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Preface 

Common experience reveals two basic aspects of wave propagation. First, 
while preserving their identity and travelling at definite speeds, sounds finally 
die out. Second, weak sounds may combine to form strong noises. Theories of 
acoustic propagation have succeeded in representing these aspects of experience 
separately, but never combined as in nature. The classical theories of sound in 
perfect fluids and elastic solids easily yield common speeds of propagation for 
plane infinitesimal disturbances, but no damping. Moreover, within EULER'S 
theory of the perfect fluid, or its generalization, the GREEN-KIRCHHOFF-KELVIN 
theory of finite elasticity, weak waves may grow stronger and become shock 
waves, which propagate according to more complicated but equally definite 
principles. Effects of internal damping are easily added for theories of infinitesimal 
deformation, but for finite motions a dead end was reached about sixty years ago. 

Indeed, in 1901 DUHEM proved that according to the NAVIER-STOKES theory 
of fluids acceleration waves and waves of higher order cannot exist, and for 
shock waves he claimed a similar result, which has since been shown to be valid 
subject to certain qualifications. So as to save the phenomena of sound and 
noise, as was necessary if the NAVIER-STOKES theory was to deserve the place 
proposed for it as a refinement upon EULER'S theory, DUHEM introduced the 
concept of "quasi-wave", a region of rapid but continuous transition. In 1906 
PRANDTL offered the same argument in a more special and less precise way, 
and from his remarks grew, eventually, not only the theory of the plane "shock 
layer" with its notorious mathematical difficulties, but also the widespread 
opinion that any kind of "dissipative mechanism" smoothes out discontinuities. 

In 1930 LAMPARIELLO observed that this opinion is false. Indeed, the linear 
hyperbolic partial differential equation 

82 u 8u 82 u 
T 8x2 +F aT=a fii2 , 

which represents the small transverse motion of a perfectly flexible string with 
a frictional resistance proportional to the velocity, clearly admits discontinuous 
solutions oj all orders. Moreover, their speed of propagation is U = fila, unaffected 
by the magnitude of the coefficient of friction F. The idea is easily generalized, 
and in the vast Italian literature on accumulative theories ("fisica ereditaria"), 
little or no attention has been paid to waves, since in the equations considered 
there certain accumulative terms ("termini ereditari") involving only derivatives 
of order lower than that of the differential system are added to account for 
dissipation. Of course, with shock waves the argument no longer applies, but the 
theories are linearized from the start, with only infinitesimal deformations in 
view, so the question need not arise. 

The non-Italian literature, meanwhile, continued to regard surfaces of dis
continuity incompatible with "dissipative mechanisms" until just the last few 
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years, when solutions involving shock waves according to BOLTZMANN'S theory 
of infinitesimal visco-elasticity began to be noticed and discussed. 

The scene was now set for the four remarkable memoirs reprinted in this 
volume. These provide the first theory of waves that accounts for all common 
acoustic experience. 

Essential to the achievement here recorded was the general development of 
continuum mechanics in the past twenty years, and in particular the following 
three mathematical structures. (1) The theory of simple materials as formulated 
by NOLL in 1957-8. (2) The theory of fading memory as defined and applied 
by COLEMAN & NOLL in 1959-60. (3) The thermodynamics of simple materials 
as created by COLEMAN in 1964. Very helpful also was the development of 
technique in the theory of singular surfaces in non-dissipative media by T. Y. 
THOMAS in the late forties and early fifties, followed by ERICKSEN'S definitive 
memoir of 1953 on waves in incompressible isotropic elastic materials. 

While this whole complex of ideas and the associated mathematics are used 
here, the key to resolution of the apparent paradox of wave propagation in 
dissipative materials may be found in the fact that although the NAVIER-STOKES 
theory emerges according to COLEMAN & NOLL'S scheme as an asymptotic ap
proximation in the limit of slow motion for any simple fluid with fading memory, 
it is itself an exceptional material in that it does not exhibit fading memory 
in COLEMAN & NOLL'S sense. COLEMAN, GURTIN & HERRERA have proved that 
the property of fading memory removes the inconsistency between sharp discon
tinuities and dissipation, so that, in accord with experience, both damping and 
propagation become possible in theories of materials. The inability of the NAVIER
STOKES fluid to support wave motions merely illustrates its exceptional character, 
untypical of real fluid behavior. Looking backward now, we can say that the 
theory of linearly viscous fluids, although properly invariant, was misleading 
as a basis for the kind of ritual which is called "intuition" by those who con
sider themselves innately endowed with knowledge of physics. BOLTZMANN'S 
theory of infinitesimal visco-elastic materials is closer to nature in regard to 
wave propagation, yet in tum untypical because of the linearization, which 
renders all kinds of waves equivalent and removes the possibility of reinforcement. 
The theory of COLEMAN, GURTIN, & HERRERA unifies the HUGONIOT-HADAMARD 
theory of weak and strong waves in finitely deformed elastic fluids and solids 
with the recent studies of waves in infinitesimal visco-elasticity and extrapolates 
between them as limit cases; it takes account both of finite deformations and 
of long-range memory. 

There is not space here to summarize the papers reprinted in this volume. 
I confine myself to pointing out two remarkable results. First, for a given material 
there exists a critical jump in the density rate [Remark 5.2 in Part II (p. 255)]: 
If the instantaneous modulus of compression is positive, a plane compressive 
acceleration wave carrying a lesser jump is damped out steadily as it progresses 
into a region at rest, but the amplitude of a wave carrying a greater jump becomes 
infinite within a finite time. In Part III this result is shown to remain valid when 
thermodynamic influences are taken into account. Thus appears, for the first 
time in a mathematical theory, an explanation for the damping of sufficiently 
weak sounds and the explosion of sufficiently strong ones. Second, in Part IV 
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thermodynamic limitations are used to show that the acoustic tensor in a non
conductor or a definite conductor of heat is a symmetric tensor, a result which 
suggests an experimental test of the theory here developed. I remark also that 
the general theory presented here puts singular surfaces back in place as the 
best model for propagation of nearly all kinds of sharp disturbances, except, of 
course, in cases where the finite thickness of a region of transition is really of 
prime interest. 

When I proposed the immediate reprinting of these four memoirs on the 
general theory, Messrs. COLEMAN and GURTIN asked me to include my paper of 
1961 on waves in elastic materials. While its subject is strictly excluded by the 
title of the volume, it may be useful as a reference, since in many cases the 
theorems on waves in dissipative materials are phrased by reduction to the 
theory of waves in a particular purely elastic material, determined by the con
stitutive functional and the deformation-temperature history together. For the 
reprinting, a few misprints and slips have been corrected, and a few remarks, 
set off in braces, have been added. May the inclusion of my paper, with its 
dedication and references, remind the reader of the great tradition of HUGONIOT, 
HADAMARD, and DUHEM, here vindicated and refurbished. 

This preface must close by an expression of gratitude to Springer-Verlag, 
not only for its peerless typography and accuracy, but also for the elegant 
courtesy, vanishing relic of old times, which it extends to its authors and editors. 

C. TRUESDELL 
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