bi-Physical Approximation

The well-posed problem corresponding to this case is constituted by the system of differential equations of Eq. (7.1),
wheree = 0, in the coarse-model domajrande > 0 in the fine-model domairtogether with thgump conditions
of Eqg. (7.8) and the boundary conditions of the original problem. As for the boundary that separdies-thedel
domainfrom thecoarse-model domajiit is the horizontal line; = y5;, whereys, > 0, and therefore the unit normal
vector pointing upward is given by

n=¢’= <?) (7.9)

Thus, for this problenV - n = V - ¢2 = V and the above jump conditions imply thats continuous across the line
y = ys. Using these facts, it can be verified that Eq. (7.8) reduces to

Ean_

u _WTy—Uc

pf_t:aiyf:pc Y=Yz ( )

vy = v

These conditions, together with the no-slip condition at the lower boundary dihérenodel domaincomplete
the definition of the well-posed problem. They are

Uf =0
at y= (7.12)

’UfZO

8. THE BI-PHYSICAL SHOCK-PROFILE MODEL

Viscous shock profiles provide simple examplesrdérnal layers The Burger's equations frequently used as a
simplified model of compressible flow (Weinan, 2011):

o 10 , 0%

To illustrate the bi-physical treatment of shocks, we condBigger’s equatiorin the case whefl < ¢ < 1.
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8.1 The Well-Posed Boundary-Value Problem with Prescribed Jumps

In standard approaches to this problem, the fluid is treated as inviscid at most of the domain and its viscosity is
accounted for in the neighborhood of shocks, exclusively. Thus, when the bi-physical approach is adopted, the domain
is divided into two subdomains: thewarse-modetnd thefine-model domainrespectively, and the physics in each
one of them is governed by a partial differential equation of the form of Eq. (8.1}, bul in the first one and > 0
in the latter one.

Thus, the bi-physical model corresponding to the system so defined is a particular case of the general multiphysical
systems explained in Section 4. Thanonicalform corresponding to Eg. (8.1) is obtained making the following
substitutions in Eq. (3.1):

1N, v<0, v/2—wv, 0<g, £@<—T (8.2)
Or
In view of Eqg. (3.2), this implies that theoncomitant jump conditiorere
0
Hv(v/Qvg)saZ” =0 (8.3)

In the bi-physical approachthe general method to treat shocks consists of a two-step procedure in which we first
solve a well-posed bvpj formulated in thearse physicand, afterward, aell-posed bvpijhat combines both physics

is treated. To illustrate such a procedure, in a first instance we consider boundary conditions that are easy to handle.
The problem is posed, in the real linepo < x < 400 andt > 0. The initial conditions are

1 , —oco<z<0
v(x,0) = (8.4)

-1, oco>x2>0

This defines arinitial boundary-value problem with prescribed jumps (initial-bypghich is first solved when the
governing physics is theoarse physicg~or such annitial-bvpj the differential equation is obtained setting= 0 in
Eq. (3.1); that is:
dv 190
ot " 20z
Sincee = 0, theconcomitant jump conditionsf Eq. (8.3), reduce to

[lv(v/2 —vs)]] =0 (8.6)

(v*) =0 (8.5)

It is a simple exercise to verify that the solution to timiial-bvpj is the function

1 , —oco<z<0
v(x,t) = t>0 (8.7)

-1, owo>x>0

Indeed, this function fulfills Eq. (8.5) and exhibits a jump discontinuity#for 0, whose position in the physical
space, at: = 0, is time-independent. Thereforg; = 0 and Eq. (8.6) reduces to

[v(v/2 —vs)]] = [[v*/2]] =1/2-1/2=0 (8.8)

A jump discontinuity such as that occurring above—which satisfies the jump conditions—is knowshacka

