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1. CONTENTS

This file contains information on our novel one-spacecraft method for determining shock normals. We first provide

the description, then we discuss the sources of errors and in the end we provide figures of B-field profiles of the shocks

in the shock-normal soordinate system.

2. METHOD

Determining the geometry (θBN ) of observed collisionless shocks is fundamental for understanding the physical

processes that govern particle acceleration at these shocks as well as their evolution in time. In order to determine

θBN , one needs to find the shock normal and the upstream B-field direction. Obtaining the latter is straightforward,

while determining precise shock normal vectors not so much. Common methods used for calculating the normal

vectors can be divided into multi-spacecraft and one-spacecraft methods. The first relay on determining accurate

shock crossing times for at least four spacecraft. This can be hard if the shock transition is highly structured and if

time differences between pairs of spacecraft are of the order of time periods during which the shocks are observed.

The most common one-spacecraft method involves the magnetic coplanarity theorem. This requires averaging of

upstream and downstream fields during chosen time intervals (but exclude the shock transition) which are then used

to calculate the shock normal and θBN . Thus one obtains some time-averaged values. When multiple inter-spacecraft

separations are small (.100 di), one would expect the shock normals calculated this way to coincide within the margin

of error. This is because self-reformation is a cyclic process so local shock normals and θBN vary in time around some

average value which should be similar at small spacecraft separations.

In order to study shock rippling, we need local shock normals at the times when the shocks were observed by each

spacecraft and see how they vary as a function of inter-spacecraft separation. Here we use a one-spacecraft method

based on shock normal coordinate system (SNCS). The latter contains three perpendicular axes, n, l and m. The

n-axis is parallel to the shock normal, the l-axis contains a projection of the upstream B-field on the shock plane,

while the m-axis completes the right-hand coordinate system. When crossing a shock, the Bn component is constant

at some finite value, the Bm-component is zero, while the Bl component changes from upstream to downstream.

This is of course strictly true only for MHD shocks. In the case of collisionless shocks there exist out-of-plane

component of the magnetic field produced in the shocks’s foot and overshoot. Still we expect to find a unique direction

of the maximum variance of the B-field (l-axis) and another direction in which the B-field oscillates around zero

(m-axis). The third direction that completes the right-hand coordinate system is thus the n-axis along which the Bn

component varies around some average value.

In order to find the SNCS using given interval, we first smooth the B-field data by using a 4-second sliding window

in order to remove the upstream whistlers. We then perform minimum variance analysis (MVA, Sonnerup & Scheible

1998) of the B-field across the shock and postulate that the direction of maximum variance gives us the l-direction.

We also obtain two more vectors, perpendicular to l. We then rotate one of them around the l-axis and calculate the
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absolute value of the mean of the B-field projection along it. Once this value reaches its minimum close to 0, we take

the corresponding vector to point along the m-axis and the remaining vector has to point along n.

3. SOURCES OF ERROR

This method is not without errors. There are two main sources that distort our calculations. The first is the error of

the MVA method itself which depends on the number of measurement points and the calculated eigenvalues (Sonnerup

& Scheible 1998):

θErr =

√
λ3

M − 1

λ2
λ2 − λ3

. (1)

Here λ2, λ3 and M are the intermediate and minimum eigenvalues and the number of measurement points, respec-

tively. In the figures below we show this error for each case.

The second source of errors comes from determining time intervals which are used for the MVA. These intervals

need to include the shock transition but also some upstream and downstream regions. One needs to select the

intervals carefully so not to include large B-field rotations that are not associated with shocks and could affect the the

determination of the direction of maximum variance. We select the time intervals by hand. We repeat the process

for each shock and spacecraft ten times. We then proceed to calculate angles between pairs of normals from different

spacecraft (θNN ) and calculate the the average angles and the error of the mean. We then sum this error with θErr in

order to estimate the total error of our method. The latter is shown in Table 1 and in Figure 2 in form of error bars.

4. PLOTS
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14 Kajdič et al.

+

+



Observations of rippled IP shocks at ion scales. 15

+

+



16 Kajdič et al.
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