An important piece of information that the solutioninitial-bvpj, subjected to theoarse physicsupplies is the
location of the shock around which amernal layer, similar to a boundary layer, develops. Once ¢barse-physics
solution has been obtained, the goal of the second step bii-fhieysical approactis to resolvethelocal eventi.e.,
to predict the details of the solution at thgernal layer. To this end, as was indicated previously, and in a similar
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fashion to what is done in the caselmfundary layersthe domain is divided into two subdomains: trearse-model
domainand thefine-model domainThis latter domain is defined by

Dy ={(z, )] = 0_(t) <z < 84(t)} (8.9)
while the first one, its complementary space, is given by
De ={(z,t)|x < =6_(t) or &i(t) <t} (8.10)

Above,b_(t) andb_ (t) are the thicknesses, at timeto the left and to right, respectively, of the shock profile. The
coarse-model domaimay be decomposed into two disjoint pieces; namely:

Dg ={(z,t)lx < -86_(t)} and D} = {(z,t)|6,(t) <z} (8.11)

Clearly Do = Dg U D{. There is considerable freedom for choosing the functiang) and s (¢), albeit they
must fulfill some requirements, which are not discussed here. As for the physics involtredbirphysical model
the fluid isviscousin D¢, and it isinviscid in D¢; thus Eq. (8.1) applies in both of these subdomains byt in
D¢, whilee = 0in D¢. Therefore, the jumps that occur at the boundary that sepabgté®m D satisfy Eq. (8.3).
We observe that, at every given time, such a boundary is made of two points: one is the point sepgrétong D
and the other one separaigg from Dg. We adopt the notations;; () andx3; for them, respectively.

They satisfy the equation:

ry =-5_(t) and =zf=58.(t) (8.12)
Taking all of this into account, Eq. (8.3) becomes
87} _ +
v(v/2 —vg) — ol | = 0, at zy and zj (8.13)
X
with dd dd
vp=-—- and vy = 7:’ at z3(t) and zi(t), respectively (8.14)

Or, in a more explicit form, we have

ve ddi\ _ vy ddi  Oup _
Uc<2 dt>_vf<2 dt e & r=5()

vo dd_ - vf dd_ (%f o
”C<2 dt>_vf<2 dt> cop A e=0-0)

We recall that the solution in th@arse-model domajmwhich is independent of tHine-model-domaisolution, has
already been obtained and it is given in Eq. (8.7). Furthermore, if wedtake = 6_(t) = vt, where0 < v <« 1
then

t>0 (8.15)

ov

vR(vf/2—v)—sa—;:1/2+v, at =t
t>0 (8.16)
vf(vf/2+v)f£%:1/2+v, at x=—vt

Equation (8.16) supplies boundary conditions, which together with Eq. (8.1) define a well-posed problgm in

9. DISCUSSIONS AND CONCLUSIONS

There are two categories of multiscale approaches: information-passing (or hierarchical), and concurrent. In turn, there
are two classes of concurrent approaches: disjoint and overlapping (Fish, 2013). This paper presents a general method
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for treating a subclass of disjoint-concurrent multiscale approaches; namely, that for whicle trelcoarse resolu-
tionsare in the realm of continuous mechanics. Such a method transforms the probleminit@iaboundary value
problem with prescribed jumps (bvpjj the type previously discussed by the author in Herrera (2007). Furthermore,
the method supplies a general formula that by mere substitutions yields the explicit expressionditérertial
equationsandjump conditionghat define théovpjfor each case.

In particular, the new method is applicablelé@al eventsvhen thefine andcoarse resolutionare in the realm
of continuous mechanics. Using this fact, a new methodology is also introduced for trieatindaryandinternal
layersassociated with singular perturbations of partial differential equations. Several typical problems of this kind
were discussed and treated in this paper. Although this is a new manner of formulating such problems and it will
take some time to evaluate its implications, an advantage that is immediately apparent is that it eliminates some of
the most controversial aspects of standard approaches such as matched asymptotic expansions and some other similar
procedures (Cousteix and Mauss, 2007; Cousteix, 2005; Kevorkian and Cole, 1981).
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